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Abstract: Emotion recognition is a pivotal area in human-computer interaction, crucial for enhancing system responsiveness and 

adaptability. The expression of human emotion depends on various verbal and non-verbal. Emotion recognition is thus well suited as a 

multimodal rather than single-modal learning problem. This study introduces Multimodal that integrates speech (Audio) and facial 

features to recognize three primary emotions: happiness, sadness, and surprise from a video dataset (MELD). In audio feature 

extraction, an autoencoder is used, which improves the model's capacity to identify subtle emotional subtleties from speech signals. 

Concurrently, ResNet is used to extract image features by transfer learning, using pre trained weights to identify intricate visual 

patterns from summary pictures. The Improved Zebra Algorithm (IZA) is used in feature selection to maximize discriminative feature 

subsets. Our suggested Bi- Directional LSTM with self-attention mechanism is evaluated by comparison with two baseline models, 

namely Bi Directional LSTM and Convolutional Neural Network (CNN). Our method achieves state-of-art results on MELD. More 

specifically, the highest accuracy was obtained by the Bi-LSTM-self attention model with 89.83%, followed by 85.15% by the Bi-

LSTM, and 86.87% by the CNN respectively. These findings demonstrate the efficiency of the Bi-LSTM- SA model on multimodal 

emotion recognition. 

 

Keywords and phrases: Multimodal Emotion Recognition, Bi-Directional LSTM with self-attention mechanism, Bi directional 

LSTM, Autoencoder, ResNet, CNN. 

1 Introduction 

Emotions play a crucial role in human 

communication, being conveyed through voice, 

gestures, facial expressions, and other channels that 

carry significant affective information [1][2][3]. 

However, Human-Computer Interaction (HCI) still 

lacks certain emotional components needed for truly 

human-centered communication. Affective computing 

addresses this gap by enabling systems to recognize 

emotions and generate appropriate responses, 

enhancing interaction effectiveness. This field has 

diverse applications, including healthcare [4], 

education [5], entertainment [6], and autonomous 

vehicles [7]. 

Early emotion recognition studies primarily focused 

on unimodal approaches, such as speech emotion 

recognition [8][9], text-based emotion recognition 

[10][11], and facial expression analysis [12][13]. 

However, single-modal systems often suffer from data 

incompleteness and noise, limiting their accuracy. To 

overcome these challenges, researchers have 
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increasingly adopted Multimodal Emotion 

Recognition (MER), which integrates multiple 

modalities to leverage complementary information 

and improve recognition accuracy. MER utilizes 

mutual information to measure relationships between 

different modalities, enabling the extraction of more 

discriminative features. As a result, MER has 

attracted significant research interest, as it enhances 

emotional judgments by combining complementary 

modalities [14][15]. With the rapid advancements in 

deep learning, MER based on deep learning has 

emerged as a crucial research area, focusing on 

designing effective network architectures [16]. 

Emotion recognition using both facial expressions and 

speech is gaining prominence due to the 

complementary nature of these modalities, enhancing 

emotion analysis in video-based applications [17]. 

There have been multiple machine learning (ML) and 

deep learning (DL) methods applied to audio-video 

emotion recognition (ER) with much progress made 

on hybrid models fusing different learning schemes. 

 

Traditional Approaches 

Early approaches were heavily based on statistical 

models like Gaussian Mixture Models (GMM) [18] 

and Support Vector Machines (SVM) [19]. Feature 

selection methods such as PCA were also used to 

enhance the classification performance [20]. While 

useful to a certain extent, these methods had difficulty 

handling complexity and variability in real emotional 

expressions. 

Transition to Deep Learning 

With the development of deep learning technology, 

neural network-based frameworks such as 

Convolutional Neural Networks (CNNs) [21], 

Recurrent Neural Networks (RNNs), and Long Short-

Term Memory (LSTM) networks improved recognition 

accuracy substantially [22]. Hybrid models combining 

machine learning with deep learning, such as CNN-

SVM models, showed better results [23,24]. 

Some of these studies investigated on CNN for facial 

expression analysis and SVM for speech emotion 

recognition. Feature and decision-level fusion methods 

were applied in [25], and 77.4% accuracy (SAVEE) and 

69.3% (RML) were reached. Likewise, CNN-LSTM 

model for audio and 3D-CNN for video achieved 

74.3% accuracy on eNTERFACE’05 [22]. SAVEE 

indicating the accuracy of 63.1% with pre-trained 

ResNet together with CNNs [26]. LSTM- RNNs 

models for speech and CNN based classifiers for 

images combined through weighted sum functions had 

some promising results [27]. 

Advanced Hybrid Models 

For higher performance, more complex hybrid models 

combined various neural network architectures. 

TCN were utilized with fusion of CNN and SVM 

[28]. The authors in [29] combined features using 

Deep Belief Networks (DBNs), and were able to 

attain 80.36% and 85.95% on RML and 

eNTERFACE05, respectively. One model, which 

jointly used CNN to analyze Mel-spectrogram of 

speech and emotional recognition of facial video, 

fused by using both Extreme Learning Machines 

(ELMs) and SVM, achieved an accuracy of 84.6% 

on the eNTERFACE’05 [30]. 

The hybrid models SVM + CNN and RF + CNN had 

achieved 100%, 99.72%, and 98.73% recognition rates 

for the SAVEE, RML, and eNTERFACE05 datasets 

indicating the superior of the hybrid classifier systems 

[24]. A recent work that integrated 2D-CNN for audio, 

3D-CNN for video, DBN for feature fusion and SVM 

for classification achieved accuracies of 82% and 

84.5% on RML and eNTERFACE05 [31]. A hybrid of 

rule-based and machine learning model reached 90.83% 

on RML and 86.67% on eNTERFACE05 [20]. 

Recent Developments 

Another line of work developed cross-attention 

modules for CNN-TCN models [28] and attention 

mechanisms for temporal emotion recognition, leading 

to better multimodal learning effectiveness [32]. The 

work in [24] combined traditional and deep learning 

methods using prosodic features, MFCCs and FBEs. 

The method employed a multi-class SVM for emotion 

classification for speech and a CNN classifier for facial 

expression recognition and subsequently combined the 

produced decisions through an extra classification 

layer. When compared to other models, Random Forest 

classifier performed the best by obtaining the state- of-

the-art results on different datasets.
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In [31], to improve the recognition performances, a 

hybrid approach that concatenated 2D-CNN with 3D-

CNN for speech and visual data and used Deep 

Bayesian Network (DBN) for fusion was proposed. 

Another model used Temporal Convolution Networks 

(TCN) for detecting facial features and 2D-CNN for 

speech together using cross-attention mechanism for 

final classification [28]. 

Furthermore, attention-based multimodal 

architectures have also been studied to capture the 

temporal relationship between facial and speech 

information. In [32], a Multi-modal Attention network 

was constructed to mine the time variance of 

emotion segments and facilitate classification 

accuracy. 

In this research, we explore the fusion of facial and 

speech features for emotion recognition using advanced 

deep learning architectures. We make use of transfer 

learning (ResNet-50) for more efficient and accurate 

image feature extraction. Moreover, the Enhanced 

Zebra algorithm is used to select feature and decrease 

dimensionality and to enhance model behavior. For 

classification, we utilize a Bidirectional LSTM 

(BiLSTM) combined with a self- attention mechanism 

which captures temporal relationships and emphasizes 

most important input sequences for achieving higher 

accuracy and interpretability. 

 

Problem Statement 

Despite recent advances, emotion recognition remains a 

challenging task due to the presence of noisy and 

unimodal data, the struggle of fusing multimodal cues 

and the limited generalization ability to various 

environments. Unimodal strategies such as only 

focusing on the facial expression or the speech, 

however, cannot always capture the full complexity of 

human emotions. To mitigate such limitations, in this 

work we propose a multi-modality approach, which 

combines the ResNet50 for facial features and the 

BiLSTM empowered with self- attention for the 

prosodic aspects of speech. 

Our contributions are as follows: 

• Multimodal Fusion Strategy: We present a 

deep learning based multimodal model that effectively 

fuses facial and speech information for emotion 

recognition. 

• Optimized Feature Selection: To further 

improve model efficiency, the improved zebra 

algorithm is adopted to particularly optimize the feature 

selection, which reduce data redundancy. 

• Advanced Classification Model: We 

implement a BiLSTM-based classification model with a 

self-attention mechanism to capture temporal 

dependencies and improve interpretability. 

• Comprehensive Evaluation: We have 

compared our studies with baselines models, 

demonstrating the effectiveness of our proposed model. 

The paper is structured as follows. The introduction and 

review of literature is presented in Section 1. The 

background of the methods used in this research is 

explained in Section 2. The methodology, including 

details on the dataset, feature extraction, and model 

development, is outlined in Section 3. Section 4 

presents the results and performance analysis of the 

proposed approach. Finally, the conclusion and future 

scope are discussed in Section 5. 

2 BACKGROUNDS 

2.1 Bidirectional LSTM 

The spatial relationship between different facial regions 

is crucial in recognizing facial expressions, as they are 

composed of various movements of brows and lips. 

Nevertheless, convolutional filters struggle to capture 

this relationship as they only apply to specific image 

regions. Thus, it is crucial to investigate the spatial 

dependencies within facial expression images to 

enhance facial expression recognition performance. As 

a result, we have chosen to utilize the LSTM method. 

This approach treats each row or column in the feature 

maps as a directed sequence. The created sequence is 

then arranged independently, either top to bottom or left 

to right. Every element in the sequence corresponds to 

conv5 3 receptive field, an important area in the 

original image sample. 
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𝑖 

𝑖 

𝑖 

The left-to-right (o→ t) and top-to-bottom (o↓ t) 

LSTM responses of the two spatial sequences are 

concatenated and totaled together. The following 

equations provide a summary of the process 

(1) 

 

(2) 

 

(3) 

 

2.1 Self-attention mechanism 

The low-level input sequence is transformed into 

higher-level and more abstract representations via the 

self-attention mechanism using multi-head scaled dot-

product attention. A feature sequence X = {x1, x2,…, 

xT} ∈ RT ×d, where xi ∈ Rd is the frame-level feature 

at step t and T is the maximum time step, is fed into 

the self-attention layer. 

In order to perform multi-head scaled dot-product 

attention on sequence X, relevant queries Q, keys K, 

and values V must be created. In order to accomplish 

this goal, we use multiple linear projection layers, 

which are computed as follows, to apply X to h: 

 

𝑄𝑖 = 𝑋𝑊𝑄 (4) 

𝐾𝑖 = 𝑋𝑊𝐾 (5) 

𝑉𝑖 = 𝑋𝑊𝑉 (6) 

 

where Qi, Ki and Vi ∈ Rd×(d/h), i ranges from 1 to h and h is the number of heads. 

We use the following equation to execute the scaled dot-product attention for each head's query Qi, key Ki, and value 

Vi: 

 

Where the scale factor is denoted by dk = d/h and head ∈ RT ×(d/h). The outcomes of each head are then combined and 

projected linearly to produce 

 

(8) 

 

The projection matrix, denoted as WO ∈ R(d×d), is being referred to. Based on reference [24], To get the final encoded 

sequence S, we add a residual connection and layer normalization. 

(9) 
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2.2 Autoencoder 

The goal of a regular autoencoder (AE) is to minimize error when reconstructing the input data  into the output. An 

encoder component compresses the network's input into lower-dimensional variables, also known as codes or latent variables. 

A decoder component then reconstructs the latent variables into their representation (such as an image, text, or speech) at the 

network's output. This is how a regular AE network is put together. In Figure 1, this network is displayed. 

 

Figure1: Architecture for Autoencoder 

The network cannot learn any meaningful 

representations if the regular AE is built to be 

flawlessly able to duplicate its input. Alternatively, the 

standard AE network has a restriction. The constraint is 

situated at the latent variable's dimension, which is 

smaller than the input dimension. As a result, the 

encoder picks up some crucial aspects from the input, 

and the decoder attempts to figure out how to use those 

features to reconstruct the output. As seen in Equation 

10, where L is the MSE loss function, Xˆ is the 

reconstructed picture, X is the input image, and N is the 

total quantity of training data, they are often trained 

collectively using mean- squared error (MSE) loss 

between the reconstruction and the input. If there is a 

difference between the input and the output, the 

network is penalized by the loss. Because of the pixel-

wise MSE loss, the reconstructed image is therefore 

blurrier than the original. Undercomplete autoencoder 

is an illustration of this type of regular AE network 

[33]. 

 

(10) 

2.1 Transfer learning with ResNet-50 

One of ResNet's convolutional neural network 

variations [9] is ResNet-50, which has 50 layers. It has 

one MaxPool, one Average Pool, and forty-eight 

Convolution layers. ResNet-50's design is described in 

completely in Figure 2. ResNet is based on the deep 

residual learning framework [9]. It resolves the 

vanishing gradient issue even in cases where neural 

networks are quite deep. Resnet-50 has more than 23 

million trainable parameters despite only 50 layers, 

significantly fewer than existing architectures. 

Though there is still room for debate, the simplest 

explanation of its performance is to review residual 

blocks and how they function. Let’s look at a neural 

network block with x input. Where the true distribution 

H(x) is what one has to know. The difference (or 

residual) between these can be represented as follows: 
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(11) 

 

We end up rearranging it. 

 

.  (12) 

 

The residual block attempts to discover H (x), the true 

output. 

The layers are learning the residual, or R(x), as can be 

seen from taking a deeper look at the figure since x 

results in an identity connection. A typical network's 

layers learn the true output (H(x)), but the layers in a 

residual network learn the residual (R(x)). It is also 

shown that learning the residual of the input and 

output together is less complicated than learning the 

input by itself. The identity residual model allows for 

the reuse of these activation functions from earlier 

levels because it bypasses them and doesn't 

complicate the design. 

 

Figure 2: ResNet 50 Architecture 

 

3. METHODOLOGY 

This section describes the full methods for emotion 

recognition based on audio and image features 

derived from video dataset. 

3.1 Dataset 

This study used Multimodal Emotion Lines Dataset 

(MELD), which includes not only textual dialogues, 

but also their corresponding visual and audio 

counterparts. MELD contains around 1400 

conversations and 13,000 utterances from the 

television show Friends. The discussions featured a 

number of speakers. All seven emotions—Anger, 

Disgust, Sadness, Joy, Neutral, Surprise, and Fear—

have been assigned labels to each dialogue exchange, 

but in this article, we focused  on  three  primary  

emotions.  MELD  was  selected  due  to  its  rich  

multimodal 
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characteristics, which enable a comprehensive 

evaluation of emotion recognition based on audio and 

facial expressions [34]. 

3.2 Feature Extraction 

In this step, acoustic and visual features were 

extracted independently and then combined to form a 

unique feature representation. 

3.2.1 Extracting Audio Feature: We first 

extracted audio tracks from videos files through the 

common FFmpeg library for processing audio or 

video media files. The audio was saved as wav format 

due to its high fidelity and compatibility with deep 

learning frameworks. 

The audio went through pre-processing to 

enhance the quality of the data, such as noise 

reduction (spectral subtraction) and normalization to 

keep the amplitude consistent. After pre- processing, a 

deep feature extraction process was applied using an 

Autoencoder. The pre- processed audio signals were 

encoded into a lower-dimensional representation 

before being reconstructed, with deep features being 

extracted from the bottleneck layer. These features 

encoded important sound characteristics that 

contributed to emotion recognition. 

3.2.2 Visual Feature Extraction: 

Complementing the audio processing, important 

visual features were extracted from the videos as 

summary images. This was done by key frame 

extraction operations like frame averaging that 

produces composite images summarizing the video 

visual content. The summary images preserved the 

essential facial information for emotion recognition. 

ResNet-50 was employed for feature 

extraction because it is a better learner of high- level 

spatial representations. We employed transfer 

learning with pre-trained ResNet-50 to obtain deep 

facial features to make it easy to well represent 

emotional expressions. 

3.3 Feature Concatenation 

Following extraction, the audio and image features 

were concatenated to create a joint feature vector. 

This cross-transformation exploited the 

complementary information of the two modalities, 

which makes the model for the emotion recognition 

task robust. 

3.4 Feature Selection Using Improved Zebra Algorithm 

(IZA) 

To remove redundant features and enhance 

classification accuracy, feature selection was 

conducted with IZA. This is a feature selection 

approach which selects the most informative features 

and discards irrelevant ones, thus, simplifying the 

computational complexity. The IZA begins with the 

creation of an initial population of possible feature 

subsets. A fitness function is employed to evaluate 

each subset in terms of classification accuracy. The 

approach repeatedly hones the population by 

exploiting and exploring simultaneously to balance 

the novelty of discovered feature subsets with the 

improving nature of currently identified ones. This 

iterative process goes on until an optimal set of 

features have been achieved, leading to choose subset 

of features(dimensions) that are considerably small 

but informative. 
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3.5 Train-Test Split 

Following feature selection, the dataset was divided 

into testing and training sets. Training data contains 

about 80% of the data which is utilized to train the 

model, the remaining 20% is used as testing set, this 

test data is used to evaluates how well the model 

predicts on new data. It ensures its real-world 

effectiveness and generalization capability. The flow 

chart of the modal is given by Figure 3. 

 

Figure 3: Flow Chart 

 

3.6 Model Building and classification 

The mixed Emotion Recognition Model was 

developed with Bi-LSTM (Bi-Directional Long Short-

Term Memory) network together with Self-Attention 

Mechanism. This architecture was chosen for its 

effectiveness in capturing sequential dependencies in 

speech while selectively attending to the most 

important features in the input sequence. 

The procedure of model training was 

pipeline mannered. In the first stage, we input the 

multimodal features from the IZA dataset into the Bi-

LSTM layer, which learned the temporal 

dependencies in the speech and facial signals. The 

self-attention mechanism was then applied to enhance 

focus on the most informative segments of the input. 

Finally, the features were forwarded to the fully 

connected layer for classifying the emotions among 

the selected categories. 

This hybrid model has achieved a robust 

modeling temporal cue in speech and vision cues in 

facial expression and achieved better performance 

labeling emotions. 

3.7 Model Evaluation 

For evaluating the proposed emotion 

recognition model, the accuracy, precision, recall, F1-

score and confusion Matrices were used to measure 

the generalization and performance. These measures 

guarantee a complete assessment of the classification 

performance over various emotion types. 
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• Accuracy: The percentage of the correctly predicted 

samples from the total samples is called the accuracy 

and computed as: 

Accuracy = 
 

• Precision : Precision (also known as Positive 

Predictive Value) measures the ratio of correctly 

predicted positive samples to the total number of 

predicted positives: 

Precision = 
 

• Recall (Sensitivity): The ability of the model to 

identify the actual positive samples is measured by 

recall (also known as sensitivity or true positive rate): 

Recall = 
 

• F1-Score: F1-score is the harmonic mean of 

precision and recall, which is useful for balancing 

Precision and Recall, especially in the imbalanced 

dataset situation: 

F1score = 
 

where Tp = True positives, Tn = True negatives, Fp = 

False positives and Fn= False negatives. 

• Confusion Matrix Analysis: A confusion matrix was 

created to include the ratio that shows the number of 

correct and wrong classifications between any two 

types of emotions. It enabled the analysis of the 

patterns of misclassifications and the directions in 

which the model needed to be improved. 

3.8 Experimental setup 

The experimental analysis for the proposed 

technique involved conducting the experiments on a 

local PC operating on Windows 11 OS with 8GG 

RAM and Core i5 processor. The code was created 

and executed using a jupyter notebook. Pre-

processing of the models and their execution were 

carried out using various machine learning packages, 

such as numpy, pandas, sklearn, and more. 

4. RESULTS AND DISCUSSION 

4.1 Results 

Results of this study show that various deep 

learning models for Multimodal Emotion 

Recognition. The models were compared using 

accuracy, precision, recall, F1-score, and confusion 

matrices to check which emotion was best predicted 

in three emotions category: Sad, Happy and Surprise. 

Comparing the results shows the superiority of the 

method of adding self- attention mechanism to Bi-

LSTM as for classification. 

Interpretation of Findings 

The Bi-Directional LSTM with Self-Attention 

Mechanism obtained best accuracy of 89.83% which 

4.68% more than the standard Bi-Directional LSTM 

which had an accuracy of 85.15% and 2.96% more than 

CNN model which had accuracy of 86.87% (as shown 

in Table 1). The self-attention mechanism improved the 

efficacy of the model in concentrating on the relevant 

features, resulting in better classification performance. 

We note also that this gain is also observed on 

precision, recall and F1-score where the Bi-Directional 

LSTM with Self-Attention Mechanism had a superior 

recall, which lead to lower misclassification rates.

Table 1: Results 

Models Accuracy Precision Recall F1-Score 

Bi-directional-LSTM with 

self-attention mechanism 

0.89834 0.89833 0.898 0.898 

Bi-directional-LSTM 0.85151 0.85165 0.85151 0.85152 

CNN 0.8687 0.86877 0.8687 0.86867 
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The confusion matrices (as shown in Figures 4 -6) give 

additional insight in model success: 

• The Bi-Directional LSTM with Attention Mechanism 

(as we see in Figure 4) is able to accurately classify 

the 963 Sad, 1000 Happy, and 1067 Surprise in 

almost every cases. Happy and Sad were the most 

often misclassified AUs, which is not surprising 

because it is known that emotion prediction with 

speech is particularly difficult for Happy and Sad [7]. 

• Bi-Directional LSTM (as we see in figure 5) was able 

to accurately recognise 983 Sad, 981 Happy, and 908 

Surprise instances, but got more confused with Happy 

and Sad emotions. This indicates that though the 

synchronous word based Bi-LSTM captures 

sequential dependency well, the model lacks the 

attentions, which leads to a bit of misclassification. 

• CNN (as we see in Figure 6) had a good performance, 

accurately classifying for CNN, which relied on 

spatial feature extraction without sequence 

modelling, these mistakes are understandable. 

The confusion matrices also reveal that the self-

attention mechanism has been effective in reducing 

the coefficient of the misclassification, especially in 

subtle differences of emotions. The CNN model had 

more balanced errors across categories but was less 

effective than Bi- LSTM models in distinguishing 

temporal patterns in speech-based data. 

 

  

Figure 4: Bi-Directional-LSTM with self-attention-mechanism Confusion matrix 

 

Figure5: Bi-Directional-LSTM Confusion matrix Figure 6: CNN Confusion-Matrix 
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To investigate the model performance in depth, a bar 

graph (as shown in Figure 7) was drawn to compare 

the precision, recall, F1-score, and accuracy for all 

three models. The main points illustrated by the bar 

graph: 

• The Bi-Directional LSTM with Self-Attention 

Mechanism has significant improvements in recall 

and F1-score, which suggests to have more 

generalization and less misclassification cases. 

• The CNN model performs well in precision but 

struggles slightly with recall, likely due to its reliance 

on spatial features without sequential modeling. 

• Bi-Directional LSTM model has comparable 

performance on all the metrics but they lack the 

improved feature selection mechanism of the 

attention-based version. 

This visual illustration provides additional evidence 

of why the use of self-attention mechanisms in deep 

learning models is better suited for multi-modal 

emotion recognition. 

 

 

Figure 7: Comparison of Proposed Models 

 

3.1 Discussion 

Our findings demonstrate that the proposed multimodal 

approach-using ResNet50 for visual feature extraction 

and BiLSTM based attention for speech can achieve a 

large improvement in emotion recognition accuracy. 

The model yielded an accuracy of 89.83% that 

outperformed both similar unimodal systems as well as 

previous multimodal literature. By employing self- 

attention, our model was allowed to attend to important 

temporal pattern in the speech data and this justified its 

effectiveness in sequential data processing. 

When compared to prior studies, our results show a 

clear improvement. For instance, J. He (2025) reported 

an accuracy of 73.56%, while Alsaadawi and Daş 

(2024) achieved 81%. 
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Table 2 highlights this comparison. 

Table 2: Comparison with provious work 

 

J. He (2025) [35] 73.56% 

 

 

Alsaadawı, H. F. T., & Daş, R. (2024) 

[36] 

81% 

 

Our Proposed Model 89.83% 

 

The superior performance of our model may result 

from the fusion deep visual features and improved 

temporal dynamics of BiLSTM with self-attention. 

Whereas previous works were based on single 

modality features, our method takes the full advantage 

of multimodal information, which demonstrates the 

good ability of multimodal feature fusion. 

Nevertheless, the model performance might still 

depend on background noise or speaker variability 

indicating further room for improvement. 

This work is part of and makes a new contribution to 

emotion aware AI and human-computer interaction. 

Verification that self-attention is useful for BiLSTM-

based structures for speech emotion recognition 

allows progress to be made toward systems capable of 

more precise, real- time multimodal interaction. 

 

Conclusion 

In this paper, we proposed a multimodal for emotion 

recognition, which utilized MFCC based audio features 

and visual features generated by CNN and finally input 

into the Bi-Directional LSTM with a self-attention 

mechanism. The focus layer increases the importance of 

the features and decreases the noise to reduce noise and 

improve performance. 

 

 

 

 

 

We found that the proposed model attained better 

results in terms of accuracy, precision, recall, and F1-

score in comparison to both baseline CNN and Bi-

LSTM models after its performance was evaluated 

based on various test metrics and confusion matrices. 

These findings demonstrate the robustness of attention 

based end-to-end deep models for emotion recognition. 

Apart from the performance improvements, 

this work leads to emotionally sensitive human-

computer interaction. Potential future improvements 

include incorporating other modalities such as 

physiological signals and text, and facilitating cross-

cultural generalization to enable real-world 

deployment. 
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