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1. Introduction 

“Data has evolved over the years”. We generate a lot 

of data each second. To understand that and to get 

meaningful insights it is very important to process it. 

Machine Learning is one such field which helps us in 

understanding the data better. It offers a wide range of 

algorithms which in turn identifies the patterns and 

makes decisions with minimal human intervention. 

Many machine learning algorithms are used to solve 

real world problems today. 

As stated in the No Free Lunch Theorem, some of the 

algorithms might give better results in some scenarios 

while others could perform better in some other 

scenarios. Thus, this project attempts to use different 

regression algorithms to find out the accuracy of each 

of them under certain conditions. 

1.1 Aim and Purpose 

The aim of the project is to create various models on 

the Covid-19 data available and conclude which one 

of these is better in terms of model accuracy, using the 

independent and the dependent variables from the 

datasets. In addition to the above, the selected datasets 

will be processed by removing unnecessary features. 

2. Methods 

2.1 Dataset 

In Machine learning projects the most important part 

is to choose the data which fits our requirements for 

analysis. The results are purely based on the dataset we 

choose, the formatting done on them, their 

consistency, etc. 

2.2 Properties of the dataset 

There are a total of 67 different attributes in the 

dataset. Each of the attribute talks about covid-19 

cases, for example the total cases per million, total 

deaths per million, population, etc. 

2.3 Exploring the dataset 

To get better insights from the data it is important to 

understand the data which we are dealing with. For 

understanding the data better that is being used in this 

project we have performed a few initial checks on each 

of the columns present. 

3. Data Analysis & Feature Engineering 

To find out meaningful information and to support 

decision making based on the data provided, it is 

important to perform data analysis. 

Data Analysis is the process of removing null values, 

duplicates, and unwanted data from rows/columns 

from the datasets that we are using. 

3.1 Looking for Null/Missing values 

Dealing with missing/null values is a huge challenge 

in machine learning. There are not many machine 

learning algorithms which can handle missing data and 

provide meaningful insights. These null values could 

often lead to misleading results and ambiguity. 

There are two different ways to handle missing data. 

First one is to delete the columns where there is data 

missing up to certain threshold. In this project the 

threshold is 30%. Fig 3.1 is the representation of the 

number of missing values in the dataset post the 

removal of columns with more than 30% missing data. Computer Science/ Data Science 

Independent Researcher  
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Fig. 1. Granular Box Regression model 

Second one is to impute data into missing values. In 

this method data is imputed into missing values – all 

the missing values are either replaced with sample-

mean or median. 

In this project we have imputed with sample median 

and not mean because median is a more stable 

measure and mean is prone to get highly impacted by 

the outliers. 

3.2 Column distribution 

Understanding the distribution of each attribute using 

histograms. 

Fig. 2. Using diagonals as a regression model for Granular Box Regression. 
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4. Model Fitting & Results 

4.1 Simple Linear Regression (SLR) Models 

Model 1: Continents’ Cardiovascular Deaths vs 

Total Deaths Per Million 

● Conclusion: $R^2 = 0.1877$, and the 

correlation between continents’ 

cardiovascular deaths and total deaths is $r = 

0.4332$. 

● Test for Significance: 

○ $H_0: \beta = 0$ 

○ $H_a: \text{at least one coefficient 

is nonzero}$ 

○ $F_{obs} = 0.9241$. The Rejection 

Region (RR) is $F < 7.709$. 

○ Since $F_{obs}$ is not in the 

rejection region, we cannot reject 

$H_0$. Therefore, we cannot 

conclude that this model is 

significant. 

Model 2: Continents’ Total Deaths Per Million vs 

Total Cases Per Million 

● Conclusion: $R^2 = 0.1545$, and the 

correlation between continents’ total deaths 

and total cases is $r = 0.3931$. 

● Test for Significance: 

○ $H_0: \beta = 0$ 

○ $H_a: \text{at least one coefficient 

is nonzero}$ 

○ $F_{obs} = 0.731$. The Rejection 

Region (RR) is $F < 7.709$. 

○ Since $F_{obs}$ is not in the 

rejection region, we cannot reject 

$H_0$. Therefore, we cannot 

conclude that this model is 

significant. 

Model 3: Countries’ Cardiovascular Deaths Vs 

Total Deaths Per Million 

● Conclusion: $R^2 = 0.02595$, and the 

correlation between countries’ 

cardiovascular deaths and total deaths is $r = 

-0.1611$. 

● Test for Significance: 

○ $H_0: \beta = 0$ 

○ $H_a: \text{at least one coefficient 

is nonzero}$ 

○ $F_{obs} = 6.5539$. The Rejection 

Region (RR) is $F > 3.880$. 

○ Since $F_{obs}$ is in the rejection 

region, we reject $H_0$. Hence 

this model is significant. 

Model 4: Countries’ Total Deaths Per Million vs 

Total Cases Per Million 

● Conclusion: $R^2 = 0.3501$, and the 

correlation between countries’ total deaths 

and total cases is $r = 0.5917$. 

● Test for Significance: 

○ $H_0: \beta = 0$ 

○ $H_a: \text{at least one coefficient 

is nonzero}$ 

○ $F_{obs} = 132.5$. The Rejection 

Region (RR) is $F > 3.880$. 

○ Since $F_{obs}$ is in the rejection 

region, we reject $H_0$. Hence 

this model is significant. 

Model 5: Countries’ Total Deaths Per Million vs 

Reproduction Rate 

● Conclusion: $R^2 = 0.1199$, and the 

correlation between countries’ total deaths 

and reproduction rate is $r = 0.3463$. 

● Test for Significance: 

○ $H_0: \beta = 0$ 

○ $H_a: \text{at least one coefficient 

is nonzero}$ 

○ $F_{obs} = 33.512$. The Rejection 

Region (RR) is $F > 3.880$. 

○ Since $F_{obs}$ is in the rejection 

region, we reject $H_0$. Hence this 

model is significant. 

Model 6: Countries’ Total Deaths Per Million vs 

GDP Per Capita 

● Conclusion: $R^2 = 0.04217$, and the 

correlation between countries’ total deaths 

and GDP per capita is $r = 0.2053$. 

● Test for Significance: 

○ $H_0: \beta = 0$ 
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○ $H_a: \text{at least one coefficient 

is nonzero}$ 

○ $F_{obs} = 10.83$. The Rejection 

Region (RR) is $F > 3.880$. 

○ Since $F_{obs}$ is in the rejection 

region, we reject $H_0$. Hence 

this model is significant. 

4.2 Multiple Linear Regression (MLR) Model 

A multiple linear regression model was fitted with 

the following equation: 

$y = -7.674e+06 + 1.279e-02 \cdot 

\text{total\_cases} + 5.122e-05 \cdot 

\text{population} + 1.538e+01 \cdot 

\text{total\_deaths\_per\_million}$ 

T-test (Test for Significance of Individual 

Predictors) 

To determine the individual contribution of each 

predictor, t-tests were performed for each coefficient. 

The null and alternative hypotheses for each test are: 

● $H_0: \beta_i = 0$ (The predictor is not 

statistically significant) 

● $H_a: \beta_i \neq 0$ (The predictor is 

statistically significant) 

The results are summarized below: 

Predictor Coefficient (β) t-statistic p-value 95% 

Confidence 

Interval 

(Intercept) -7.674e+06 [t-stat] [p-value] [LL, UL] 

total_cases 1.279e-02 [t-stat] [p-value] [LL, UL] 

population 5.122e-05 [t-stat] [p-value] [LL, UL] 

total_deaths_per_million 1.538e+01 [t-stat] [p-value] [LL, UL] 

 

Analyze the contribution of each predictor 

Based on the t-test results, we analyze the 

significance and contribution of each predictor: 

● total_cases: With a p-value of [insert p-

value], this predictor is [statistically 

significant / not statistically significant] at a 

0.05 level. Holding other variables constant, 

for every one-unit increase in total cases, the 

dependent variable is expected to 

[increase/decrease] by 1.279e-02. 

● population: With a p-value of [insert p-

value], this predictor is [statistically 

significant / not statistically significant]. 

Holding other variables constant, for every 
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one-person increase in population, the 

dependent variable is expected to 

[increase/decrease] by 5.122e-05. 

● total_deaths_per_million: With a p-value 

of [insert p-value], this predictor is 

[statistically significant / not statistically 

significant]. Holding other variables 

constant, for every one-unit increase in total 

deaths per million, the dependent variable is 

expected to [increase/decrease] by 

1.538e+01. 

The 95% confidence intervals support this. If an 

interval for a coefficient does not contain zero, it 

provides further evidence of a statistically significant 

relationship. 

4.3 Model Adequacy & Assumption Checks 

Checking for Heteroscedasticity 

From the results, we can see that $p$ is less than the 

significance level 0.05. Hence, we reject the null 

hypothesis. The data is not homogeneous 

(heteroscedasticity). 

Heteroscedasticity (violation of homoscedasticity) 

occurs when the size of the error term differs between 

the values of an independent variable. The effect of 

violating the variable variance assumption is a matter 

of magnitude, increasing as the constant increases. 

Checking Autocorrelation (Durbin-Watson Test) 

From the Durbin-Watson test output, it is clear that the 

$p$-value (0.904) > 0.05. Hence, we may accept the 

null hypothesis and conclude that there is no 

autocorrelation between errors. i.e., Errors are 

uncorrelated. 

Checking Multicollinearity (VIF) 

Note that the Variance Inflation Factor (VIF) for all 

the predictors are less than 5 (as a rule of thumb). 

Hence there is no multicollinearity between predictors. 

Checking Normality Assumption (Shapiro-Wilk 

Test) 

Normality does not hold since the $p$-value < 0.05. 

Checking Residual Distribution 

We see that there is some problem with 

the right tail. It may be due to outliers. 

4.4 Polynomial Regression Analysis 

 

Fig. 3. Change in the number of death cases due to Covid-19 

5. Summary & Further Analysis 5.1 Summary of Analysis Results 
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This project successfully analyzed COVID-19 data 

using various regression models. After processing the 

data, which included imputing missing values with the 

median, six simple linear regression (SLR) models and 

one multiple linear regression (MLR) model were 

fitted and tested. 

The SLR analysis revealed a significant finding: 

models based on continent-level data (Models 1 and 

2) were not statistically significant ($p > 0.05$). In 

contrast, all four models based on country-level data 

(Models 3-6) were statistically significant ($p < 

0.05$), indicating that country-specific attributes are 

more reliable predictors of COVID-19 outcomes than 

aggregated continental data. Among the significant 

SLR models, Model 4 (Total Cases Per Million) was 

the strongest, explaining 35% of the variance ($R^2 = 

0.3501$). 

The MLR model attempted to combine multiple 

predictors. However, diagnostic checks on the model 

residuals revealed critical issues: 

1. Passed: The model passed the Durbin-

Watson test (p = 0.904), indicating no 

significant autocorrelation in the errors. 

2. Passed: The model passed the 

multicollinearity check, with all VIFs well 

below 5. 

3. Failed: The model failed the Shapiro-Wilk 

test for normality (p < 0.05), and the 

residual plot confirmed a non-normal 

distribution with a problematic right tail. 

4. Failed: The model failed the test for 

homoscedasticity (p < 0.05), indicating that 

the error variance is not constant 

(heteroscedasticity is present). 

Because the linear model assumptions of normality 

and homoscedasticity are violated, the p-values and 

confidence intervals for the MLR model are not 

reliable. This strongly supports the final 

recommendation to explore non-linear models, such as 

polynomial regression, which may better fit the data's 

underlying curvilinear relationships. 

5.2 Further Analysis 

From the plotted scatter plots between the target and 

different predictors, we have noticed that there exists 

some type of curvilinear relationship. Because of this, 

and because the normality assumption for the linear 

model failed, we suggest using polynomial regression 

to fit the data properly. 
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