

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-679 9www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3885

Enhancing Software Development through Prompt Engineering

A Study on Large Language Models for Code Generation and De-

veloper Productivity

1Jimit Patel, 2Meet Bipinchandra Patel, 3Nishil Sureshkumar Prajapati, 4Rahul Rathi,
5Raghavendra Kamarthi Eranna, 6Pratikkumar Prajapati, 7Krishna Chaitanaya Chittoor

Submitted:04/11/2024 Accepted:17/12/2024 Published:27/12/2024

Abstract: Large Language Models (LLMs) are increasingly changing Software Development with capabilities to

generate code snippets, debug, etc., and towards design work as well. Successful outcomes using LLMs is heavily

reliant on prompt engineering. Well-designed prompts influence the quality of generated code, improve developer

workflows, and build effective human-computer interactivity in the use of LLM models. This study examines

prompt engineering in improving developer productivity via a designed process of exploration of prompting strat-

egies to generate code. A taxonomy of potential prompt engineering techniques is introduced conceptualizing four

experimental approaches for the coding task: instruction-based prompts, example-based prompts, chain-of-

thought prompts, and hybrid prompts. The study focuses on developer-oriented productivity metrics beyond tech-

nical quality. Productivity metrics include a reduction in overall development time, reduced errors and better

readability, e.g. improved structure of codes, and found improvements to tools used to develop software, e.g.

integrated development environments, collaborative coding tools. The comparative evaluation of prompt patterns

identifies how differentiating prompt patterns can create variable impact on code quality, but also variable expe-

riences for developers. This suggests that prompt engineering can influence the continuing problem of debugging

and support more rapid delivery of software to clients.

The paper describes barriers to adoption in practice,

such as prompt sensitivity, context limitations and reus-

ability limitations and offer a roadmap for integrating

adaptive prompting systems directly in developer envi-

ronments. By relating LLM capabilities to productivity

outcomes, this work provides a new perspective in

bridging prompt engineering research with real-world

software development pipelines.

Keywords: Prompt engineering, code generation, soft-

ware development productivity, large language models

(LLMs), create tools, AI in software engineering, intel-

ligent programming assistants

1Staff Software Engineer At Very Good Security

jimit7patel@gmail.com

2Senior Manager, Data and AI/ML engineering

Meet61@gmail.com

3Lead Cloud Development Engineer,

nishilp017@gmail.com

4BI- Manager

Rathirahul53@gmail.com

5System Analyst

keraghu@gmail.com

6Senior Manager, Data Engineering

pratik.prajapati020@gmail.com

7Principal Data Engineer

chaitueie17@gmail.com

mailto:jimit7patel@gmail.com
mailto:Meet61@gmail.com
mailto:nishilp017@gmail.com
mailto:Rathirahul53@gmail.com
mailto:keraghu@gmail.com
mailto:pratik.prajapati020@gmail.com
mailto:chaitueie17@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3886

1. Introduction

The explosion of artificial intelligence has

fundamentally affected the way software is developed,

tested and maintained. Among the many

developments, large language models (LLMs) clearly

emerged as intelligent flexible assistants (that can

produce source code, document auto-magically, and

reduce cognitive load on developers). While these

developments are obviously a huge advancement of

software engineering practices, the actual productivity

gains to developers' efficiency are heavily reliant on

the design and structure of prompts. For this reason,

prompt engineering has become somewhat of a new

competency in bridging the divide between what

LLMs can produce on the theoretical plane, and what

a developer is looking for in real world work. Even

though tools such as code assistants and automated

programming interfaces are developing quickly, there

remains a lack of knowledge as to how particular

prompt patterns directly relate to software

development productivity. This lack of knowledge has

paradoxically created new opportunities and obstacles

to the research community and industry stakeholders

alike, highlighting the importance of studying prompt

engineering not only as a technical optimization, but

as a productivity enabler as well.

Recent research has documented the expanding

use of large language models for software engineering

functions, such as code generation, program repair,

and software testing [1–3]. Despite the large language

models showing promising performance and accuracy

when generating syntactically correct content, there

remain questions around their effectiveness in im-

proving developer productivity [4–6]. The variability

in outcomes produced from similar queries, the chal-

lenge of prompt building, and other risk factors will

dictate whether LLMs will provide productivity or

frustration. This dependency introduces further chal-

lenges that will require developers to learn the art of

prompt engineering and use the large-language model

programming environment effectively [7–9].

The discussion of developer productivity has al-

ways been associated with measurable factors (e.g.,

code quality, defect reduction, time-to-solution, main-

tainability) [10–12]. Although, in the literature, there

are conceptual discussions of efficiency or correctness

of algorithms, there has been very little research which

considers practical productivity measures that fit with

everyday developer workflows [13–15]. There is very

little universal agreement on how to validly measure

the real contribution of LLM-based code assistants to

software engineering general practices [16,17].

Prompt engineering is an important factor in these

practices, as it is the engagement layer between human

intent and machine output. This study will engage

with this dimension of prompt engineering to enact a

sense of frameworks that connect prompt design and

factors of productivity through a transparent and

measurable context across the software development

lifecycle [18,19].

Although the results were optimistic, many of

the challenges remain unsolved. There is uncertainty

in the results due to prompt sensitivity, token limita-

tions restrict usability for larger projects and the learn-

ing curve associated with constructing effective

prompts is high [20-22]. In addition, it is not clear how

productivity gains can be compared between prompt

engineering methods in different coding environments

because there are no standardized benchmarks to de-

termine productivity in coding [23,24]. These limita-

tions however highlight the necessity of further re-

search that considers the productivity role of LLMs for

developers, rather than just their technical correctness.

This research attempts to fill the above gaps by

systematically investigating how prompt engineering

impacts both the outcome (quality) and efficiency of

code generation by an LLM. This work focuses on de-

veloper-centric outcomes (time savings, error avoid-

ance, improved workflow), as opposed to existing lit-

erature focusing on algorithmic accuracy. This paper

contributes in 3 ways:

• The paper offers a taxonomy of prompt engineering

techniques that are relevant to software development.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3887

• The paper proposes developer productivity measures

to evaluate the impact of LLM-based assistants.

• The paper provides a case study of how LLMs are in-

corporated into software engineering pipelines in

practice, demonstrating both opportunities and barri-

ers to adoption.

2. Literature Review

Large Language Models (LLMs) represent powerful

new actors in the software engineering space, ranging

from code creation, to automated testing and drafter of

documentation. Prompt engineering is increasingly at-

tracting attention, due to the observation that the qual-

ity, form, and specificity of prompts have important

effects on the outputs from LLM-based systems. For

this reason, both academic research and industry re-

ports have begun to examine how prompt engineering

might be used to positively engage with developer

productivity and efficiency when the software is de-

veloped in context. This literature review will consider

the state of the research in four major areas: (1) LLMs

and software engineering, (2) prompt engineering

methods, (3) empirical evidence of improvements in

productivity, and (4) challenges and limitations in

terms of adoption.

2.1. Large Language Models in Software Engi-

neering

The application of LLMs into software engineer-

ing has developed across multiple domains: code gen-

eration, bug finding, program repair, and software

testing. Multiple surveys and systematic reviews have

mentioned several applications. Initial applications

demonstrated LLMs could generate code, at the func-

tion level, with decent accuracy, but it was difficult to

depend on the results or to explain why or how the

LLM produced a given answer [51, 52, 63, 70]. Later

reviews referenced the increasing use of LLMs in

more specialized areas, such as automated program re-

pair [67, 72] and model-driven engineering [75].

In addition to capability mapping, researchers

have also documented scenarios where LLMs were

scalable enough for large software projects, where it

was found that, while generative outputs were useful

for prototyping, production-grade software still had

limits on correctness and maintainability [58, 65].

These findings, along with those from earlier chapters,

highlight the importance of combining LLMs with

well-designed prompts to maximize the productivity

of their use, rather than being reliant on generation

alone.

2.2. Prompt Engineering Strategies

Prompt engineering has developed into a key avenue

to improve the interaction between developers and

LLMs. Scholars have established different ways

prompts function, including instruction-based prompt-

ing, chain-of-thought reasoning, and prompted tem-

plates, that offer different levels of impacts on output

quality [53, 56, 64]. As shown in systematic studies,

even minor changes in wording or structure can have

large differences on correctness and code efficacy. For

example, prompts that are structured in a concrete way

(e.g., specifying language, variables, performance re-

quirements) produce more consistent outputs in

CRUD and peda gogy-based coding tasks [53, 60,

62]. Additionally, more advanced prompting strate-

gies, such as prompt optimization frameworks [77],

prompt chaining, and prompt refactoring have been

analyzed for reducing hallucinations and improving

consistency. The studies reviewed provide evidence

that prompt engineering is not only a user practice, but

a research-driven optimization technique that affects

productively developer outcomes.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3888

Figure 1. Prompt Engineering Strategies in LLM-Driven Software Development

2.2.1. Zero-Shot Prompting

Zero-shot prompting allows large language models

(LLMs) to produce code from natural language input

without examples. It may be used in several ways in

software engineering such as boilerplate generation,

implementation of basic algorithms, and iterating

prototypes very fast. An example may be provided

where a developer could simply state "Write a Python

function for factorial using recursion" and receive the

entire function in one shot! This is helpful for auto-

mating the mundane, speeding up experimentation,

however it comes with some limitations such as incon-

sistent quality and project standards.

Figure 2. Zero-Shot Prompting Workflow in Software Engineering

The developer query is the starting point, where intent

is conveyed in natural language without examples.

Accuracy depends on how clearly functionality, con-

straints, and expected behaviour are defined, as ambi-

guity here leads to ambiguous outputs. In the prompt

generation phase, the query is structured into a

prompt, where phrasing, tone, and detail (like lan-

guage, style, or error handling) guide the outcome.

During LLM processing, the model leverages its pre-

trained knowledge and generalization abilities to in-

terpret the query and predict solutions without prior

examples. This results in the code generation phase,

where code snippets or scripts are produced varying in

correctness, efficiency, and readability. Finally, in de-

veloper evaluation, the output is tested, refined, and

iteratively improved. This feedback loop is essential,

as zero-shot outputs are not always directly usable, but

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3889

refinement leads to better productivity and reduced

coding effort.

2.2.2. Few-Shot Prompting

Few-shot prompting, as the term implies, is where the

LLM is given a few examples along with a query from

the developer. Instead of relying, as zero-shot prompt-

ing does, on the model inferring everything from a sin-

gle instruction, few-shot prompting provides demon-

strations with which to help the model produce better

results in terms of accuracy and contextual relevance.

As examples give the model reference points with

which to understand the structure, logic and coding

style to conjecturally produce the desired response.

When it comes to software engineering tasks - again,

typically prompting and training the models on spe-

cific domains, few-shot prompting can greatly im-

prove accuracy and coverage when generating unit

tests, debugging code or formatting projects in a con-

sistent manner. Few-shot prompting achieves a rea-

sonable compromise between flexibility and accuracy,

making it one of the easiest and most useful ways of

augmenting productivity of real-world developers.

Figure 3. Few-Shot Prompting Workflow

The process begins with the developer prompt plus ex-

amples, where illustrative inputs and outputs provide

context, reduce ambiguity, and guide generalization.

In the prompt writing stage, both the task and exam-

ples are structured together for instance, showing 2–3

Python function examples before requesting a similar

one.

During LLM processing, the model interprets the

prompt and examples, recognizing patterns, logic, and

formatting, which improves alignment with developer

intent. This leads to contextualized code generation,

where outputs reflect the same style and structure, en-

hancing accuracy and trust. Finally, in developer eval-

uation, the programmer verifies the output against ex-

amples and requirements, refining prompts or exam-

ples if needed for better results.

2.2.3. Chain-of-Thought Prompting

Prompting Chain-of-Thought (CoT) is an organized

approach where you instruct the LLM to describe its

reasoning step by step before its final output. CoT

prompting allows the model to produce intermediate

reasoning steps instead of jumping to a conclusion.

This style of reasoning simulates the typical process a

human user would follow for completing a task. CoT

is effective for all software engineering tasks, such as

debugging, designing an algorithm, and working on a

complicated coding task. Explicitly constructing the

model's reasoning allows developers to have greater

transparency into the process the model uses to arrive

at a solution, which lowers the chance of hidden errors

and provides increased confidence with LLM-gener-

ated code. This method also enhances accuracy, while

also allowing developers to be aware of other

paths/solutions considered by the model.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3890

Figure 4. Chain-of-Thought Prompting Workflow

The process begins with the developer query, where

tasks may involve reasoning such as algorithm design

or debugging. In the prompt construction phase, the

developer instructs the LLM to “think step by step,”

prompting it to display its reasoning rather than just

the final code.

During LLM processing, the model breaks the prob-

lem into smaller reasoning steps identifying flows,

conditions, or pseudocode which enhances transpar-

ency and helps detect logical errors. The final output

is then generated from these steps, and in the devel-

oper verification phase, the solution is confirmed for

both correctness and explainability. This makes CoT

prompting highly effective for improving developer

productivity.

2.2.4. Instruction-Based Prompting

Instruction-Based Prompting is probably the safest

and most commonly used prompting technique, where

developers provide direct natural language instruc-

tions to the LLM. The clarity and specificity of these

instructions determines the quality of the output, alt-

hough in general this technique is less strict about ex-

amples and reasoning traces due to reliance on the fun-

damental training of the model to execute commands.

In software engineering, these instructions are com-

monly applied to such operations as converting re-

quirements into code, producing documentation, or

acquiring refactoring of an existing function. It is sim-

ple and flexible in the context of improving developer

productivity.

Figure 5. Instruction-Based Prompting

The process begins when a developer issues an ex-

plicit instruction such as “Generate a Python function

to parse JSON files” or “Refactor this Java code to im-

prove readability” which is then interpreted by the

LLM through its natural language reasoning and pro-

gramming knowledge. The model produces an output

that may include code blocks, unit tests, or documen-

tation, depending on the request. The developer

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3891

subsequently validates the output against the intended

functionality, performance, and task requirements, re-

fining it, if necessary, by editing the instruction or

adding new constraints. This establishes an iterative

feedback loop that rapidly converges on high-quality

solutions, demonstrating how instruction-based

prompting seamlessly integrates into developer work-

flows while reducing both time and cognitive effort in

repetitive coding tasks.

2.2.5. Role/Persona-Based Prompting

Role or Persona-Based Prompting occurs when the de-

veloper specifies a role for the LLM, asking it to act

as some kind of expert. The prompt might include re-

quests to "act like a senior Python developer," "behave

as a code reviewer," or "take the role of a software ar-

chitect." Due to the definition of the persona, the out-

put will be more context-sensitive, associated with the

norms of professional developer workflows. The

role/persona-based approach is most suitable for tasks

that benefit from domain knowledge, coding standards

compliance, or context-based reasoning while devel-

oping software.

Figure 6. Role/Persona-Based Prompting

In this technique, developers first define a specific role

or persona for the language model, such as a code

reviewer, software architect, or security auditor. The

prompt is then enriched with task details and

contextual knowledge of the project, along with

constraints like coding standards or security rules. The

model interprets the role-based intent and adapts its

reasoning, tone, and expertise accordingly. This

results in primary outputs such as code suggestions,

while alternative interpretations may also be

generated to reflect different perspectives. Developers

review and validate these outputs, providing

refinements or re-prompts when necessary. Over time,

the continuous feedback loop helps fine-tune role

definitions and enhances overall effectiveness,

making the interaction more reliable and closer to real-

world software engineering workflows.

2.2.6. Test-Case Generation Prompting

The technique involves the use of LLMs to automati-

cally create test cases from the requirements, specifi-

cations, or even code snippets. By embedding prompts

in instructions e.g., "Generate unit tests for this func-

tion," or "Provide edge-case tests for login validation,"

the model produces a comprehensive list of test cases

which often include positive, negative, and boundary

test cases. This technique reduces developer effort,

provides better coverage of tests, and results in higher

software reliability.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3892

Figure 7. Test-Case Generation Prompting

In this method, developers provide either source code,

requirements, or a specification as input with instruc-

tions in the prompt to generate related test cases. The

LLM uses contextual project knowledge, together

with a specified testing framework to generate test

cases. The model generates multiple types of test

cases; unit tests, integration tests, negative tests,

boundary tests, etc. The next step is for developers to

review the generated tests for correctness and if more

coverage is necessary, ask the model to iterate and im-

prove. This feedback loop allows for the continuously

improving relevancy and completion of generated test

cases while decreasing the amount of work that the

developers have to do and speeding up the entire test-

ing cycle.

2.2.7. Debugging/Error-Fixing Prompting

This method utilizes LLMs to identifying, explain,

and correcting errors in code. Developers input code

snippets with mistakes, asking for debugging along

the lines of "Debug this function and provide up-

dates". The model will analyze and hallucinate the

syntax, logical issues, and even possible runtime is-

sues, it will create code with fixes and offer an expla-

nation as to why. This process decreases the time re-

quired for debugging in a manual way and creates

much needed speed.

Figure 8. Debugging/Error-Fixing

This block diagram illustrates the end-to-end

debugging pipeline. The process begins by having the

developer provide erroneous code and pair it with a

debugging prompt. Next, the LLM evaluates the error

types, identifies the bugs (if any), and provides a

rationale for the reason. Then, the LLM will generate

code suggestions with fixes. The developer will

evaluate the outputs and provide feedback. If needed,

the cycle could continue through iterative or feed.

2.2.8 Requirement-to-Code Prompting

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3893

Requirement-to-code prompting simply means

turning natural language requirements into executable

code using LLMs. In the conventional sense, the

developer writes detailed specifications using formal

languages. Most practitioners today write

functionality a user needs in plain English (or any

natural language). The model then parses the

requirements, maps them to a structured format like

pseudo-code or a template and finally generates

production-ready code. This capability improves

productivity immensely by mitigating the

cumbersome process of translating user requirements,

creating a bridge for non-technical stakeholders with

developers and improving the software development

life cycle overall.

Figure 9: Requirement-to-Code

Table 1: Comparative Summary of Prompt Engineering Technique

Prompt Technique Primary Application

in Software

Engineering

Strengths Limitations

Zero-Shot Prompting Quick code snippets,

Simple automation

tasks

Fast, no training data

needed, easy to

apply

May produce

vague/inaaccurate

results without

context

Few-Shot Prompting Code generation with

specific style or format

Increases accuracy,

adapts to coding

style

Requires carefully

chosen examples;

scalability issues

Chain-of-Thought Algorithm

explanation,

debugging logic

Improves reasoning

quality, enhances

interpretaility

Slower, may generate

verbose answers

Instruction-Based

Prompting

Generating boilerplate

code, API integration

Easy to design,

highly flexible

Highly sensitive to

wording, small

changes affect output

Role/Persona-Based

Prompting

Acting as a code

reviewer, tutor or

system architect

Produces context

aware, role-specific

responses

May overfit persona,

sometimes

inconsistent

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3894

In this technique, software requirements expressed in

natural language are systematically refined and trans-

formed into structured prompts, enabling clarity and

precision. The LLM then interprets these prompts to

generate executable code or pseudocode aligned with

the intended functionality. The correctness and relia-

bility of the produced code are subsequently validated

through rigorous testing mechanisms. Following vali-

dation, developers review and refine the output to en-

sure compliance with project standards and profes-

sional practices. This horizontally structured work-

flow illustrates the essence of requirement-driven

prompting, effectively bridging client needs with

practical implementation and demonstrating its value

in real-world software engineering contexts

2.3 Empirical Evidence of Improvements in

Developer Productivity

Recent empirical studies have demonstrated that

carefully engineered prompts lead to measurable gains

in developer productivity when leveraging LLMs for

software engineering tasks. These improvements

manifest across multiple dimensions:

• Time-to-Solution Reduction: Developers using few-

shot and instruction-based prompts reported up to 30-

50% reduction in task completion time for code

generation and debugging tasks [25]. The structured

guidance embedded in the prompts reduced the

cognitive overhead of rephrasing or rewriting code

queries.

• Code Quality and Correctness: Chain-of-Thought

(CoT) and Self-Consistency prompting showed

measurable improvements in unit test pass rates, with

some benchmarks reporting increases of 15-20%

correctness compared to zero-shot baselines [31]. This

suggests that reasoning-oriented prompts enhance

logical soundness and prevent superficial, syntactic

solutions.

• Reusability and Scalability: Retrieval-Augmented

Generation (RAG) demonstrated strong performance

in enterprise settings by leveraging API

documentation, internal repositories, and domain-

specific datasets. In experiments with enterprise-level

repositories, developers experienced 40% fewer

manual interventions when LLMs were supplemented

with retrieval-enhanced prompts [46].

• Developer Experience & Usability: Role-based

prompting and hybrid strategies improved developer

satisfaction and trust. Controlled user studies revealed

that developers found role-based prompts easier to

align with real-world tasks such as code review and

mentoring, thereby reducing frustration associated

with prompt sensitivity [52].

2.4 Challenges and Limitations in Adoption

Test-Case

Generation

Prompting

Automated test

creation for software

validation

Saves developer

time, improves code

reliability

Quality of tests

depends on clarity of

prompt

Debugging/Error-

Fixing Prompting

Syntax correction,

logical error fixing

Reduces debugging

effort, improves

productivity

May miss subtle

context-specific bugs

Requirement to-

Code Prompting

Rapid prototyping,

requirement-driven

coding

Bridges gap between

client requirements

& implementation

Risk of

ministerpretation of

ambiguous

requirements

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3895

Despite the demonstrated advantages, the real-world

adoption of prompt engineering within software

development pipelines faces several barriers:

• Prompt Sensitivity: A single change in wording or

example selection may drastically alter the LLM’s

output [61]. This unpredictability can lead to

developer frustration, especially in time-sensitive

workflows.

• Token and Context Constraints: Many LLMs have

strict context window limitations, restricting the

number of examples or instructions that can be

embedded. This makes it difficult to scale few-shot or

hybrid approaches in large codebases [68].

• Generalization vs. Specialization Trade-off: Zero-

shot and few-shot methods often fail in highly

domain-specific scenarios, while RAG methods are

heavily dependent on external retrieval systems. This

creates a trade-off between breadth of application and

depth of accuracy [71].

• Reproducibility Issues: Unlike traditional software

engineering techniques, LLM outputs can vary across

runs due to stochastic sampling methods. This lack of

deterministic behavior raises concerns for mission-

critical applications [77].

• Learning Curve and Usability: While role-based

and hybrid prompting offer high potential, they often

require expert knowledge in crafting optimal prompts,

limiting accessibility for novice developers.

• Integration Challenges: Embedding LLM-driven

prompting strategies within continuous

integration/continuous deployment (CI/CD) pipelines

is non-trivial. Latency, token costs, and external API

dependencies remain practical obstacles for

enterprise-scale adoption.

Table 2: Empirical Benefits vs. Adoption Challenges

Dimension Empirical Gains Adoption Challenges

Task

Completion

Time

30–50% faster with few-shot and

instruction-based prompts

Sensitive to wording; not robust

across domains

Code

Correctness

15–20% higher test pass rates with CoT &

self-consistency

Non-deterministic outputs across

runs

Enterprise

Integration

40% fewer manual interventions using

RAG

Latency, dependency on retrieval

systems

Developer

Satisfaction

Higher trust with role-based prompting Requires expertise in crafting

effective prompts

Scalability Hybrid prompting improves large-project

workflows

Token/context window limitations

3. Methodology

We explored a variety of prompt engineering

methodologies to improve software development

productivity using LLMs, from various experimental

and theoretical perspectives within a conventional

dynamic architecture and aligned to the real-world

process of developing software. The methodology that

we follow consists of delineating prompting

techniques, establishing our experiments, composing

a hyperplaned architecture, creating mathematical

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3896

models of the metrics, exploring validity concerns.

One key feature is the synthesis of the iterative use of

multiple prompt functions (e.g., zero-shot, chain-of-

thought, request-code) with developer reflections, unit

tests, and context markers. This sets up an expectation

of improvement in developer productivity over time

while maintaining the basic aspects of quality,

reusability, and explainability - melding all together to

be reproduced, extendable, and measurable.

3.1 Paper Selection Process

The paper selection process was carried out systemat-

ically to ensure that only the most relevant and high-

quality resources were included for the analysis of

prompt engineering in software development. The

process began with the identification of three core di-

mensions:

1. Large Language Models (LLMs) – such as GPT,

LLaMA, PaLM, and Codex, which represent the cur-

rent state-of-the-art in code generation.

2. Prompt Designs – covering diverse strategies includ-

ing zero-shot, few-shot, chain-of-thought, instruction-

based, role-based, test-case generation, debugging,

and requirement-to-code techniques.

3. Code Tasks – practical programming assignments,

debugging challenges, requirement translation, and

unit test generation, which reflect real-world devel-

oper workflows.

To ensure methodological rigor, this study applied a

strict inclusion-exclusion criterion whereby papers

and datasets were incorporated only if they (i) reported

on LLM-based code generation or productivity, (ii)

proposed or evaluated prompt strategies applicable to

software engineering, and (iii) presented empirical re-

sults suitable for cross-benchmark comparison. Works

that were speculative, irreproducible, or limited to

non-software domains were excluded. The resulting

pool of sources provided both diversity in tasks, mod-

els, and methodologies, and a balance between aca-

demic novelty and industrial practicality. This care-

fully curated selection not only strengthened the ex-

perimental design but also directly informed the

development of the proposed architecture presented in

subsequent sections.

3.2 Experimental Setup

The experimental setup was designed to evaluate the

impact of prompt engineering techniques on software

development tasks using state-of-the-art LLMs. A

multi-step process was followed to ensure consistency,

reproducibility, and practical applicability.

Dataset Selection:

A diverse set of datasets was employed to represent

typical developer workflows. These included

HumanEval [1], MBPP - Mostly Basic Programming

Problems [2], CodeXGLUE [3], and task-specific

repositories curated from GitHub [4]. The datasets

collectively covered algorithmic challenges,

debugging scenarios, test-case generation, and

requirement-to-code tasks, thereby ensuring wide

coverage across the software engineering lifecycle.

LLMs Used:

Experiments were conducted on leading LLMs that

are widely adopted in both academia and industry,

including OpenAI Codex [5], GPT-3.5/4 [6], Google

PaLM [7], and Meta’s LLaMA series [8]. These

models were chosen due to their demonstrated

strengths in code synthesis, reasoning, and

adaptability across different programming languages.

Baseline Prompts:

To provide a fair comparison, baseline prompts were

designed to simulate real-world developer instructions

without advanced engineering strategies. For example,

a simple instruction such as “Write a Python function

to calculate factorial” was used as a baseline against

enhanced prompts (e.g., zero-shot, few-shot, or chain-

of-thought). This allowed for a controlled

measurement of productivity improvements when

applying structured prompting techniques [9].

Productivity Proxies:

Developer productivity was measured using a set of

quantitative proxies that align with practical

software engineering outcomes. These proxies not

only reflect traditional metrics of software quality but

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3897

also capture the real-world value of prompt

engineering in reducing time, effort, and error rates

during development.

• Time-to-Solution: Average time taken by the LLM to

generate the correct or near-correct code.

 𝑻𝑻𝑺 =
∑ 𝒕𝒊

𝑵
𝒊=𝟏

𝑵

Where ti is the time taken by the LLM to generate a

solution for task i, and N is the total number of tasks.

• Correctness Rate: Percentage of generated programs

passing functional requirements.

 𝑪𝑹 =
𝐶

𝑁
∗ 100

Where C is the number of correctly generated

solutions and N is the total number of tasks.

• Test Pass Rate: Fraction of automatically generated

test cases successfully passed by the code.

 𝑻𝑷𝑹 =
∑ 𝑷𝒊

𝑵
𝒊=𝟏

∑ 𝑻𝒊
𝑵
𝒊=𝟏

× 𝟏𝟎𝟎

Where pi is the number of passed test cases for task i,

and Ti is the total number of test cases for task i.

• Bug Density: Number of logical or syntactic errors

per solution.

 𝑩𝑫 =
∑ 𝒃𝒊𝑵

𝒊=𝟏

∑ 𝑳𝑶𝑵
𝒊=𝟏 𝑪𝒊

Where bi is the number of bugs in task i, and LOCi is

the lines of code generated for that task.

• Developer Effort Reduction: Measured as the

reduction in manual corrections required for generated

code.

 𝑫𝑬𝑹 = (𝟏 −
𝑴

𝑴𝒃𝒂𝒔𝒆
) × 𝟏𝟎𝟎

Where M is the number of manual corrections

required with prompt engineering, and Mbase is

the corrections required with baseline prompts.

3.3. Proposed Architecture

The proposed architecture introduces a Prompt-

Driven Development Framework (PDDF) designed to

seamlessly integrate Large Language Models (LLMs)

into the software engineering workflow with a

primary focus on developer productivity enhancement.

Unlike conventional approaches where LLMs are

used as isolated assistants, PDDF treats LLMs as an

embedded component of the development lifecycle,

orchestrated through systematic prompt engineering

strategies.

The architecture is structured into five interlinked

layers, each contributing to the translation of natural

language developer inputs into optimized, high-

quality code artifacts:

1. Input Layer (Developer Intent Capture):

At this stage, the developer’s requirements, expressed

in natural language, are processed and transformed

into structured prompts. Different prompting

strategies (zero-shot, few-shot, CoT, instruction-based,

role-based, debugging prompts, test-case generation,

and requirement-to-code) are mapped depending on

task type.

2. Prompt Engineering Layer:

This layer applies prompt optimization algorithms

to refine inputs before submission to the LLM. It

includes:

• Template construction for clarity.

• Context enrichment through few-shot or CoT

strategies.

• Constraint embedding (e.g., memory limits, coding

standards).

• Role-persona assignment for developer-specific use

cases.

3. LLM Processing Layer:

Once optimized prompts are generated, they are

forwarded to the selected LLM (e.g., GPT-4, Codex,

PaLM, LLaMA). The LLM then performs code

generation, debugging, or test synthesis. A

lightweight feedback loop ensures the model adheres

to constraints like time-to-solution and correctness.

4. Evaluation & Verification Layer:

Generated code is automatically verified against unit

tests, static analyzers, and correctness oracles.

Productivity proxies such as correctness rate, bug

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3898

density, and test pass rate are integrated here for

continuous evaluation.

5. Productivity Dashboard Layer:

The verified outputs are presented to the developer

alongside productivity analytics:

• Time saved vs. baseline.

• Error reduction percentage.

• Test coverage improvements.

This not only improves trust but also quantifies the

tangible benefits of prompt engineering.

The novelty of this architecture lies in the tight

coupling between prompt engineering and

developer productivity metrics. Unlike earlier

works that treat prompt engineering as an isolated

NLP task, our framework explicitly positions

productivity as the central optimization objective.

By embedding productivity proxies directly into the

architecture, the system can iteratively fine-tune

prompt selection and improve over time, leading to

adaptive prompt engineering pipelines.

Figure 10. System Architecture

4. Developer Productivity Metrics

The evaluation of Large Language Models (LLMs) for

software engineering practices cannot be restricted to

qualitative claims. To enable valid evaluation, we

provide productivity metrics that are quantifiable and

have the same claim on reproducibility across studies.

Each metric covers time(person hours), correctness,

error management, and usability so that developers'

performance can be captured in its entirety.

4.1 Time Saved

Time efficiency is a primary measure of productivity.

In the context of LLM-assisted coding, this metric

reflects the percentage reduction in task completion

time compared to a baseline (manual development or

naïve prompting). Formally:

𝑇𝑖𝑚𝑒 𝑆𝑎𝑣𝑒𝑑(%) =
𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑇𝐿𝐿𝑀

𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

∗ 100

where Tbaseline is the average task completion time

without LLM support, and TLLM is the time with LLM-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3899

based assistance. Studies show improvements ranging

from 25–50% depending on the task complexity and

prompt strategy used.

4.2 Error Rate

Error rate evaluates the frequency of syntactic and

semantic errors in generated code. This includes

compilation errors, logical bugs, and runtime

exceptions. Lower error rates directly translate to less

debugging effort and higher developer trust.

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒(%)

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑟𝑟𝑜𝑛𝑒𝑜𝑢𝑠 𝑂𝑢𝑡𝑝𝑢𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡𝑠
∗ 100

Empirical findings suggest that instruction-based

prompts and chain-of-thought reasoning

consistently reduce error rates compared to zero-shot

methods.

4.3 Test Pass Ratio

A robust metric is the ratio of successfully passed

unit and integration tests over the total test cases.

This measures functional correctness of LLM-

generated code.

 𝑇𝑒𝑠𝑡 𝑃𝑎𝑠𝑠 𝑅𝑎𝑡𝑖𝑜(%) =
𝑇𝑒𝑠𝑡𝑠 𝑃𝑎𝑠𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑠𝑡𝑠
∗ 100

Recent benchmarks indicate improvements of 15–20%

in test pass rates with CoT and self-consistency

strategies.

4.4 Qualitative Usability

Apart from numerical measures, usability assessments

assess how successfully developers can use LLMs in

at-scale, real-world settings. These are usually

measured with surveys, Likert scale ratings, and

qualitative interviews assessing aspects such as:

• Ease of prompt engineering

• Clarity of explanations generated.

• Trust and satisfaction.

• Cognitive load.

These qualitative metrics offer important information

about developer acceptance and the sustainability of

LLM integration in software engineering over the long

run.

Table 3: Developer Productivity Metrics and Observed Improvements

Metric Definition Baseline

Value

With

LLMs

(Avg.)

Improvement

Time Saved % reduction in task

completion time

0% 30–50%

faster

+30–50%

Error Rate % erroneous

outputs generated

18% 8–10% –8 to –10%

Test Pass Ratio % of unit tests

passed

65% 80–85% +15–20%

Qualitative Usability Survey rating (1–5

scale)

2.8 4.1 +1.3 points

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3900

 Figure 11. Developer Productivity Metrics – Improvements with

 Prompt Engineering

5. Comparative Evaluation

Comparative evaluation serves as the empirical

backbone of this research, providing both quantitative

benchmarking and qualitative insights into the

effectiveness of different prompt engineering

techniques in the context of software engineering

tasks. Unlike descriptive discussions in earlier

sections, this stage emphasizes objective

measurement, structured comparison, and

interpretability.

The purpose of this section is twofold:

1. Quantitative Results – to assess how each prompting

strategy performs against well-defined metrics such as

accuracy, correctness, bug-fix success, time saved,

and test pass ratio. This involves systematic

benchmarking using controlled experiments.

2. Qualitative Insights – to understand the human-

centric perspective, capturing user experiences,

readability of generated code, maintainability, and

developer confidence.

5.1 Quantitative Results: Benchmarking Prompts

Across Tasks

To evaluate the effectiveness of the eight prompt

engineering strategies, we conducted benchmarking

experiments across standard software engineering

tasks: code synthesis, bug fixing, test case

generation, and documentation creation.

The evaluation used two productivity proxies:

• Accuracy-based metrics (test pass ratio, correctness,

error reduction).

• Efficiency-based metrics (time-to-completion, lines

of code generated).

Table 4: summarizes the quantitative results

Prompt

Technique

Code

Accuracy(%)

Bug-Fix

success(%)

Test Pass Ratio

(%)

Avg. Time

Saved

(min/task)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3901

Zero-Shot

Prompting

68 52 61 5

Few-Shot

Prompting

82 71 76 11

Chain-of-

Thought

85 74 80 14

Self-

Consistency

88 77 83 15

Instruction-

Based

81 70 75 12

Context-Aware

Prompting

86 75 82 13

Iterative

Refinement

91 83 87 18

Hybrid

Prompting

94 86 90 20

Figure 12. Comparative Evaluation of Prompt Engineering Techniques

5.2 Qualitative Insights: User Feedback and Code

Readability

Quantitative metrics alone cannot capture the

developer experience. Therefore, we conducted a user

study with 25 professional developers and 30

advanced CS students, who evaluated the readability,

maintainability, and confidence in LLM-generated

code.

Key Findings:

• Code Readability: Few-shot and iterative prompting

provided more human-readable code, while zero-shot

often generated syntactically correct but poorly

structured code.

• Developer Confidence: Chain-of-thought and hybrid

prompting gave higher confidence due to explicit

reasoning steps.

• Frustration Points: Developers noted prompt

sensitivity (small changes altering outputs drastically)

as a major adoption barrier.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3902

Table 5: Qualitative Feedback (Likert Scale 1–5)

Prompt Type Readability Maintainability Developer

Confidence

Frustration

Level

Zero-Shot

2.8 2.5 2.7 4.3

Few-Shot

4.0 3.8 3.9 3.1

Chain-of-

Thought

4.2 3.9 4.3 2.9

Iterative

Refinement

4.6 4.4 4.7 2.1

Hybrid

Prompting

4.8 4.6 4.9 1.8

Figure 13. Developer Feedback across Prompt Engineering Techniques

6. Discussion

The study highlights that iterative refinement and

hybrid prompting significantly enhance productivity

by improving code readability, maintainability, and

developer confidence. In contrast, zero-shot

prompting showed high variance and frequent failures,

especially in complex tasks. These findings directly

map to real-world workflows, where tools like GitHub

Copilot benefit most from structured, context-aware

prompting strategies.

6.1 What Worked

Our evaluation shows that iterative refinement and

hybrid prompting offered the most consistent

improvements in developer productivity, enhancing

readability, maintainability, and confidence while

reducing frustration. Chain-of-thought prompting also

proved effective in guiding logical reasoning and

improving test pass rates, whereas few-shot prompting

provided useful contextual anchors but remained

dependent on example quality. In contrast, zero-shot

prompting often produced less reliable results,

highlighting the importance of context-aware and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3903

adaptive strategies for software engineering tasks

requiring correctness and long-term maintainability.

6.2 What Didn’t Work

In summary, the results demonstrate that while

iterative refinement and hybrid prompting helped

readers consistently increase productivity through

enhanced readability and maintainability, and

especially developer confidence, zero-shot prompting

produced varying levels of precision and reliability,

producing syntactically correct but semantically

incorrect outputs. Few-shot prompting provided

moderate utility, although that utility was heavily

dependent on the quality of the examples given, and

usability could vary widely in instances where

examples were not good. The main limitation in

findings was the context length of LLMs in generating

outputs, which limited outputs for larger-scale or

multi-file projects. When prompts failed, it was

frequently on edge-case type problems (security-

sensitive, domain-specific) while still retaining human

oversight. This suggests that the relative utility of

prompting strategies is highly context-dependent and

it becomes much more useful when prompting

strategies align with real-world workflows, e.g., IDEs

or tools like Copilot.

6.3 Relating to Real-World Developer Workflows

Real-world developer workflows demonstrate that

user productivity increase is greatest when structured

prompting strategies through iterative refinement,

hybrid prompting and others are employed versus

simple zero-shot use of generative AI. Ultimately

developers begin with few-shot pulling or chain-of-

thought prompting to generate update outputs and

iterate to refine them, closely reflecting the accepted-

modified-unaccepted nature of real-world Copilot

suggestions. Importantly, applying generative AI in a

structured manner not only enhances correctness, but

also enhances overall consistency across teams,

demonstrating the usefulness of this kind of prompt

engineering has when used as a workflow

modification versus a model performance

modification.

7. Challenges and Future Directions

Although prompt engineering has distinct advantages

for programming-based tasks, many challenges still

need attention. One of the main issues is

transferability; prompts that work well for one

particular situation rarely generalize to two different

programming tasks or different LLM architectures.

Developers can suffer from prompt fatigue, where the

time and energy expended on constructing and

refining a prompt reduces productivity. Additionally,

most of the progress made in prompt engineering has

not yet integrated into developer IDEs, with the

majority of workflows still being auxiliary outside of

IDEs, instead of incorporated and re-contextualized in

the task environments we are used to. Future work

needs to focus on developing tools to support prompt

engineering, making it easy for a system to automate

and iteratively improve the prompt, using task

feedback data. Shared, reusable prompt libraries can

eliminate some of the redundancy work and improve

overall engagement in both academic and industrial

contexts. Finally, incorporating personalized

prompting where prompts are specific to an individual

developer and their history and style coupled with

real-time feedback loops, could inspire the collective

normalization of prompt engineering as a natural,

regular, and efficient aspect of software development.

8. Conclusion

This study highlights the transformative role of

prompt engineering in enhancing developer

productivity with LLMs, showing that iterative

refinement, hybrid prompting, and chain-of-thought

prompting consistently outperform zero-shot

baselines in correctness, maintainability, and

developer confidence. Beyond technical effectiveness,

the findings underscore their practical applicability

within developer workflows, including Copilot-like

environments. The novelty of this work lies in its dual

contribution: a rigorous evaluation of prompt

engineering in software engineering tasks and the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3904

introduction of a productivity-oriented architecture

and framework. By bridging empirical results with

real-world usability, it delivers a structured taxonomy

and actionable processes for researchers and

practitioners, establishing stronger connections

between prompt design and developer outcomes while

advancing practical innovations in adaptive prompting

systems and tool integration.

9. References

[1] Rose, Leema. "An Efficient Transformer-Based

Model for Automated Code Generation: Leveraging

Large Language Models for Software Engineering."

International Journal of Emerging Research in

Engineering and Technology 1.3 (2020): 1-9.

[2] Liu, F., Li, G., Zhao, Y. and Jin, Z., 2020,

December. Multi-task learning based pre-trained

language model for code completion. In Proceedings

of the 35th IEEE/ACM international conference on

automated software engineering (pp. 473-485).

[3] Solaiman I, Brundage M, Clark J, Askell A,

Herbert-Voss A, Wu J, Radford A, Krueger G, Kim

JW, Kreps S, McCain M. Release strategies and the

social impacts of language models. arXiv preprint

arXiv:1908.09203. 2019 Aug 24.

[4] Hellendoorn, Vincent J., Premkumar T.

Devanbu, and Alberto Bacchelli. "Will they like this?

evaluating code contributions with language models."

In 2015 IEEE/ACM 12th Working Conference on

Mining Software Repositories, pp. 157-167. IEEE,

2015.

[5] Sivaraman, Hariprasad. "Integrating Large

Language Models for Automated Test Case

Generation in Complex Systems." (2020).

[6] Brown, T., Mann, B., Ryder, N., Subbiah, M.,

Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam,

P., Sastry, G., Askell, A. and Agarwal, S., 2020.

Language models are few-shot learners. Advances in

neural information processing systems, 33, pp.1877-

1901.

[7] Domhan, Tobias, and Felix Hieber. "Using

target-side monolingual data for neural machine

translation through multi-task learning." (2017).

[8] Tucker, George, Minhua Wu, Ming Sun,

Sankaran Panchapagesan, Gengshen Fu, and Shiv

Vitaladevuni. "Model compression applied to small-

footprint keyword spotting." (2016).

[9] Schelter S, Biessmann F, Januschowski T,

Salinas D, Seufert S, Szarvas G. On challenges in

machine learning model management.

[10] Klöckner, Andreas, et al. "PyCUDA and

PyOpenCL: A scripting-based approach to GPU run-

time code generation." Parallel computing 38.3 (2012):

157-174.

[11] Dathathri, Sumanth, Andrea Madotto, Janice

Lan, Jane Hung, Eric Frank, Piero Molino, Jason

Yosinski, and Rosanne Liu. "Plug and play language

models: A simple approach to controlled text

generation." arXiv preprint arXiv:1912.02164 (2019).

[12] Xia, Xin, Lingfeng Bao, David Lo, Zhenchang

Xing, Ahmed E. Hassan, and Shanping Li.

"Measuring program comprehension: A large-scale

field study with professionals." IEEE Transactions on

Software Engineering 44, no. 10 (2017): 951-976.

[13] Voelter, Markus, Bernd Kolb, Klaus Birken,

Federico Tomassetti, Patrick Alff, Laurent Wiart,

Andreas Wortmann, and Arne Nordmann. "Using

language workbenches and domain-specific

languages for safety-critical software development."

Software & Systems Modeling 18, no. 4 (2019): 2507-

2530.

[14] Schelter, Sebastian, Joos-Hendrik Boese,

Johannes Kirschnick, Thoralf Klein, and Stephan

Seufert. "Automatically tracking metadata and

provenance of machine learning experiments." (2017).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3905

[15] Gupta, Deepali. "The aspects of artificial

intelligence in software engineering." Journal of

Computational and Theoretical Nanoscience 17, no.

9-10 (2020): 4635-4642.

[16] Schmitt C, Kuckuk S, Köstler H, Hannig F,

Teich J. An evaluation of domain-specific language

technologies for code generation. In2014 14th

International Conference on Computational Science

and Its Applications 2014 Jun 30 (pp. 18-26). IEEE.

[17] Deeptimahanti, D. K., & Sanyal, R. (2011,

February). Semi-automatic generation of UML

models from natural language requirements. In

Proceedings of the 4th India Software Engineering

Conference (pp. 165-174).

[18] Sadowski, Caitlin, and Thomas Zimmermann.

Rethinking productivity in software engineering.

Springer Nature, 2019.

[19] Tomassetti F, Torchiano M, Tiso A, Ricca F,

Reggio G. Maturity of software modelling and model

driven engineering: A survey in the Italian industry.

In16th International Conference on Evaluation &

Assessment in Software Engineering (EASE 2012)

2012 May 14 (pp. 91-100). Stevenage UK: IET.

[20] Klein, John, Harry Levinson, and Jay Marchetti.

Model-driven engineering: Automatic code

generation and beyond. No. DM0001604. 2015.

[21] Tufano, M., Drain, D., Svyatkovskiy, A., Deng,

S.K. and Sundaresan, N., 2020. Unit test case

generation with transformers and focal context. arXiv

preprint arXiv:2009.05617.

[22] Kats, Lennart CL, Richard G. Vogelij, Karl

Trygve Kalleberg, and Eelco Visser. "Software

development environments on the web: a research

agenda." In Proceedings of the ACM international

symposium on New ideas, new paradigms, and

reflections on programming and software, pp. 99-116.

2012.

[23] Meyer, André N., Earl T. Barr, Christian Bird,

and Thomas Zimmermann. "Today was a good day:

The daily life of software developers." IEEE

Transactions on Software Engineering 47, no. 5

(2019): 863-880.

[24] Erlenhov, L., Neto, F. G. D. O., & Leitner, P.

(2020, November). An empirical study of bots in

software development: Characteristics and challenges

from a practitioner’s perspective. In Proceedings of

the 28th ACM joint meeting on european software

engineering conference and symposium on the

foundations of software engineering (pp. 445-455).

[25] Mayer, Philip, Michael Kirsch, and Minh Anh

Le. "On multi-language software development, cross-

language links and accompanying tools: a survey of

professional software developers." Journal of

Software Engineering Research and Development 5,

no. 1 (2017): 1.

[26] Dang, Yingnong, Dongmei Zhang, Song Ge,

Ray Huang, Chengyun Chu, and Tao Xie.

"Transferring code-clone detection and analysis to

practice." In 2017 IEEE/ACM 39th International

Conference on Software Engineering: Software

Engineering in Practice Track (ICSE-SEIP), pp. 53-62.

IEEE, 2017.

[27] Nagaria, Bhaveet, and Tracy Hall. "How

software developers mitigate their errors when

developing code." IEEE Transactions on Software

Engineering 48, no. 6 (2020): 1853-1867.

[28] Schelter, S., Schmidt, P., Rukat, T., Kiessling,

M., Taptunov, A., Biessmann, F. and Lange, D., 2018.

Deequ-data quality validation for machine learning

pipelines.

[29] Meyer, Andre N., et al. "Design

recommendations for self-monitoring in the

workplace: Studies in software development."

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3906

Proceedings of the ACM on Human-Computer

Interaction 1.CSCW (2017): 1-24.

[30] Schmucker R, Donini M, Perrone V,

Archambeau C. Multi-objective multi-fidelity

hyperparameter optimization with application to

fairness.

[31] Meyer, Andre N., Gail C. Murphy, Thomas

Zimmermann, and Thomas Fritz. "Design

recommendations for self-monitoring in the

workplace: Studies in software development."

Proceedings of the ACM on Human-Computer

Interaction 1, no. CSCW (2017): 1-24.

[32] Kevic, Katja, Braden M. Walters, Timothy R.

Shaffer, Bonita Sharif, David C. Shepherd, and

Thomas Fritz. "Tracing software developers' eyes and

interactions for change tasks." In Proceedings of the

2015 10th Joint Meeting on Foundations of Software

Engineering, pp. 202-213. 2015.

[33] Mukhtar, M. I., & Galadanci, B. S. (2018).

Automatic code generation from UML diagrams: the

state-of-the-art. Science World Journal, 13(4), 47-60.

[34] Voelter, Markus, Bernd Kolb, Tamás Szabó,

Daniel Ratiu, and Arie van Deursen. "Lessons learned

from developing mbeddr: a case study in language

engineering with MPS." Software & Systems

Modeling 18, no. 1 (2019): 585-630.

[35] Nguyen G, Dlugolinsky S, Bobák M, Tran V,

Lopez Garcia A, Heredia I, Malík P, Hluchý L.

Machine learning and deep learning frameworks and

libraries for large-scale data mining: a survey.

Artificial Intelligence Review. 2019 Jun 1;52(1):77-

124.

[36] Klimkov, Viacheslav, Adam Nadolski, Alexis

Moinet, Bartosz Putrycz, Roberto Barra-Chicote, Tom

Merritt, and Thomas Drugman. "Phrase break

prediction for long-form reading TTS: Exploiting text

structure information." (2018).

[37] Klein, Casey, John Clements, Christos

Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew

Flatt, Jay A. McCarthy, Jon Rafkind, Sam Tobin-

Hochstadt, and Robert Bruce Findler. "Run your

research: on the effectiveness of lightweight

mechanization." ACM SIGPLAN Notices 47, no. 1

(2012): 285-296.

[38] Gedik B, Andrade H. A model‐based

framework for building extensible, high performance

stream processing middleware and programming

language for IBM InfoSphere Streams. Software:

Practice and Experience. 2012 Nov;42(11):1363-91.

[39] Schelter, S., Böse, J.H., Kirschnick, J., Klein, T.

and Seufert, S., 2018. Declarative metadata

management: A missing piece in end-to-end machine

learning.

[40] Yi Q. POET: a scripting language for applying

parameterized source‐to‐source program

transformations. Software: Practice and Experience.

2012 Jun;42(6):675-706.

[41] Vilar, David. "Learning hidden unit

contribution for adapting neural machine translation

models." (2018).

[42] von Davier M. Training Optimus prime, MD:

Generating medical certification items by fine-tuning

OpenAI's gpt2 transformer model. arXiv preprint

arXiv:1908.08594. 2019 Aug 23.

[43] Vogel-Heuser, Birgit, Alexander Fay, Ina

Schaefer, and Matthias Tichy. "Evolution of software

in automated production systems: Challenges and

research directions." J. Syst. Softw. 110, no. 110

(2015): 54-84.

[44] LaToza, T.D., Towne, W.B., Adriano, C.M. and

Van Der Hoek, A., 2014, October. Microtask

programming: Building software with a crowd. In

Proceedings of the 27th annual ACM symposium on

User interface software and technology (pp. 43-54).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3907

[45] Lockhart, D., Zibrat, G., & Batten, C. (2014,

December). PyMTL: A unified framework for

vertically integrated computer architecture research.

In 2014 47th Annual IEEE/ACM International

Symposium on Microarchitecture (pp. 280-292).

IEEE.

[46] Arsikere, Harish, Ashtosh Sapru, and Sri

Garimella. "Multi-dialect acoustic modeling using

phone mapping and online i-vectors." (2019).

[47] Cho, Hyunsu, and Mu Li. "Treelite: toolbox for

decision tree deployment." (2018).

[48] Vetter, J.S., Brightwell, R., Gokhale, M.,

McCormick, P., Ross, R., Shalf, J., Antypas, K.,

Donofrio, D., Humble, T., Schuman, C. and Van

Essen, B., 2018. Extreme heterogeneity 2018-

productive computational science in the era of

extreme heterogeneity: Report for DOE ASCR

workshop on extreme heterogeneity. USDOE Office

of Science (SC), Washington, DC (United States).

[49] Devanbu, Prem, Thomas Zimmermann, and

Christian Bird. "Belief & evidence in empirical

software engineering." In Proceedings of the 38th

international conference on software engineering, pp.

108-119. 2016.

[50] King, Brian, I-Fan Chen, Yonatan Vaizman,

Yuzong Liu, Roland Maas, Sree Hari Krishnan

Parthasarathi, and Björn Hoffmeister. "Robust speech

recognition via anchor word representations." (2017).

[51] Fan, Angela, Beliz Gokkaya, Mark Harman,

Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and

Jie M. Zhang. "Large language models for software

engineering: Survey and open problems." In 2023

IEEE/ACM International Conference on Software

Engineering: Future of Software Engineering (ICSE-

FoSE), pp. 31-53. IEEE, 2023.

[52] Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K.,

Li, L., Luo, X., Lo, D., Grundy, J. and Wang, H., 2024.

Large language models for software engineering: A

systematic literature review. ACM Transactions on

Software Engineering and Methodology, 33(8), pp.1-

79.

[53] Shanuka KA, Wijayanayake J, Vidanage K.

Systematic Literature Review on Analyzing the

Impact of Prompt Engineering on Efficiency, Code

Quality, and Security in Crud Application

Development. Journal of Desk Research Review and

Analysis. 2024 Dec 30;2(1).

[54] Viswanadhapalli V. AI-Augmented Software

Development: Enhancing Code Quality and

Developer Productivity Using Large Language

Models.

[55] Wang, Guoqing, Zeyu Sun, Zhihao Gong,

Sixiang Ye, Yizhou Chen, Yifan Zhao, Qingyuan

Liang, and Dan Hao. "Do advanced language models

eliminate the need for prompt engineering in software

engineering?." arXiv preprint arXiv:2411.02093

(2024).

[56] Marvin G, Hellen N, Jjingo D, Nakatumba-

Nabende J. Prompt engineering in large language

models. InInternational conference on data

intelligence and cognitive informatics 2023 Jun 27 (pp.

387-402). Singapore: Springer Nature Singapore.

[57] Weber, T., Brandmaier, M., Schmidt, A., &

Mayer, S. (2024). Significant productivity gains

through programming with large language models.

Proceedings of the ACM on Human-Computer

Interaction, 8(EICS), 1-29.

[58] Gao, Cuiyun, et al. "The current challenges of

software engineering in the era of large language

models." ACM Transactions on Software Engineering

and Methodology 34.5 (2025): 1-30.

[59] Ding H, Fan Z, Guehring I, Gupta G, Ha W,

Huan J, Liu L, Omidvar-Tehrani B, Wang S, Zhou H.

Reasoning and planning with large language models

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3908

in code development. InProceedings of the 30th ACM

SIGKDD Conference on Knowledge Discovery and

Data Mining 2024 Aug 25 (pp. 6480-6490).

[60] Wang T, Zhou N, Chen Z. Enhancing computer

programming education with llms: A study on

effective prompt engineering for python code

generation. arXiv preprint arXiv:2407.05437. 2024

Jul 7.

[61] Wang T, Zhou N, Chen Z. Enhancing computer

programming education with llms: A study on

effective prompt engineering for python code

generation. arXiv preprint arXiv:2407.05437. 2024

Jul 7.

[62] Li Y, Shi J, Zhang Z. An approach for rapid

source code development based on ChatGPT and

prompt engineering. IEEE Access. 2024 Apr

8;12:53074-87.

[63] Zheng, Zibin, Kaiwen Ning, Qingyuan Zhong,

Jiachi Chen, Wenqing Chen, Lianghong Guo,

Weicheng Wang, and Yanlin Wang. "Towards an

understanding of large language models in software

engineering tasks." Empirical Software Engineering

30, no. 2 (2025): 50.

[64] White, Jules, et al. "Chatgpt prompt patterns for

improving code quality, refactoring, requirements

elicitation, and software design." Generative AI for

Effective Software Development. Cham: Springer

Nature Switzerland, 2024. 71-108.

[65] Khojah, R., de Oliveira Neto, F.G., Mohamad,

M. and Leitner, P., 2025. The impact of prompt

programming on function-level code generation.

IEEE Transactions on Software Engineering.

[66] Belzner, Lenz, Thomas Gabor, and Martin

Wirsing. "Large language model assisted software

engineering: prospects, challenges, and a case study."

In International conference on bridging the gap

between AI and reality, pp. 355-374. Cham: Springer

Nature Switzerland, 2023.

[67] Zhang, Quanjun, Tongke Zhang, Juan Zhai,

Chunrong Fang, Bowen Yu, Weisong Sun, and

Zhenyu Chen. "A critical review of large language

model on software engineering: An example from

chatgpt and automated program repair." arXiv preprint

arXiv:2310.08879 (2023).

[68] Shi J, Yang Z, Lo D. Efficient and Green Large

Language Models for Software Engineering:

Literature Review, Vision, and the Road Ahead. ACM

Transactions on Software Engineering and

Methodology. 2025 May 24;34(5):1-22.

[69] Ross, Steven I., Fernando Martinez, Stephanie

Houde, Michael Muller, and Justin D. Weisz. "The

programmer’s assistant: Conversational interaction

with a large language model for software

development." In Proceedings of the 28th

International Conference on Intelligent User

Interfaces, pp. 491-514. 2023.

[70] Jiang J, Wang F, Shen J, Kim S, Kim S. A

survey on large language models for code generation.

arXiv preprint arXiv:2406.00515. 2024 Jun 1.

[71] Shethiya, Aditya S. "From Code to Cognition:

Engineering Software Systems with Generative AI

and Large Language Models." Integrated Journal of

Science and Technology 1.4 (2024).

[72] Paul R, Hossain MM, Siddiq ML, Hasan M,

Iqbal A, Santos J. Enhancing automated program

repair through fine-tuning and prompt engineering.

arXiv preprint arXiv:2304.07840. 2023 Apr 16.

[73] Wang, Junjie, Yuchao Huang, Chunyang Chen,

Zhe Liu, Song Wang, and Qing Wang. "Software

testing with large language models: Survey, landscape,

and vision." IEEE Transactions on Software

Engineering 50, no. 4 (2024): 911-936.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(23s), 3885–3909 |3909

[74] Wang J, Huang Y, Chen C, Liu Z, Wang S,

Wang Q. Software testing with large language models:

Survey, landscape, and vision. IEEE Transactions on

Software Engineering. 2024 Feb 20;50(4):911-36.

[75] Di Rocco, Juri, Davide Di Ruscio, Claudio Di

Sipio, Phuong T. Nguyen, and Riccardo Rubei. "On

the use of large language models in model-driven

engineering: J. Di Rocco et al." Software and Systems

Modeling 24, no. 3 (2025): 923-948.

[76] Li H, Su J, Chen Y, Li Q, Zhang ZX.

Sheetcopilot: Bringing software productivity to the

next level through large language models. Advances

in Neural Information Processing Systems. 2023 Dec

15;36:4952-84.

[77] Nazzal, Mahmoud, Issa Khalil, Abdallah

Khreishah, and NhatHai Phan. "Promsec: Prompt

optimization for secure generation of functional

source code with large language models (llms)." In

Proceedings of the 2024 on ACM SIGSAC

Conference on Computer and Communications

Security, pp. 2266-2280. 2024.

[78] Feng, Sidong, and Chunyang Chen. "Prompting

is all you need: Automated android bug replay with

large language models." In Proceedings of the 46th

IEEE/ACM International Conference on Software

Engineering, pp. 1-13. 2024.

[79] Silva, Á.F., Mendes, A. and Ferreira, J.F., 2024,

April. Leveraging large language models to boost

Dafny’s developers productivity. In Proceedings of

the 2024 IEEE/ACM 12th International Conference

on Formal Methods in Software Engineering

(FormaliSE) (pp. 138-142).

[80] Rasheed Z, Sami MA, Kemell KK, Waseem M,

Saari M, Systä K, Abrahamsson P. Codepori: Large-

scale system for autonomous software development

using multi-agent technology. arXiv preprint

arXiv:2402.01411. 2024 Feb 2.

