International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-6799 www.ijisae.org Original Research Paper

1JISAE

Enhancing Software Development through Prompt Engineering
A Study on Large Language Models for Code Generation and De-
veloper Productivity

1Jimit Patel, 2Meet Bipinchandra Patel, *Nishil Sureshkumar Prajapati, ‘Rahul Rathi,
SRaghavendra Kamarthi Eranna, ‘Pratikkumar Prajapati, ’Krishna Chaitanaya Chittoor

Submitted:04/11/2024 Accepted:17/12/2024 Published:27/12/2024

Abstract: Large Language Models (LLMs) are increasingly changing Software Development with capabilities to
generate code snippets, debug, etc., and towards design work as well. Successful outcomes using LLMs is heavily
reliant on prompt engineering. Well-designed prompts influence the quality of generated code, improve developer
workflows, and build effective human-computer interactivity in the use of LLM models. This study examines
prompt engineering in improving developer productivity via a designed process of exploration of prompting strat-
egies to generate code. A taxonomy of potential prompt engineering techniques is introduced conceptualizing four
experimental approaches for the coding task: instruction-based prompts, example-based prompts, chain-of-
thought prompts, and hybrid prompts. The study focuses on developer-oriented productivity metrics beyond tech-
nical quality. Productivity metrics include a reduction in overall development time, reduced errors and better
readability, e.g. improved structure of codes, and found improvements to tools used to develop software, e.g.
integrated development environments, collaborative coding tools. The comparative evaluation of prompt patterns
identifies how differentiating prompt patterns can create variable impact on code quality, but also variable expe-

riences for developers. This suggests that prompt engineering can influence the continuing problem of debugging

IStaff Software Engineer At Very Good Security and support more rapid delivery of software to clients.

The paper describes barriers to adoption in practice,
jimit7patel@gmail.com pap P P

such as prompt sensitivity, context limitations and reus-
Senior Manager, Data and AI/ML engineering o))
ability limitations and offer a roadmap for integrating
Meet61@gmail.com
adaptive prompting systems directly in developer envi-
3Lead Cloud Development Engineer,

nishilp017@gmail.com
*BI- Manager
Rathirahul53@gmail.com

ronments. By relating LLM capabilities to productivity
outcomes, this work provides a new perspective in
bridging prompt engineering research with real-world

software development pipelines.
System Analyst

keraghu@gmail.com

Keywords: Prompt engineering, code generation, soft-
’Senior Manager, Data Engineering ware development productivity, large language models
LLM: Al'Q] ing, intel-
pratik. prajapati020@gmail.com l(igemz g (‘;i;’: ;Z:;Sa . s’; ;;’sﬁw are engineering, intel
’Principal Data Engineer

chaitueiel 7(@gmail.com

International Journal of Intelligent Systems and Applications in Engineering JISAE, 2024, 12(23s), 3885-3909 |3885

mailto:jimit7patel@gmail.com
mailto:Meet61@gmail.com
mailto:nishilp017@gmail.com
mailto:Rathirahul53@gmail.com
mailto:keraghu@gmail.com
mailto:pratik.prajapati020@gmail.com
mailto:chaitueie17@gmail.com

1. Introduction

The explosion of artificial intelligence has
fundamentally affected the way software is developed,
tested and maintained. Among the many
developments, large language models (LLMs) clearly
emerged as intelligent flexible assistants (that can
produce source code, document auto-magically, and
reduce cognitive load on developers). While these
developments are obviously a huge advancement of
software engineering practices, the actual productivity
gains to developers' efficiency are heavily reliant on
the design and structure of prompts. For this reason,
prompt engineering has become somewhat of a new
competency in bridging the divide between what
LLMs can produce on the theoretical plane, and what
a developer is looking for in real world work. Even
though tools such as code assistants and automated
programming interfaces are developing quickly, there
remains a lack of knowledge as to how particular
prompt patterns directly relate to software
development productivity. This lack of knowledge has
paradoxically created new opportunities and obstacles
to the research community and industry stakeholders
alike, highlighting the importance of studying prompt
engineering not only as a technical optimization, but

as a productivity enabler as well.

Recent research has documented the expanding
use of large language models for software engineering
functions, such as code generation, program repair,
and software testing [1-3]. Despite the large language
models showing promising performance and accuracy
when generating syntactically correct content, there
remain questions around their effectiveness in im-
proving developer productivity [4—-6]. The variability
in outcomes produced from similar queries, the chal-
lenge of prompt building, and other risk factors will
dictate whether LLMs will provide productivity or
frustration. This dependency introduces further chal-
lenges that will require developers to learn the art of
prompt engineering and use the large-language model

programming environment effectively [7-9].

The discussion of developer productivity has al-
ways been associated with measurable factors (e.g.,
code quality, defect reduction, time-to-solution, main-
tainability) [10—12]. Although, in the literature, there
are conceptual discussions of efficiency or correctness
of algorithms, there has been very little research which
considers practical productivity measures that fit with
everyday developer workflows [13—15]. There is very
little universal agreement on how to validly measure
the real contribution of LLM-based code assistants to
[16,17].

Prompt engineering is an important factor in these

software engineering general practices

practices, as it is the engagement layer between human
intent and machine output. This study will engage
with this dimension of prompt engineering to enact a
sense of frameworks that connect prompt design and
factors of productivity through a transparent and
measurable context across the software development
lifecycle [18,19].

Although the results were optimistic, many of
the challenges remain unsolved. There is uncertainty
in the results due to prompt sensitivity, token limita-
tions restrict usability for larger projects and the learn-
ing curve associated with constructing effective
prompts is high [20-22]. In addition, it is not clear how
productivity gains can be compared between prompt
engineering methods in different coding environments
because there are no standardized benchmarks to de-
termine productivity in coding [23,24]. These limita-
tions however highlight the necessity of further re-
search that considers the productivity role of LLMs for

developers, rather than just their technical correctness.

This research attempts to fill the above gaps by
systematically investigating how prompt engineering
impacts both the outcome (quality) and efficiency of
code generation by an LLM. This work focuses on de-
veloper-centric outcomes (time savings, error avoid-
ance, improved workflow), as opposed to existing lit-
erature focusing on algorithmic accuracy. This paper

contributes in 3 ways:

The paper offers a taxonomy of prompt engineering

techniques that are relevant to software development.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3886

The paper proposes developer productivity measures
to evaluate the impact of LLM-based assistants.

The paper provides a case study of how LLMs are in-
corporated into software engineering pipelines in
practice, demonstrating both opportunities and barri-
ers to adoption.

2. Literature Review

Large Language Models (LLMs) represent powerful
new actors in the software engineering space, ranging
from code creation, to automated testing and drafter of
documentation. Prompt engineering is increasingly at-
tracting attention, due to the observation that the qual-
ity, form, and specificity of prompts have important
effects on the outputs from LLM-based systems. For
this reason, both academic research and industry re-
ports have begun to examine how prompt engineering
might be used to positively engage with developer
productivity and efficiency when the software is de-
veloped in context. This literature review will consider
the state of the research in four major areas: (1) LLMs
and software engineering, (2) prompt engineering
methods, (3) empirical evidence of improvements in
productivity, and (4) challenges and limitations in
terms of adoption.

2.1. Large Language Models in Software Engi-
neering

The application of LLMs into software engineer-
ing has developed across multiple domains: code gen-
eration, bug finding, program repair, and software
testing. Multiple surveys and systematic reviews have
mentioned several applications. Initial applications
demonstrated LLMs could generate code, at the func-
tion level, with decent accuracy, but it was difficult to
depend on the results or to explain why or how the
LLM produced a given answer [51, 52, 63, 70]. Later
reviews referenced the increasing use of LLMs in
more specialized areas, such as automated program re-

pair [67, 72] and model-driven engineering [75].

In addition to capability mapping, researchers
have also documented scenarios where LLMs were
scalable enough for large software projects, where it
was found that, while generative outputs were useful
for prototyping, production-grade software still had
limits on correctness and maintainability [58, 65].
These findings, along with those from earlier chapters,
highlight the importance of combining LLMs with
well-designed prompts to maximize the productivity
of their use, rather than being reliant on generation

alone.
2.2. Prompt Engineering Strategies

Prompt engineering has developed into a key avenue
to improve the interaction between developers and
LLMs. Scholars have established different ways
prompts function, including instruction-based prompt-
ing, chain-of-thought reasoning, and prompted tem-
plates, that offer different levels of impacts on output
quality [53, 56, 64]. As shown in systematic studies,
even minor changes in wording or structure can have
large differences on correctness and code efficacy. For
example, prompts that are structured in a concrete way
(e.g., specifying language, variables, performance re-
quirements) produce more consistent outputs in
CRUD and peda gogy-based coding tasks [53, 60,
62]. Additionally, more advanced prompting strate-
gies, such as prompt optimization frameworks [77],
prompt chaining, and prompt refactoring have been
analyzed for reducing hallucinations and improving
consistency. The studies reviewed provide evidence
that prompt engineering is not only a user practice, but
a research-driven optimization technique that affects

productively developer outcomes.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3887

Chain-of-Thought
(CoT) Prompting

Instruction-based
Prompting

Prompted
Templates

Prompt Optimization
Frameworks

Prompt Engineering

Software Development

Prompt

in LLM-Driven Chaining

m

Reduced

o

c
in CRUD tasks

Pedagogy-based
coding improvements

Figure 1. Prompt Engineering Strategies in LLM-Driven Software Development

2.2.1. Zero-Shot Prompting

Zero-shot prompting allows large language models
(LLMs) to produce code from natural language input
without examples. It may be used in several ways in
software engineering such as boilerplate generation,

implementation of basic algorithms, and iterating

prototypes very fast. An example may be provided
where a developer could simply state "Write a Python
function for factorial using recursion” and receive the
entire function in one shot! This is helpful for auto-
mating the mundane, speeding up experimentation,
however it comes with some limitations such as incon-

sistent quality and project standards.

Step 1: Developer Query

Step 4: Code Generation

« Natural language
instruction (e.g.
"Generate a Python
function to compute
the factorial of a
number")

* Produces runnable
code snippet.

+ Output may vary
depending on clarity
of prompt.

'

i

Step 2: Prompt Construction

Step 3: LLM Processing

« Direct input to the
LLM without prior
examples or context

>

« Utilizes pre - trained
knowledge from vast
code.

Interprets the
developer’s intent and
maps it to appropriate
programming
constructs.

|

Step 5: Developer Evaluation

¢ Developer tests,
validates, and
integrates output.
Identifies bugs.
correctness, and
alignment with
standards

Figure 2. Zero-Shot Prompting Workflow in Software Engineering

The developer query is the starting point, where intent
is conveyed in natural language without examples.
Accuracy depends on how clearly functionality, con-
straints, and expected behaviour are defined, as ambi-
guity here leads to ambiguous outputs. In the prompt
generation phase, the query is structured into a
prompt, where phrasing, tone, and detail (like lan-

guage, style, or error handling) guide the outcome.

During LLM processing, the model leverages its pre-
trained knowledge and generalization abilities to in-
terpret the query and predict solutions without prior
examples. This results in the code generation phase,
where code snippets or scripts are produced varying in
correctness, efficiency, and readability. Finally, in de-
veloper evaluation, the output is tested, refined, and
iteratively improved. This feedback loop is essential,

as zero-shot outputs are not always directly usable, but

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3888

refinement leads to better productivity and reduced

coding effort.
2.2.2. Few-Shot Prompting

Few-shot prompting, as the term implies, is where the
LLM is given a few examples along with a query from
the developer. Instead of relying, as zero-shot prompt-
ing does, on the model inferring everything from a sin-
gle instruction, few-shot prompting provides demon-
strations with which to help the model produce better
results in terms of accuracy and contextual relevance.

As examples give the model reference points with

Examples

Query (from Developer)

which to understand the structure, logic and coding
style to conjecturally produce the desired response.
When it comes to software engineering tasks - again,
typically prompting and training the models on spe-
cific domains, few-shot prompting can greatly im-
prove accuracy and coverage when generating unit
tests, debugging code or formatting projects in a con-
sistent manner. Few-shot prompting achieves a rea-
sonable compromise between flexibility and accuracy,
making it one of the easiest and most useful ways of

augmenting productivity of real-world developers.

Output

23
J

["Generate test cases"

{ Improved accuracy and relevance }

Figure 3. Few-Shot Prompting Workflow

The process begins with the developer prompt plus ex-
amples, where illustrative inputs and outputs provide
context, reduce ambiguity, and guide generalization.
In the prompt writing stage, both the task and exam-
ples are structured together for instance, showing 2—3
Python function examples before requesting a similar

one.

During LLM processing, the model interprets the
prompt and examples, recognizing patterns, logic, and
formatting, which improves alignment with developer
intent. This leads to contextualized code generation,
where outputs reflect the same style and structure, en-
hancing accuracy and trust. Finally, in developer eval-
uation, the programmer verifies the output against ex-
amples and requirements, refining prompts or exam-

ples if needed for better results.

2.2.3. Chain-of-Thought Prompting

Prompting Chain-of-Thought (CoT) is an organized
approach where you instruct the LLM to describe its
reasoning step by step before its final output. CoT
prompting allows the model to produce intermediate
reasoning steps instead of jumping to a conclusion.
This style of reasoning simulates the typical process a
human user would follow for completing a task. CoT
is effective for all software engineering tasks, such as
debugging, designing an algorithm, and working on a
complicated coding task. Explicitly constructing the
model's reasoning allows developers to have greater
transparency into the process the model uses to arrive
at a solution, which lowers the chance of hidden errors
and provides increased confidence with LLM-gener-
ated code. This method also enhances accuracy, while
also allowing developers to be aware of other

paths/solutions considered by the model.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3889

‘ Developer Query H Prompt Construction H LLM Processing H Final Answer / Code Output ’

Coding/Task Input

Step-by-Step Reasoning '

‘ Developer Verification ’

Figure 4. Chain-of-Thought Prompting Workflow

The process begins with the developer query, where
tasks may involve reasoning such as algorithm design
or debugging. In the prompt construction phase, the
developer instructs the LLM to “think step by step,”
prompting it to display its reasoning rather than just

the final code.

During LLM processing, the model breaks the prob-
lem into smaller reasoning steps identifying flows,
conditions, or pseudocode which enhances transpar-
ency and helps detect logical errors. The final output
is then generated from these steps, and in the devel-
oper verification phase, the solution is confirmed for
both correctness and explainability. This makes CoT
prompting highly effective for improving developer
productivity.

2.2.4. Instruction-Based Prompting

Instruction-Based Prompting is probably the safest
and most commonly used prompting technique, where
developers provide direct natural language instruc-
tions to the LLM. The clarity and specificity of these
instructions determines the quality of the output, alt-
hough in general this technique is less strict about ex-
amples and reasoning traces due to reliance on the fun-
damental training of the model to execute commands.
In software engineering, these instructions are com-
monly applied to such operations as converting re-
quirements into code, producing documentation, or
acquiring refactoring of an existing function. It is sim-
ple and flexible in the context of improving developer

productivity.

Convert the requirements into
Python code.

}

{ Large Language Model]

l

return n % 2 ==

‘ def is_even(n):

Figure 5. Instruction-Based Prompting

The process begins when a developer issues an ex-
plicit instruction such as “Generate a Python function
to parse JSON files” or “Refactor this Java code to im-

prove readability” which is then interpreted by the

LLM through its natural language reasoning and pro-
gramming knowledge. The model produces an output
that may include code blocks, unit tests, or documen-

tation, depending on the request. The developer

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3890

subsequently validates the output against the intended
functionality, performance, and task requirements, re-
fining it, if necessary, by editing the instruction or
adding new constraints. This establishes an iterative
feedback loop that rapidly converges on high-quality
solutions, demonstrating how instruction-based
prompting seamlessly integrates into developer work-
flows while reducing both time and cognitive effort in

repetitive coding tasks.

2.2.5. Role/Persona-Based Prompting

@8 Code Reviewer or
software

—n Enrich Prompt
! Task details context

l

‘ Review & Refine

‘ @ Define Role/Persona

- Validate
- Re prompt

Role or Persona-Based Prompting occurs when the de-
veloper specifies a role for the LLM, asking it to act
as some kind of expert. The prompt might include re-
quests to "act like a senior Python developer," "behave
as a code reviewer," or "take the role of a software ar-
chitect." Due to the definition of the persona, the out-
put will be more context-sensitive, associated with the
norms of professional developer workflows. The
role/persona-based approach is most suitable for tasks
that benefit from domain knowledge, coding standards
compliance, or context-based reasoning while devel-

oping software.

LARGE
LANGUAGE MODEL

Interpret & Adapt
Role-based intent

l

Alternative Interpretation
Different perspective

Figure 6. Role/Persona-Based Prompting

In this technique, developers first define a specific role
or persona for the language model, such as a code
reviewer, software architect, or security auditor. The
prompt is then enriched with task details and
contextual knowledge of the project, along with
constraints like coding standards or security rules. The
model interprets the role-based intent and adapts its
reasoning, tone, and expertise accordingly. This
results in primary outputs such as code suggestions,
while alternative interpretations may also be
generated to reflect different perspectives. Developers
review and validate these outputs, providing
refinements or re-prompts when necessary. Over time,
the continuous feedback loop helps fine-tune role

definitions and enhances overall effectiveness,

making the interaction more reliable and closer to real-

world software engineering workflows.
2.2.6. Test-Case Generation Prompting

The technique involves the use of LLMs to automati-
cally create test cases from the requirements, specifi-
cations, or even code snippets. By embedding prompts
in instructions e.g., "Generate unit tests for this func-
tion," or "Provide edge-case tests for login validation,"
the model produces a comprehensive list of test cases
which often include positive, negative, and boundary
test cases. This technique reduces developer effort,
provides better coverage of tests, and results in higher

software reliability.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3891

. N\
Generate
test cases

&

Code/
Requirements
/Specification

Generated Developer
Test Cases Review
AN
y= O
= =)

Testing

Framework
N————r

l«<——— Feedback -J

Figure 7. Test-Case Generation Prompting

In this method, developers provide either source code,
requirements, or a specification as input with instruc-
tions in the prompt to generate related test cases. The
LLM uses contextual project knowledge, together
with a specified testing framework to generate test
cases. The model generates multiple types of test
cases; unit tests, integration tests, negative tests,
boundary tests, etc. The next step is for developers to
review the generated tests for correctness and if more
coverage is necessary, ask the model to iterate and im-
prove. This feedback loop allows for the continuously
improving relevancy and completion of generated test

cases while decreasing the amount of work that the

developers have to do and speeding up the entire test-
ing cycle.
2.2.7. Debugging/Error-Fixing Prompting

This method utilizes LLMs to identifying, explain,
and correcting errors in code. Developers input code
snippets with mistakes, asking for debugging along
the lines of "Debug this function and provide up-
dates". The model will analyze and hallucinate the
syntax, logical issues, and even possible runtime is-
sues, it will create code with fixes and offer an expla-
nation as to why. This process decreases the time re-
quired for debugging in a manual way and creates

much needed speed.

Erroneous Code
"Debug thiz function LLM Evaluate Qutputs
and provide update”

Analyze & Identify Errors

Generate Code with Fixes

Feedback

Provide Explanations

Figure 8. Debugging/Error-Fixing

This illustrates the end-to-end

debugging pipeline. The process begins by having the

block diagram

developer provide erroneous code and pair it with a
debugging prompt. Next, the LLM evaluates the error
types, identifies the bugs (if any), and provides a

rationale for the reason. Then, the LLM will generate

code suggestions with fixes. The developer will
evaluate the outputs and provide feedback. If needed,

the cycle could continue through iterative or feed.

2.2.8 Requirement-to-Code Prompting

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3892

Requirement-to-code prompting simply means
turning natural language requirements into executable
code using LLMs. In the conventional sense, the
developer writes detailed specifications using formal
languages. Most practitioners today write
functionality a user needs in plain English (or any
natural language). The model then parses the

requirements, maps them to a structured format like

pseudo-code or a template and finally generates
production-ready code. This capability improves
productivity immensely by mitigating the
cumbersome process of translating user requirements,
creating a bridge for non-technical stakeholders with
developers and improving the software development

life cycle overall.

Structured o LLM — Executable

Developer

Natural Language A

Requirements Prompts Code/ Pseudocode

v

7| alkiand Tostng Review & Refinement

Figure 9: Requirement-to-Code

Table 1: Comparative Summary of Prompt Engineering Technique

Prompt Technique | Primary Application | Strengths Limitations
in Software
Engineering

Zero-Shot Prompting | Quick code snippets, Fast, no training data | May produce
Simple automation needed, easy to vague/inaaccurate

tasks

apply

results without

context

Few-Shot Prompting

Code generation with

specific style or format

Increases accuracy,

adapts to coding

Requires carefully

chosen examples;

style scalability issues
Chain-of-Thought Algorithm Improves reasoning | Slower, may generate
explanation, quality, enhances verbose answers
debugging logic interpretaility
Instruction-Based Generating boilerplate | Easy to design, Highly sensitive to
Prompting code, API integration | highly flexible wording, small

changes affect output

Role/Persona-Based

Prompting

Acting as a code
reviewer, tutor or

system architect

Produces context
aware, role-specific

responses

May overfit persona,
sometimes

inconsistent

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909

3893

productivity

Test-Case Automated test Saves developer Quality of tests
Generation creation for software time, improves code | depends on clarity of
Prompting validation reliability prompt
Debugging/Error- Syntax correction, Reduces debugging | May miss subtle
Fixing Prompting logical error fixing effort, improves context-specific bugs

Requirement to- Rapid prototyping,

Code Prompting requirement-driven

coding

Bridges gap between
client requirements

& implementation

Risk of
ministerpretation of

ambiguous

requirements

In this technique, software requirements expressed in e

natural language are systematically refined and trans-
formed into structured prompts, enabling clarity and
precision. The LLM then interprets these prompts to
generate executable code or pseudocode aligned with
the intended functionality. The correctness and relia-
bility of the produced code are subsequently validated
through rigorous testing mechanisms. Following vali-
dation, developers review and refine the output to en-
sure compliance with project standards and profes-
sional practices. This horizontally structured work-
flow illustrates the essence of requirement-driven
prompting, effectively bridging client needs with
practical implementation and demonstrating its value

in real-world software engineering contexts

2.3 Empirical Evidence of Improvements in

Developer Productivity

Recent empirical studies have demonstrated that
carefully engineered prompts lead to measurable gains
in developer productivity when leveraging LLMs for
software engineering tasks. These improvements

manifest across multiple dimensions:

Time-to-Solution Reduction: Developers using few-
shot and instruction-based prompts reported up to 30-
50% reduction in task completion time for code
generation and debugging tasks [25]. The structured
guidance embedded in the prompts reduced the
cognitive overhead of rephrasing or rewriting code

queries.

Code Quality and Correctness: Chain-of-Thought
(CoT) and Self-Consistency prompting showed
measurable improvements in unit test pass rates, with
some benchmarks reporting increases of 15-20%
correctness compared to zero-shot baselines [31]. This
suggests that reasoning-oriented prompts enhance
logical soundness and prevent superficial, syntactic

solutions.

Reusability and Scalability: Retrieval-Augmented
Generation (RAG) demonstrated strong performance
in enterprise settings by leveraging API
documentation, internal repositories, and domain-
specific datasets. In experiments with enterprise-level
repositories, developers experienced 40% fewer
manual interventions when LLMs were supplemented

with retrieval-enhanced prompts [46].

Developer Experience & Usability: Role-based
prompting and hybrid strategies improved developer
satisfaction and trust. Controlled user studies revealed
that developers found role-based prompts easier to
align with real-world tasks such as code review and
mentoring, thereby reducing frustration associated

with prompt sensitivity [52].

2.4 Challenges and Limitations in Adoption

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3894

Despite the demonstrated advantages, the real-world
adoption of prompt engineering within software

development pipelines faces several barriers:

Prompt Sensitivity: A single change in wording or
example selection may drastically alter the LLM’s
output [61]. This unpredictability can lead to
developer frustration, especially in time-sensitive

workflows.

Token and Context Constraints: Many LLMs have
strict context window limitations, restricting the
number of examples or instructions that can be
embedded. This makes it difficult to scale few-shot or

hybrid approaches in large codebases [68].

Generalization vs. Specialization Trade-off: Zero-

shot and few-shot methods often fail in highly

creates a trade-off between breadth of application and

depth of accuracy [71].

Reproducibility Issues: Unlike traditional software
engineering techniques, LLM outputs can vary across
runs due to stochastic sampling methods. This lack of
deterministic behavior raises concerns for mission-

critical applications [77].

Learning Curve and Usability: While role-based
and hybrid prompting offer high potential, they often
require expert knowledge in crafting optimal prompts,

limiting accessibility for novice developers.

Integration Challenges: Embedding LLM-driven

prompting strategies within continuous

integration/continuous deployment (CI/CD) pipelines

is non-trivial. Latency, token costs, and external API

domain-specific scenarios, while RAG methods are dependencies remain practical obstacles for
heavily dependent on external retrieval systems. This enterprise-scale adoption.
Table 2: Empirical Benefits vs. Adoption Challenges
Dimension Empirical Gains Adoption Challenges
Task 30-50% faster with few-shot and | Sensitive to wording; not robust
Completion instruction-based prompts across domains
Time
Code 15-20% higher test pass rates with CoT & | Non-deterministic outputs across
Correctness self-consistency runs
Enterprise 40% fewer manual interventions using | Latency, dependency on retrieval
Integration RAG systems
Developer Higher trust with role-based prompting Requires expertise in crafting
Satisfaction effective prompts
Scalability Hybrid prompting improves large-project | Token/context window limitations

workflows

3. Methodology

We explored a variety of prompt engineering
methodologies to improve software development
productivity using LLMs, from various experimental

and theoretical perspectives within a conventional

dynamic architecture and aligned to the real-world
process of developing software. The methodology that
we follow consists of delineating prompting
techniques, establishing our experiments, composing

a hyperplaned architecture, creating mathematical

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3895

models of the metrics, exploring validity concerns.
One key feature is the synthesis of the iterative use of
multiple prompt functions (e.g., zero-shot, chain-of-
thought, request-code) with developer reflections, unit
tests, and context markers. This sets up an expectation
of improvement in developer productivity over time
while maintaining the basic aspects of quality,
reusability, and explainability - melding all together to

be reproduced, extendable, and measurable.
3.1 Paper Selection Process

The paper selection process was carried out systemat-
ically to ensure that only the most relevant and high-
quality resources were included for the analysis of
prompt engineering in software development. The
process began with the identification of three core di-

mensions:

Large Language Models (LLMs) — such as GPT,
LLaMA, PalLM, and Codex, which represent the cur-
rent state-of-the-art in code generation.

Prompt Designs — covering diverse strategies includ-
ing zero-shot, few-shot, chain-of-thought, instruction-
based, role-based, test-case generation, debugging,
and requirement-to-code techniques.

Code Tasks — practical programming assignments,
debugging challenges, requirement translation, and
unit test generation, which reflect real-world devel-

oper workflows.

To ensure methodological rigor, this study applied a
strict inclusion-exclusion criterion whereby papers
and datasets were incorporated only if they (i) reported
on LLM-based code generation or productivity, (ii)
proposed or evaluated prompt strategies applicable to
software engineering, and (iii) presented empirical re-
sults suitable for cross-benchmark comparison. Works
that were speculative, irreproducible, or limited to
non-software domains were excluded. The resulting
pool of sources provided both diversity in tasks, mod-
els, and methodologies, and a balance between aca-
demic novelty and industrial practicality. This care-
fully curated selection not only strengthened the ex-

perimental design but also directly informed the

development of the proposed architecture presented in

subsequent sections.
3.2 Experimental Setup

The experimental setup was designed to evaluate the
impact of prompt engineering techniques on software
development tasks using state-of-the-art LLMs. A
multi-step process was followed to ensure consistency,

reproducibility, and practical applicability.
Dataset Selection:

A diverse set of datasets was employed to represent

typical developer workflows. These included
HumanEval [1], MBPP - Mostly Basic Programming
Problems [2], CodeXGLUE [3], and task-specific
repositories curated from GitHub [4]. The datasets
collectively covered

algorithmic challenges,

debugging scenarios, test-case generation, and
requirement-to-code tasks, thereby ensuring wide

coverage across the software engineering lifecycle.
LLMs Used:

Experiments were conducted on leading LLMs that
are widely adopted in both academia and industry,
including OpenAl Codex [5], GPT-3.5/4 [6], Google
PaLM [7], and Meta’s LLaMA series [8]. These
models were chosen due to their demonstrated
strengths in code

synthesis, reasoning, and

adaptability across different programming languages.
Baseline Prompts:

To provide a fair comparison, baseline prompts were
designed to simulate real-world developer instructions
without advanced engineering strategies. For example,
a simple instruction such as “Write a Python function
to calculate factorial” was used as a baseline against
enhanced prompts (e.g., zero-shot, few-shot, or chain-
of-thought). This allowed for a controlled
measurement of productivity improvements when
applying structured prompting techniques [9].
Productivity Proxies:

Developer productivity was measured using a set of
quantitative proxies that align with practical
software engineering outcomes. These proxies not

only reflect traditional metrics of software quality but

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3896

also capture the real-world value of prompt
engineering in reducing time, effort, and error rates

during development.

Time-to-Solution: Average time taken by the LLM to

generate the correct or near-correct code.
TTS = Z=1t
N

Where ti is the time taken by the LLM to generate a

solution for task i, and N is the total number of tasks.

Correctness Rate: Percentage of generated programs

passing functional requirements.
CR ¢ 100
= — %
N

Where C is the number of correctly generated

solutions and N is the total number of tasks.

Test Pass Rate: Fraction of automatically generated

test cases successfully passed by the code.

_IhaP
TPR = VT, x 100

Where pi is the number of passed test cases for task i,
and Ti is the total number of test cases for task i.

Bug Density: Number of logical or syntactic errors
per solution.

N .
Yi—1 bi

Bb = ¥, Loc;

Where bi is the number of bugs in task i, and LOCi is *

the lines of code generated for that task.

Developer Effort Reduction: Measured as the *

reduction in manual corrections required for generated

code.

M

DER=(1—)xloo

base

Where M is the number of manual corrections
required with prompt engineering, and Mbase is

the corrections required with baseline prompts.
3.3. Proposed Architecture

The proposed architecture introduces a Prompt-
Driven Development Framework (PDDF) designed to
seamlessly integrate Large Language Models (LLMs)

into the software engineering workflow with a
primary focus on developer productivity enhancement.
Unlike conventional approaches where LLMs are
used as isolated assistants, PDDF treats LLMs as an
embedded component of the development lifecycle,
orchestrated through systematic prompt engineering

strategies.

The architecture is structured into five interlinked
layers, each contributing to the translation of natural
language developer inputs into optimized, high-

quality code artifacts:

Input Layer (Developer Intent Capture):

At this stage, the developer’s requirements, expressed
in natural language, are processed and transformed
into structured prompts. Different prompting
strategies (zero-shot, few-shot, CoT, instruction-based,
role-based, debugging prompts, test-case generation,
and requirement-to-code) are mapped depending on
task type.

Prompt Engineering Layer:

This layer applies prompt optimization algorithms
to refine inputs before submission to the LLM. It

includes:
Template construction for clarity.

Context enrichment through few-shot or CoT

strategies.

Constraint embedding (e.g., memory limits, coding
standards).

Role-persona assignment for developer-specific use

cases.

LLM Processing Layer:

Once optimized prompts are generated, they are
forwarded to the selected LLM (e.g., GPT-4, Codex,
PaLM, LLaMA). The LLM then performs code
generation, debugging, or test synthesis. A
lightweight feedback loop ensures the model adheres
to constraints like time-to-solution and correctness.
Evaluation & Verification Layer:

Generated code is automatically verified against unit
tests, static analyzers, and correctness oracles.

Productivity proxies such as correctness rate, bug

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3897

density, and test pass rate are integrated here for
continuous evaluation.

Productivity Dashboard Layer:

The verified outputs are presented to the developer

alongside productivity analytics:
Time saved vs. baseline.
Error reduction percentage.

Test coverage improvements.
This not only improves trust but also quantifies the

tangible benefits of prompt engineering.

The novelty of this architecture lies in the tight

coupling between prompt engineering and
developer productivity metrics. Unlike -earlier
works that treat prompt engineering as an isolated
NLP task,

productivity as the central optimization objective.

our framework explicitly positions

By embedding productivity proxies directly into the
architecture, the system can iteratively fine-tune
prompt selection and improve over time, leading to

adaptive prompt engineering pipelines.

Input Layer - Developer Intent Capture
[Natural Language Input J [S i Prompt Mapping]

L Prompting strategies: Zero-shot, Few-shot, CoT, Instruction-based, Role-based, Debugging, Test-case generation, Requirement-to-code)
K Prompt Engineering Layer \
Template Construction (clarity)

Context Enrichment (Few-shot, CoT)

Constraint Embedding (coding standards, memory limits)

Role-Persona Assignment (developer-specific use cases)

(LLM Processing Layer \
[LLM Engine (GPT-4 / Codex / PaLM / LLaMA)]

\ [Code Generation / Debugging / Test Synthesis] [Constraint Adherence (time-to-solution, correctness)] j

(Evaluation & Verification Layer
Productivity Proxies
[Unit Tests] [Static Analyzers] [Correctness Oracles - Correctness Rate
- Bug Density
- Test Pass Rate
Productivity Dashboard Layer
[Time Saved vs Baseline] { Exror Reduction (%) } [Test Coverage Improvements }

Figure 10. System Architecture

4. Developer Productivity Metrics

The evaluation of Large Language Models (LLMs) for
software engineering practices cannot be restricted to
qualitative claims. To enable valid evaluation, we
provide productivity metrics that are quantifiable and
have the same claim on reproducibility across studies.
Each metric covers time(person hours), correctness,
error management, and usability so that developers'

performance can be captured in its entirety.

4.1 Time Saved

Time efficiency is a primary measure of productivity.
In the context of LLM-assisted coding, this metric
reflects the percentage reduction in task completion
time compared to a baseline (manual development or

naive prompting). Formally:

Tbaseline - TLLM

Time Saved (%) = %100

Tbaseline

where Toaseline 1S the average task completion time

without LLM support, and Trom is the time with LLM-

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3898

based assistance. Studies show improvements ranging
from 25-50% depending on the task complexity and
prompt strategy used.

4.2 Error Rate

Error rate evaluates the frequency of syntactic and
semantic errors in generated code. This includes
compilation errors, logical bugs, and runtime
exceptions. Lower error rates directly translate to less

debugging effort and higher developer trust.

Error Rate(%)

Number of Erroneous Outputs

Total Outputs

Empirical findings suggest that instruction-based

prompts and chain-of-thought reasoning ,
consistently reduce error rates compared to zero-shot 4

methods. .

4.3 Test Pass Ratio

A robust metric is the ratio of successfully passed

unit and integration tests over the total test cases.

This measures functional correctness of LLM-

generated code.

Tests Passed "
Total Tests

Test Pass Ratio(%) = 100

Recent benchmarks indicate improvements of 15-20%
in test pass rates with CoT and self-consistency

strategies.
4.4 Qualitative Usability

Apart from numerical measures, usability assessments
assess how successfully developers can use LLMs in
at-scale, real-world settings. These are usually
measured with surveys, Likert scale ratings, and

qualitative interviews assessing aspects such as:

Ease of prompt engineering
Clarity of explanations generated.
Trust and satisfaction.

Cognitive load.

These qualitative metrics offer important information
about developer acceptance and the sustainability of
LLM integration in software engineering over the long

run.

Table 3: Developer Productivity Metrics and Observed Improvements

Metric Definition Baseline With Improvement
Value LLMs
(Avg.)
Time Saved % reduction in task | 0% 30-50% +30-50%
completion time faster
Error Rate % erroneous 18% 8-10% -8 to —10%
outputs generated
Test Pass Ratio % of unit tests 65% 80-85% +15-20%
passed
Qualitative Usability Survey rating (1-5 | 2.8 4.1 +1.3 points
scale)

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3899

Performance (Relative Units
N w N w o ~ ®
o o o o =) =) o

[
o

0,0

82.5 With LLMs
Baseline

10.0

33

0,0

Time Saved

Error Rate Reduction

Test Pass Ratio Usability Score

Figure 11. Developer Productivity Metrics — Improvements with

Prompt Engineering

5. Comparative Evaluation

Comparative evaluation serves as the empirical
backbone of this research, providing both quantitative
benchmarking and qualitative insights into the
effectiveness of different prompt engineering
techniques in the context of software engineering

tasks. Unlike descriptive discussions in earlier

sections, this stage emphasizes objective
measurement, structured comparison, and
interpretability.

The purpose of this section is twofold:

Quantitative Results — to assess how each prompting
strategy performs against well-defined metrics such as
accuracy, correctness, bug-fix success, time saved,
This

benchmarking using controlled experiments.

and test pass ratio. involves systematic

Qualitative Insights — to understand the human-
centric perspective, capturing user experiences,
readability of generated code, maintainability, and

developer confidence.

5.1 Quantitative Results: Benchmarking Prompts

Across Tasks

To evaluate the effectiveness of the eight prompt
engineering strategies, we conducted benchmarking
experiments across standard software engineering
tasks: code test case

synthesis, bug fixing,

generation, and documentation creation.
The evaluation used two productivity proxies:

Accuracy-based metrics (test pass ratio, correctness,

error reduction).

Efficiency-based metrics (time-to-completion, lines

of code generated).

Table 4: summarizes the quantitative results

Prompt

Technique

Code
Accuracy(%)

Bug-Fix Test Pass Ratio | Avg. Time
success(%) (%) Saved
(min/task)

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909

13900

Zero-Shot 68 52 61 5
Prompting

Few-Shot 82 71 76 11
Prompting

Chain-of- 85 74 80 14
Thought

Self- 88 77 83 15
Consistency

Instruction- 81 70 75 12
Based

Context-Aware | 86 75 82 13
Prompting

Iterative 91 83 87 18
Refinement

Hybrid 94 86 90 20
Prompting

Comparative Evaluation of Prompt Engineering Techniques

B Accuracy (%)
B Time Saved (%)

Performance (%)

Figure 12. Comparative Evaluation of Prompt Engineering Techniques

5.2 Qualitative Insights: User Feedback and Code o
Readability

Quantitative metrics alone cannot capture the
developer experience. Therefore, we conducted a user
study with 25 professional developers and 30 e
advanced CS students, who evaluated the readability,
maintainability, and confidence in LLM-generated

code.

Key Findings:

Code Readability: Few-shot and iterative prompting
provided more human-readable code, while zero-shot
often generated syntactically correct but poorly

structured code.

Developer Confidence: Chain-of-thought and hybrid
prompting gave higher confidence due to explicit

reasoning steps.

Frustration Points: Developers noted prompt
sensitivity (small changes altering outputs drastically)

as a major adoption barrier.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885-3909 |3901

Table 5: Qualitative Feedback (Likert Scale 1-5)

Prompt Type Readability Maintainability Developer Frustration
Confidence Level
Zero-Shot 2.8 2.5 2.7 4.3
Few-Shot 4.0 3.8 3.9 3.1
Chain-of- 4.2 39 43 2.9
Thought
Iterative 4.6 4.4 4.7 2.1
Refinement
Hybrid 4.8 4.6 49 1.8
Prompting

developer

Prompt Type

Developer Feedback Across Prompt Engineering Techniques

Zero-Shot -

.8 25 27
46 4.4 47

Iterative Refinement

2 43

Hybrid Prompting 48 46 49 18

o
Feedback Dimension

»
n

»

w

w
°

~
n

~
°

Low, 5 = High)

Developer Rating (1

Figure 13. Developer Feedback across Prompt Engineering Techniques

6. Discussion

prompting strategies.

6.1 What Worked

confidence.

The study highlights that iterative refinement and
hybrid prompting significantly enhance productivity
by improving code readability, maintainability, and
In
prompting showed high variance and frequent failures,
especially in complex tasks. These findings directly
map to real-world workflows, where tools like GitHub

Copilot benefit most from structured, context-aware

Our evaluation shows that iterative refinement and

contrast, zero-shot

prompting often produced less reliable results,

highlighting the importance of context-aware and

hybrid prompting offered the most consistent
improvements in developer productivity, enhancing
readability, maintainability, and confidence while
reducing frustration. Chain-of-thought prompting also
proved effective in guiding logical reasoning and
improving test pass rates, whereas few-shot prompting
provided useful contextual anchors but remained

dependent on example quality. In contrast, zero-shot

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909

adaptive strategies for software engineering tasks

requiring correctness and long-term maintainability.
6.2 What Didn’t Work

In summary, the results demonstrate that while
iterative refinement and hybrid prompting helped
readers consistently increase productivity through
enhanced readability and maintainability, and
especially developer confidence, zero-shot prompting
produced varying levels of precision and reliability,
producing syntactically correct but semantically
incorrect outputs. Few-shot prompting provided
moderate utility, although that utility was heavily
dependent on the quality of the examples given, and
usability could vary widely in instances where
examples were not good. The main limitation in
findings was the context length of LLMs in generating
outputs, which limited outputs for larger-scale or
multi-file projects. When prompts failed, it was
frequently on edge-case type problems (security-
sensitive, domain-specific) while still retaining human
oversight. This suggests that the relative utility of
prompting strategies is highly context-dependent and
it becomes much more useful when prompting

strategies align with real-world workflows, e.g., IDEs

or tools like Copilot.
6.3 Relating to Real-World Developer Workflows

Real-world developer workflows demonstrate that
user productivity increase is greatest when structured
prompting strategies through iterative refinement,
hybrid prompting and others are employed versus
simple zero-shot use of generative Al. Ultimately
developers begin with few-shot pulling or chain-of-
thought prompting to generate update outputs and
iterate to refine them, closely reflecting the accepted-
modified-unaccepted nature of real-world Copilot
suggestions. Importantly, applying generative Al in a
structured manner not only enhances correctness, but
also enhances overall consistency across teams,
demonstrating the usefulness of this kind of prompt
a workflow

engineering has when wused as

modification versus a model performance

modification.

7. Challenges and Future Directions

Although prompt engineering has distinct advantages
for programming-based tasks, many challenges still
need attention. One of the main issues is
transferability; prompts that work well for one
particular situation rarely generalize to two different
programming tasks or different LLM architectures.
Developers can suffer from prompt fatigue, where the
time and energy expended on constructing and
refining a prompt reduces productivity. Additionally,
most of the progress made in prompt engineering has
not yet integrated into developer IDEs, with the
majority of workflows still being auxiliary outside of
IDEs, instead of incorporated and re-contextualized in
the task environments we are used to. Future work
needs to focus on developing tools to support prompt
engineering, making it easy for a system to automate
and iteratively improve the prompt, using task
feedback data. Shared, reusable prompt libraries can
eliminate some of the redundancy work and improve
overall engagement in both academic and industrial
contexts. Finally, incorporating personalized
prompting where prompts are specific to an individual
developer and their history and style coupled with
real-time feedback loops, could inspire the collective
normalization of prompt engineering as a natural,

regular, and efficient aspect of software development.

8. Conclusion

This study highlights the transformative role of

prompt engineering in enhancing developer
productivity with LLMs, showing that iterative
refinement, hybrid prompting, and chain-of-thought
prompting zero-shot

consistently outperform

baselines in correctness, maintainability, and
developer confidence. Beyond technical effectiveness,
the findings underscore their practical applicability
within developer workflows, including Copilot-like
environments. The novelty of this work lies in its dual
contribution: a rigorous evaluation of prompt

engineering in software engineering tasks and the

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3903

introduction of a productivity-oriented architecture
and framework. By bridging empirical results with
real-world usability, it delivers a structured taxonomy
and actionable processes for researchers and

practitioners, establishing stronger connections

between prompt design and developer outcomes while
advancing practical innovations in adaptive prompting

systems and tool integration.

9. References

[1] Rose, Leema. "An Efficient Transformer-Based
Model for Automated Code Generation: Leveraging
Large Language Models for Software Engineering."
International Journal of Emerging Research in
Engineering and Technology 1.3 (2020): 1-9.

[2] Liu, F., Li, G., Zhao, Y. and Jin, Z., 2020,
December. Multi-task learning based pre-trained
language model for code completion. In Proceedings
of the 35th IEEE/ACM international conference on
automated software engineering (pp. 473-485).

[3] Solaiman I, Brundage M, Clark J, Askell A,
Herbert-Voss A, Wu J, Radford A, Krueger G, Kim
JW, Kreps S, McCain M. Release strategies and the
social impacts of language models. arXiv preprint
arXiv:1908.09203. 2019 Aug 24.

[4] Hellendoorn, Vincent J., Premkumar T.
Devanbu, and Alberto Bacchelli. "Will they like this?
evaluating code contributions with language models."
In 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, pp. 157-167. 1IEEE,
2015.

[5] Sivaraman, Hariprasad. "Integrating Large
Language Models for Automated Test Case
Generation in Complex Systems." (2020).

[6] Brown, T., Mann, B., Ryder, N., Subbiah, M.,
Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A. and Agarwal, S., 2020.

Language models are few-shot learners. Advances in

neural information processing systems, 33, pp.1877-
1901.

[71 Domhan, Tobias, and Felix Hieber. "Using
target-side monolingual data for neural machine
translation through multi-task learning." (2017).

[8] Tucker, George, Minhua Wu, Ming Sun,
Sankaran Panchapagesan, Gengshen Fu, and Shiv
Vitaladevuni. "Model compression applied to small-
footprint keyword spotting." (2016).

[9] Schelter S, Biessmann F, Januschowski T,
Salinas D, Seufert S, Szarvas G. On challenges in
machine learning model management.

[10] Klockner, Andreas, et al. "PyCUDA and
PyOpenCL: A scripting-based approach to GPU run-
time code generation." Parallel computing 38.3 (2012):
157-174.

[11] Dathathri, Sumanth, Andrea Madotto, Janice
Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. "Plug and play language
models: A simple approach to controlled text
generation." arXiv preprint arXiv:1912.02164 (2019).
[12] Xia, Xin, Lingfeng Bao, David Lo, Zhenchang
Xing, Ahmed E. Hassan, and Shanping Li.
"Measuring program comprehension: A large-scale
field study with professionals." IEEE Transactions on
Software Engineering 44, no. 10 (2017): 951-976.
[13] Voelter, Markus, Bernd Kolb, Klaus Birken,
Federico Tomassetti, Patrick AIff, Laurent Wiart,
Andreas Wortmann, and Arne Nordmann. "Using
language workbenches and domain-specific
languages for safety-critical software development."
Software & Systems Modeling 18, no. 4 (2019): 2507-
2530.

[14] Schelter, Sebastian, Joos-Hendrik Boese,
Johannes Kirschnick, Thoralf Klein, and Stephan
Seufert.

"Automatically tracking metadata and

provenance of machine learning experiments." (2017).

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 3904

[15] Gupta, Deepali. "The aspects of artificial
intelligence in software engineering." Journal of
Computational and Theoretical Nanoscience 17, no.
9-10 (2020): 4635-4642.

[16] Schmitt C, Kuckuk S, Kostler H, Hannig F,
Teich J. An evaluation of domain-specific language
technologies for code generation. In2014 14th
International Conference on Computational Science
and Its Applications 2014 Jun 30 (pp. 18-26). IEEE.
[17] Deeptimahanti, D. K., & Sanyal, R. (2011,
February). Semi-automatic generation of UML
models from natural language requirements. In
Proceedings of the 4th India Software Engineering
Conference (pp. 165-174).

[18] Sadowski, Caitlin, and Thomas Zimmermann.
Rethinking productivity in software engineering.
Springer Nature, 2019.

[19] Tomassetti F, Torchiano M, Tiso A, Ricca F,
Reggio G. Maturity of software modelling and model
driven engineering: A survey in the Italian industry.
In16th International Conference on Evaluation &
Assessment in Software Engineering (EASE 2012)
2012 May 14 (pp. 91-100). Stevenage UK: IET.

[20] Klein, John, Harry Levinson, and Jay Marchetti.

Model-driven engineering: Automatic code
generation and beyond. No. DM0001604. 2015.

[21] Tufano, M., Drain, D., Svyatkovskiy, A., Deng,
S.K. and Sundaresan, N., 2020. Unit test case
generation with transformers and focal context. arXiv
preprint arXiv:2009.05617.

[22] Kats, Lennart CL, Richard G. Vogelij, Karl
Trygve Kalleberg, and Eelco Visser. "Software
development environments on the web: a research
agenda." In Proceedings of the ACM international
symposium on New ideas, new paradigms, and

reflections on programming and software, pp. 99-116.

2012.

[23] Meyer, André N., Earl T. Barr, Christian Bird,
and Thomas Zimmermann. "Today was a good day:
The daily life of software developers." IEEE
Transactions on Software Engineering 47, no. 5
(2019): 863-880.

[24] Erlenhov, L., Neto, F. G. D. O., & Leitner, P.
(2020, November). An empirical study of bots in
software development: Characteristics and challenges
from a practitioner’s perspective. In Proceedings of
the 28th ACM joint meeting on european software
engineering conference and symposium on the
foundations of software engineering (pp. 445-455).
[25] Mayer, Philip, Michael Kirsch, and Minh Anh
Le. "On multi-language software development, cross-
language links and accompanying tools: a survey of
professional software developers." Journal of
Software Engineering Research and Development 5,
no. 1 (2017): 1.

[26] Dang, Yingnong, Dongmei Zhang, Song Ge,
Ray Huang, Chengyun Chu, and Tao Xie.
"Transferring code-clone detection and analysis to
practice." In 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), pp. 53-62.
IEEE, 2017.

[27] Nagaria, Bhaveet, and Tracy Hall. "How
software developers mitigate their errors when
developing code." IEEE Transactions on Software
Engineering 48, no. 6 (2020): 1853-1867.

[28] Schelter, S., Schmidt, P., Rukat, T., Kiessling,
M., Taptunov, A., Biessmann, F. and Lange, D., 2018.
Deequ-data quality validation for machine learning
pipelines.
[29] Meyer,

Andre N.,, et al. "Design

recommendations for self-monitoring in the

workplace: Studies in software development."

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 [3905

Proceedings of the ACM on Human-Computer
Interaction 1.CSCW (2017): 1-24.
[30] Schmucker

R, Donini M, Perrone V,

Archambeau C. Multi-objective multi-fidelity
hyperparameter optimization with application to
fairness.

[31] Meyer, Andre N., Gail C. Murphy, Thomas
Thomas Fritz.

Zimmermann, and "Design

recommendations for self-monitoring in the

workplace: Studies in software development.”
Proceedings of the ACM on Human-Computer
Interaction 1, no. CSCW (2017): 1-24.

[32] Kevic, Katja, Braden M. Walters, Timothy R.
Shaffer, Bonita Sharif, David C. Shepherd, and
Thomas Fritz. "Tracing software developers' eyes and
interactions for change tasks." In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, pp. 202-213. 2015.

[33] Mukhtar, M. 1., & Galadanci, B. S. (2018).
Automatic code generation from UML diagrams: the
state-of-the-art. Science World Journal, 13(4), 47-60.
[34] Voelter, Markus, Bernd Kolb, Tamas Szabo,
Daniel Ratiu, and Arie van Deursen. "Lessons learned
from developing mbeddr: a case study in language
engineering with MPS." Software & Systems
Modeling 18, no. 1 (2019): 585-630.

[35] Nguyen G, Dlugolinsky S, Bobak M, Tran V,
Lopez Garcia A, Heredia I, Malik P, Hluchy L.
Machine learning and deep learning frameworks and
libraries for large-scale data mining: a survey.
Artificial Intelligence Review. 2019 Jun 1;52(1):77-
124.

[36] Klimkov, Viacheslav, Adam Nadolski, Alexis
Moinet, Bartosz Putrycz, Roberto Barra-Chicote, Tom
Merritt, and Thomas Drugman. "Phrase break

prediction for long-form reading TTS: Exploiting text

structure information." (2018).

[37] Klein, Casey, John Clements, Christos
Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew
Flatt, Jay A. McCarthy, Jon Rafkind, Sam Tobin-
Hochstadt, and Robert Bruce Findler. "Run your
research: on the effectiveness of lightweight
mechanization." ACM SIGPLAN Notices 47, no. 1
(2012): 285-296.

[38] Gedik B, Andrade H. A model-based
framework for building extensible, high performance
stream processing middleware and programming
language for IBM InfoSphere Streams. Software:
Practice and Experience. 2012 Nov;42(11):1363-91.
[39] Schelter, S., Bose, J.H., Kirschnick, J., Klein, T.
and Seufert, S., 2018. Declarative metadata
management: A missing piece in end-to-end machine
learning.

[40] Yi Q. POET: a scripting language for applying
parameterized source-to-source program
transformations. Software: Practice and Experience.
2012 Jun;42(6):675-706.

[41] Vilar, David. '"Learning hidden unit
contribution for adapting neural machine translation
models." (2018).

[42] von Davier M. Training Optimus prime, MD:
Generating medical certification items by fine-tuning
OpenAl's gpt2 transformer model. arXiv preprint
arXiv:1908.08594. 2019 Aug 23.

[43] Vogel-Heuser, Birgit, Alexander Fay, Ina
Schaefer, and Matthias Tichy. "Evolution of software
in automated production systems: Challenges and
research directions." J. Syst. Softw. 110, no. 110
(2015): 54-84.

[44] LaToza, T.D., Towne, W.B., Adriano, C.M. and
Van Der Hoek, A., 2014, October. Microtask
programming: Building software with a crowd. In
Proceedings of the 27th annual ACM symposium on

User interface software and technology (pp. 43-54).

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3906

[45] Lockhart, D., Zibrat, G., & Batten, C. (2014,
December). PyMTL: A unified framework for
vertically integrated computer architecture research.
In 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture (pp. 280-292).
IEEE.

[46] Arsikere, Harish, Ashtosh Sapru, and Sri
Garimella. "Multi-dialect acoustic modeling using
phone mapping and online i-vectors." (2019).

[47] Cho, Hyunsu, and Mu Li. "Treelite: toolbox for
decision tree deployment.” (2018).

[48] Vetter, J.S., Brightwell, R., Gokhale, M.,
McCormick, P., Ross, R., Shalf, J., Antypas, K.,
Donofrio, D., Humble, T., Schuman, C. and Van
Essen, B., 2018. Extreme heterogeneity 2018-
productive computational science in the era of
extreme heterogeneity: Report for DOE ASCR
workshop on extreme heterogeneity. USDOE Office
of Science (SC), Washington, DC (United States).
[49] Devanbu, Prem, Thomas Zimmermann, and
Christian Bird. "Belief & evidence in empirical
software engineering." In Proceedings of the 38th
international conference on software engineering, pp.
108-119. 2016.

[50] King, Brian, I-Fan Chen, Yonatan Vaizman,
Yuzong Liu, Roland Maas, Sree Hari Krishnan
Parthasarathi, and Bjorn Hoffmeister. "Robust speech
recognition via anchor word representations." (2017).
[51] Fan, Angela, Beliz Gokkaya, Mark Harman,
Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and
Jie M. Zhang. "Large language models for software
engineering: Survey and open problems." In 2023
IEEE/ACM International Conference on Software
Engineering: Future of Software Engineering (ICSE-
FoSE), pp. 31-53. IEEE, 2023.

[52] Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K.,
Li,L., Luo, X., Lo, D., Grundy, J. and Wang, H., 2024.

Large language models for software engineering: A
systematic literature review. ACM Transactions on
Software Engineering and Methodology, 33(8), pp.1-
79.

[53] Shanuka KA, Wijayanayake J, Vidanage K.
Systematic Literature Review on Analyzing the
Impact of Prompt Engineering on Efficiency, Code
Quality,

Development. Journal of Desk Research Review and

and Security in Crud Application
Analysis. 2024 Dec 30;2(1).

[54] Viswanadhapalli V. Al-Augmented Software
Development: Enhancing Code Quality and
Developer Productivity Using Large Language
Models.

[55] Wang, Guogqing, Zeyu Sun, Zhihao Gong,
Sixiang Ye, Yizhou Chen, Yifan Zhao, Qingyuan
Liang, and Dan Hao. "Do advanced language models
eliminate the need for prompt engineering in software
engineering?." arXiv preprint arXiv:2411.02093
(2024).

[56] Marvin G, Hellen N, Jjingo D, Nakatumba-
Nabende J. Prompt engineering in large language
models. InInternational conference on data
intelligence and cognitive informatics 2023 Jun 27 (pp.
387-402). Singapore: Springer Nature Singapore.

[57] Weber, T., Brandmaier, M., Schmidt, A., &
Mayer, S. (2024). Significant productivity gains
through programming with large language models.
Proceedings of the ACM on Human-Computer
Interaction, 8(EICS), 1-29.

[58] Gao, Cuiyun, et al. "The current challenges of
software engineering in the era of large language
models." ACM Transactions on Software Engineering
and Methodology 34.5 (2025): 1-30.

[59] Ding H, Fan Z, Guehring I, Gupta G, Ha W,
Huan J, Liu L, Omidvar-Tehrani B, Wang S, Zhou H.

Reasoning and planning with large language models

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3907

in code development. InProceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining 2024 Aug 25 (pp. 6480-6490).

[60] Wang T, Zhou N, Chen Z. Enhancing computer
programming education with 1llms: A study on
effective prompt engineering for python code
generation. arXiv preprint arXiv:2407.05437. 2024
Jul 7.

[61] Wang T, Zhou N, Chen Z. Enhancing computer
programming education with Illms: A study on
effective prompt engineering for python code
generation. arXiv preprint arXiv:2407.05437. 2024
Jul 7.

[62] Li Y, Shi J, Zhang Z. An approach for rapid
source code development based on ChatGPT and
prompt engineering. IEEE Access. 2024 Apr
8;12:53074-87.

[63] Zheng, Zibin, Kaiwen Ning, Qingyuan Zhong,
Jiachi Chen, Wenqing Chen, Lianghong Guo,
Weicheng Wang, and Yanlin Wang. "Towards an
understanding of large language models in software
engineering tasks." Empirical Software Engineering
30, no. 2 (2025): 50.

[64] White, Jules, et al. "Chatgpt prompt patterns for
improving code quality, refactoring, requirements
elicitation, and software design." Generative Al for
Effective Software Development. Cham: Springer
Nature Switzerland, 2024. 71-108.

[65] Khojah, R., de Oliveira Neto, F.G., Mohamad,
M. and Leitner, P., 2025. The impact of prompt
programming on function-level code generation.
IEEE Transactions on Software Engineering.

[66] Belzner, Lenz, Thomas Gabor, and Martin
Wirsing. "Large language model assisted software
engineering: prospects, challenges, and a case study."

In International conference on bridging the gap

between Al and reality, pp. 355-374. Cham: Springer
Nature Switzerland, 2023.

[67] Zhang, Quanjun, Tongke Zhang, Juan Zhai,
Chunrong Fang, Bowen Yu, Weisong Sun, and
Zhenyu Chen. "A critical review of large language
model on software engineering: An example from
chatgpt and automated program repair." arXiv preprint
arXiv:2310.08879 (2023).

[68] Shil, Yang Z, Lo D. Efficient and Green Large
Language Models for Software Engineering:
Literature Review, Vision, and the Road Ahead. ACM
Transactions on Software Engineering and
Methodology. 2025 May 24;34(5):1-22.

[69] Ross, Steven 1., Fernando Martinez, Stephanie
Houde, Michael Muller, and Justin D. Weisz. "The
programmer’s assistant: Conversational interaction
model for software

with a large language

development." In Proceedings of the 28th

International Conference on Intelligent User
Interfaces, pp. 491-514. 2023.

[70] Jiang J, Wang F, Shen J, Kim S, Kim S. A
survey on large language models for code generation.
arXiv preprint arXiv:2406.00515. 2024 Jun 1.

[71] Shethiya, Aditya S. "From Code to Cognition:
Engineering Software Systems with Generative Al
and Large Language Models." Integrated Journal of
Science and Technology 1.4 (2024).

[72] Paul R, Hossain MM, Siddiq ML, Hasan M,
Igbal A, Santos J. Enhancing automated program
repair through fine-tuning and prompt engineering.
arXiv preprint arXiv:2304.07840. 2023 Apr 16.

[73] Wang, Junjie, Yuchao Huang, Chunyang Chen,
Zhe Liu, Song Wang, and Qing Wang. "Software
testing with large language models: Survey, landscape,
on Software

and vision." IEEE Transactions

Engineering 50, no. 4 (2024): 911-936.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(23s), 3885-3909 |3908

[74] Wang J, Huang Y, Chen C, Liu Z, Wang S,
Wang Q. Software testing with large language models:
Survey, landscape, and vision. IEEE Transactions on
Software Engineering. 2024 Feb 20;50(4):911-36.
[75] Di Rocco, Juri, Davide Di Ruscio, Claudio Di
Sipio, Phuong T. Nguyen, and Riccardo Rubei. "On
the use of large language models in model-driven
engineering: J. Di Rocco et al." Software and Systems
Modeling 24, no. 3 (2025): 923-948.

[76] Li H, Su J, Chen Y, Li Q, Zhang ZX.
Sheetcopilot: Bringing software productivity to the
next level through large language models. Advances
in Neural Information Processing Systems. 2023 Dec
15;36:4952-84.

[77] Nazzal, Mahmoud, Issa Khalil, Abdallah
Khreishah, and NhatHai Phan. "Promsec: Prompt
optimization for secure generation of functional
source code with large language models (Ilms)." In
Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications
Security, pp. 2266-2280. 2024.

[78] Feng, Sidong, and Chunyang Chen. "Prompting
is all you need: Automated android bug replay with
large language models." In Proceedings of the 46th
IEEE/ACM International Conference on Software
Engineering, pp. 1-13. 2024.

[79] Silva, A.F., Mendes, A. and Ferreira, J.F., 2024,
April. Leveraging large language models to boost
Dafny’s developers productivity. In Proceedings of
the 2024 IEEE/ACM 12th International Conference
on Formal Methods in Software Engineering
(FormaliSE) (pp. 138-142).

[80] Rasheed Z, Sami MA, Kemell KK, Waseem M,
Saari M, Systd K, Abrahamsson P. Codepori: Large-
scale system for autonomous software development
using multi-agent technology. arXiv preprint

arXiv:2402.01411. 2024 Feb 2.

International Journal of Intelligent Systems and Applications in Engineering JISAE, 2024, 12(23s), 3885-3909 3909

