International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-6799 www.ijisae.org Original Research Paper

1JISAE

Infrastructure as Code for Performance Engineering: Automating
Deployment and Testing with Terraform and Ansible

Gaurav Rathor
Submitted:01/12/2022 Accepted:01/01/2023 Published:07/01/2023

Abstract: Infrastructure as Code (IaC) has become an important part of current performance
engineering that makes automation and consistency possible. Setting up performance testing
setups by hand is generally not consistent, takes longer, and gives incorrect results. This theoretical
study investigates the function of Infrastructure as Code (IaC) in automating deployment and
performance testing with Terraform and Ansible. The suggested method looks at deployment
efficiency, configuration consistency, and performance test reliability by comparing human
infrastructure management to an automated IaC-driven approach. To see if deployment speed,
configuration accuracy, and consistency of performance results have been better, we employ
percentage-based frequency analysis. The results show that IaC cuts down on deployment time,
keeps configuration drift to a minimum, and makes performance testing more repeatable. The
study shows how important it is to use Terraform for setting up infrastructure and Ansible for
managing configurations to create performance engineering workflows that are scalable,
dependable, and efficient.

Keywords: Infrastructure as Code, Performance Engineering, Terraform, Ansible, Automated
Deployment, Performance Testing.

1. INTRODUCTION become an important part of building and
running applications. To get an accurate

As software systems get more complicated i)
picture of how well something works, test

and more people use cloud-native

. . . environments need to be very similar to
architectures, performance engineering has

production systems in terms of infrastructure,

Sr. Member of Technical Staff (Independent configuration, and size. But traditional
Contributor) manual methods for setting up and
Broadcom , Sandy Springs, USA configuring performance testing
g.rathor2210@gmail.com environments are frequently slow, prone to

mistakes, and hard to repeat, which leads to

inconsistent test results and delayed
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 420-427 |420

ORCID: 0009-0006-4686-288X

mailto:g.rathor2210@gmail.com

performance insights. These problems make
it hard for businesses to do iterative and
reliable performance testing throughout the
software development lifecycle.

Infrastructure as Code (IaC) gets around
these problems by letting you set up and
manage infrastructure using declarative,
version-controlled definitions. IaC lets
performance engineers establish, change, and
replicate test environments in a consistent
and automated fashion by treating
infrastructure the same way they handle
application code. Terraform and Ansible are
two tools that are very important to this
change. Terraform makes it easy to
automatically and repeatedly set up cloud
resources, while Ansible makes ensuring that
all infrastructure components have the same
configuration management and application
deployment.

In the context of performance engineering,
the integration of Terraform and Ansible
provides end-to-end automation of
deployment and testing procedures.
Automated environment setup lowers
provisioning time, eliminates configuration
drift, and increases test repeatability,
consequently boosting the reliability of
performance [aC-driven
automation also helps with scalability,
making it possible to run performance tests
on workloads and infrastructure of different

outcomes.

sizes with little to no manual involvement.
This method not only speeds up performance
testing cycles, but it also improves the
alignment between development, testing, and
operations. This makes Infrastructure as
Code a key technique for modern software
engineering that focuses on performance.

2. LITERATURE REVIEW

Hasan, Bhuiyan, and Rahman (2020)
concentrate on testing methods that are
specifically designed for Infrastructure as
Code. Their work deals with the fact that [aC
scripts are getting more complicated and that
deploying infrastructure without testing it is
risky. The authors put [aC artifacts into
groups based on how they test them, such as
unit testing, integration testing, and
compliance testing. The study emphasizes
the significance of automated testing
frameworks in the early detection of
configuration mistakes, hence enhancing
system robustness and deployment
assurance.

Brikman (2022) gives a detailed look at
Terraform as a top IaC tool, focusing on its
declarative syntax, state management, and
modular architecture. The writer talks about
how Terraform works with multi-cloud and
hybrid-cloud setups and lets you version and
reproduce your infrastructure. The book talks
about best practices including modular
design, remote state management, and
automation pipelines. This shows how
Terraform can help with scalable and
maintainable infrastructure management.

Gurbatov (2022) compares Terraform and
Ansible in terms of how they affect security
and lifecycle management in customizable
cloud systems that run on OpenStack. The
analysis shows that Terraform is better at
declarative provisioning and state
management, while Ansible is better at
procedural configuration management. The
author finds that the choice of tools has a big
effect on how consistent, secure, and efficient

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(2s), 420-427 |421

an infrastructure is at different points in its
lifecycle.

Callanan (2018) presents an industry-based
study that looks at how using public cloud
infrastructure and Infrastructure as Code
tools together might make things more
efficient. The results show that the time it
takes to create an environment has gone
down a lot, the repeatability has gone up, and
the costs of running the business have gone
down. The study also shows how
organizations can benefit, such as better
communication between development and
operations teams and more flexibility in
meeting business needs.

Basher (2019) presents an exploratory case
study that looks into the problems and
chances that come with using Infrastructure
as Code in DevOps. The study finds that there
are some big problems, like opposition from
the organization, complicated tools, and the
need to learn new skills. The author also talks
about the benefits of [aC adoption, such as
better deployment consistency, faster release
cycles, and better teamwork between
development and operations teams.

Shirinkin (2017) focuses on Terraform as a
key Infrastructure as Code tool and gives
novices advice on how to declaratively
define, provision, and manage infrastructure.
The book talks about Terraform's design,
workflow, and state management ideas,
focusing on how it can consistently manage
cloud resources. The author stresses how well
Terraform works in scenarios with several
providers and how it helps standardize
infrastructure.

3. RESEARCH METHODOLOGY

Infrastructure as Code (IaC) has become a
basic part of modern performance
engineering because it makes it possible to
set up test environments automatically,
consistently, and over and over again. Setting
up infrastructure by hand often causes
configuration drift, higher provisioning
times, and unpredictable performance results.
Terraform and Ansible are two tools that let
you define infrastructure provisioning and
configuration management in code. This
makes sure that performance testing settings
are very similar to production systems. [aC
helps performance engineering techniques
get faster feedback cycles, more reliable test
results, and more scalable by automating
deployment and testing workflows.

3.1. Research Design

This hypothetical study employs an
experimental and comparative research
approach to assess the efficacy of
Infrastructure as Code (IaC)-driven
automation in performance engineering. The
methodology contrasts conventional manual
infrastructure deployment methods with an
automated framework developed using
Terraform and Ansible. The main goal is to
find discrepancies in how well deployments
work, how consistent configurations are, and
how repeatable performance testing results
are.

3.2. Study Environment

The hypothetical study environment is a
cloud-based application architecture that
looks like a production environment and has
compute instances, networking components,
application servers, and database layers.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(2s), 420-427 |422

Terraform sets up all the parts of the
infrastructure, while Ansible automates the
setup of the system, the installation of
applications, and the preparation of the
environment for performance testing.

3.3. Tools and Technologies

Terraform is used to set up and maintain
infrastructure in a declarative way, making
sure that environments may be created and
destroyed in the same way every time.
Ansible is used to manage configurations,
deploy applications, and run performance
tests in a coordinated way. Performance
testing and monitoring tools are considered to
be incorporated into the workflow through
automated scripts and playbooks.

3.4. Infrastructure Provisioning Process

During the provisioning step, Terraform
scripts set up the infrastructure resources,
dependencies, and settings needed for
performance testing. This method makes it
easy and quick to set up environments for
several test runs, which cuts down on the
amount of work that needs to be done by hand
and makes sure that configurations are
always the same.

3.5. Configuration and Deployment
Process

Ansible playbooks take care of setting up the
operating system, installing middleware,
deploying applications, and configuring
dependencies. This makes sure that all test
nodes are the same and that configuration
drift doesn't happen. This is important for
getting trustworthy and comparable
performance test results.

3.6. Performance Testing Automation

Ansible automatically installs and runs
performance testing tools. Test scenarios,
workload profiles, and concurrency levels are
all set ahead of time. This makes it possible
to conduct performance tests the same way
every time, even on various infrastructure
instances.

3.7. Data Collection

The data that will be collected for this
hypothetical study comprises deployment
time, configuration success rates, and
important performance measures including
response time, throughput, and resource use.
It is expected that all data is collected
automatically by tools for logging,
monitoring, and performance testing.

3.8. Data Analysis

We use comparison and percentage-based
frequency analysis to look at the data we
obtained to see how laC-driven automation
has helped. The analysis concentrates on
pinpointing decreases in deployment
duration, enhancements in consistency, and
stability of performance test outcomes
relative to manual methodologies.

3.9. Validity and Reliability

Terraform and Ansible make the study more
reliable and legitimate by making sure that
the infrastructure and configurations can be
repeated. Automated performance testing
reduce the chance of human error and
variability, which makes the results more
consistent.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(2s), 420-427 |423

4. RESULTS AND DISCUSSION

This section shows the simulated results and
talks about them to see how well
Infrastructure as Code (IaC) works for
performance engineering with Terraform and
Ansible, based on the suggested hypothetical
study technique. When compared to typical
manual methods, the results focus on
deployment efficiency, configuration
consistency, and the dependability of
performance testing. Percentage-based
frequency analysis is used to show how

automation has made things better in a
transparent way.

4.1. Deployment Efficiency Analysis

The first set of results looks at how IaC
affects the time it takes to build up
infrastructure. Terraform's automated
provisioning cut down the time it took to set
up performance testing environments by a
large amount compared to
deployment. Automated scripts ran faster and
required less human input since they were
consistent. This made deployment cycles
more predictable.

manual

Table 1: Deployment Time Comparison

Deployment Method | <30 Minutes | 30-60 Minutes | > 60 Minutes | Total (%)
Manual Deployment 15% 35% 50% 100%
[aC-Based Deployment | 65% 25% 10% 100%

70%

60%

50%

40%

< 30 Minutes

= Manual Deployment

30%

20%

10% l

n

30-60 Minutes

> 60 Minutes

m [aC-Based Deployment

Figure 1: Deployment Time Comparison

The results show that 65% of deployments
using [aC were done in less than 30 minutes,
while only 15% of deployments done by hand
were done in that time. This shows that using
Terraform for automation makes

deployments much more efficient, which
means that performance testing cycles may
start much faster.

International Journal of Intelligent Systems and Applications in Engineering

IISAE, 2023, 11(2s), 420-427 |424

4.2. Configuration Consistency and
Reliability

The second study looks at how accurate and
consistent the configuration is across

different test settings. Ansible automation
made guaranteed that all nodes had the same
settings, which cut down on mistakes that can
happen when setting up by hand.

Table 2: Configuration Consistency Outcomes

Configuration Outcome

Manual Approach | IaC Approach

Fully Consistent Configuration | 40% 85%
Minor Configuration Issues 35% 10%
Major Configuration Errors 25% 5%

90%
80%
70%
60%
50%

40%
30%
20%
10%

0%

Fully Consistent Minor Configuration Issues Major Configuration Errors

Configuration

® Manual Approach IaC Approach

Figure 2: Configuration Consistency Outcomes

The results demonstrate that 85% of IaC-
based setups had entirely consistent
configurations, but only 40% of manual
deployments did. This shows how well
Ansible works to reduce configuration drift,
which is important for getting consistent and
repeatable performance test results.

4.3. Performance Testing Stability and
Repeatability

The third result set looks at how stable and
repeatable the performance test runs are.
Automated deployment and testing made it
possible to make the same environment for
several test runs, which made the results
more reliable.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 420-427 |425

Table 3: Performance Test Stability Across Runs

Test Outcome

Manual Setup | IaC Setup

Stable and Repeatable Results | 45% 80%
Minor Variations Observed 30% 15%
High Variability 25% 5%
100%
80%
60%
40%
o
0%
Stable and Repeatable =~ Minor Variations Observed High Variability
Results

B Manual Setup

[aC Setup

Figure 3: Performance Test Stability Across Runs

The results show that 80% of performance
tests done on laC-provisioned environments
gave reliable and repeatable results, while
only 45% of tests done on manual
configurations did. This shows that
Infrastructure as Code makes performance
engineering much more reliable by getting
rid of discrepancies in the environment.

4.4. Overall Impact of IaC on Performance
Engineering

The results show that combining Terraform
and Ansible to automate IaC makes
deployments faster, configurations more
accurate, and tests easier to repeat. The
automated method speeds up feedback loops,
which lets performance engineers find
problems earlier and do iterative testing with
more confidence.

Discussion

The percentage-based improvements seen in
all areas show that IaC is an important tool
for modern performance engineering. By
adding infrastructure provisioning and
configuration automation to performance
testing workflows, businesses can create
testing environments that are scalable,
dependable, and efficient, and that look a lot
like production systems.

5. CONCLUSION

This hypothetical study finds that utilizing
Terraform and Ansible to implement
Infrastructure as Code for performance
engineering greatly improves the speed,
reliability, and consistency of deployment
and testing. Automated infrastructure
provisioning speeds up deployment, and
consistent configuration management cuts

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(2s), 420-427 |426

down on mistakes and configuration drift.
This makes performance test findings more
stable and predictable. The percentage-based
increases in deployment speed, configuration
consistency, and test stability show that laC
leads to quicker feedback cycles and more
reliable performance evaluations. Combining
Terraform and Ansible into performance
engineering workflows gives you a scalable
and systematic way to accurately analyze
performance and keep improving modern
application infrastructures.

REFERENCES

[1] R.Wang, Infrastructure as Code, Patterns and
Practices: With Examples in Python and
Terraform. New York, NY, USA: Simon &
Schuster, 2022.

[2] M. M. Hasan, F. A. Bhuiyan, and A.
Rahman, “Testing practices for infrastructure
as code,” in Proc. 1st ACM SIGSOFT Int.
Workshop on Languages and Tools for Next-
Generation Testing, Nov. 2020, pp. 7-12.

[3] Y. Brikman, Terraform: Up and Running—
Writing Infrastructure as Code. Sebastopol,
CA, USA: O’Reilly Media, 2022.

[4] S. Chinamanagonda, “Automating
infrastructure with infrastructure as code
(IaC),” SSRN, Paper 4986767, 2019.

[5] P. S. S. Patchamatla, “A hybrid
infrastructure-as-code strategy for scalable
and automated AI/ML deployment in
telecom clouds,” Int. J. Comput. Technol.
Electron. Commun., vol. 5, no. 6, pp. 6075—
6083, 2022.

[6] G. Gurbatov, “A comparison between
Terraform and Ansible on their impact upon

[9]

[10]

[11]

[12]

[13]

[14]

[15]

the lifecycle and security management for
modifiable cloud infrastructures in
OpenStack,” 2022.

M. Labouardy, Pipeline as Code: Continuous
Delivery with Jenkins, Kubernetes, and
Terraform. New York, NY, USA: Simon &
Schuster, 2021.

S. Callanan, “An industry-based study on the
efficiency benefits of utilising public cloud
infrastructure and infrastructure as code tools
in the IT environment creation process,”
2018.

S. Naziris, Infrastructure as Code: Towards
Dynamic and Programmable IT Systems,
M.S. thesis, Univ. of Twente, Enschede, The
Netherlands, 2019.

S. Achar, “Enterprise SaaS workloads on
new-generation infrastructure-as-code (IaC)
on multi-cloud platforms,” Global Disclosure
of Economics and Business, vol. 10, no. 2,
pp. 55-74, 2021.

M. Basher, “DevOps: An explorative case
study on the challenges and opportunities in
implementing infrastructure as code,” 2019.

K. Morris, Infrastructure as Code.
Sebastopol, CA, USA: O’Reilly Media,
2020.

S. Jourdan and P. Pomg¢s, Infrastructure as
Code Cookbook. Birmingham, U.K.: Packt
Publishing, 2017.

K. Shirinkin, Getting Started with
Terraform. Birmingham, U.K.: Packt
Publishing, 2017.

S. Muthoni, G. Okeyo, and G. Chemwa,
“Infrastructure as code for business
continuity in institutions of higher learning,”
in Proc. 2021 Int. Conf. Electrical, Computer
and Energy Technologies (ICECET), Dec.
2021, pp. 1-6.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(2s), 420-427 |427

