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Abstract: Cloud-based data integration is an overlooked area of enterprise infrastructure despite being a crucial enabler of 

scalable enterprise analytics. The integration patterns, principles, considerations, tools, and techniques relevant to data 

integration and preparation in cloud-based environments are presented in this article. The emphasis is on cloud-native 

integration architectures, which take advantage of managed services to eliminate undifferentiated heavy lifting. Such 

architectures are typically optimised for cost, throughput, and latency rather than for simplicity and ease of management. 

Attention is also given to scalability and governance concerns. 

Scalable enterprise analytics relies on cloud data integration implementations that handle data from a multitude of sources and 

deliver data in a variety of formats, using an eclectic collection of preparation methods. Effective data integration enables 

modern data analysts and data scientists to focus on analytics. However, cloud data integration architectures represent an area 

of enterprise infrastructure that has received relatively little attention relative to other areas, such as data analytics and machine 

learning. Consequently, cloud data integration architectures are often manually constructed, involving an ad-hoc collection of 

point-to-point data pipelines used for moving data between sources, intermediate sinks, and targets. Although such 

architectures meet initial needs, they quickly become unwieldy as demand grows, with the overhead of maintaining manually 

constructed data pipelines reaching a tipping point. 
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1. Introduction

Data integration is one of the central elements in the 

data-driven enterprise. Data from multiple sources 

has to be processed, combined, joined, 

contextualized, transformed, aggregated, 

summarized, filtered, or otherwise refined to a 

common scheme before it can be analyzed or 

consumed by other applications such as business 

intelligence tools or machine learning services. In 

cloud-native environments, integration patterns are 

different from traditional on-premises enterprise 

data warehouses. A variety of native services allows 

common integration tasks to be accomplished 

declaratively with little or no infrastructure 

management, and the integration processes 

themselves can react to events, run serverless, and 

scale automatically. 

Although many elements of cloud data integration 

can be implemented using managed services, cloud 

providers also offer all the components required for 

implementing custom pipelines. A serverless 

computing model can be applied at all stages of the 

integration process, including monitoring, 

orchestration, supervision, and scheduling. Data 

processing pipelines can be made event-driven or 

can be equipped with auto-scaling capabilities. 

However, some nonfunctional characteristics—such 

as cost, performance, and maintainability—may 

suggest a different design approach. One such aspect 

is timing: in the cloud, the question is not whether 

transformation should occur at extraction (ETL) or 

loading (ELT) but rather how to decide when both 

strategies should be employed concurrently. The 

choice, indeed, often involves a trade-off between 

compliance and speed. 
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1.1. Overview of Cloud Computing and Data 

Integration Fundamentals 

Cloud computing provides remote access to shared 

resources, processing power, storage, and services 

over the Internet, and has become a de facto standard 

for enterprises looking to reduce infrastructure costs 

and enable new operational models. Cloud-native 

architectures, services, and platforms are purpose-

built for deployment on such infrastructures and 

facilitate the investment reallocation needed for 

state-of-the-art enterprise data infrastructures. They 

democratise data access across the enterprise and 

enable scalable analytics and data processing 

workloads by balancing the needs of power users 

and business analysts. Data integration is a critical 

foundation for enterprise analytics and typically 

involves the collection, preparation, and processing 

of data from multiple sources; the cloud opens up a 

new range of integration possibilities. 

Cloud-native data integration architectures share 

several common patterns, such as a per-source data-

staging pattern for managed-service pipelines, a per-

destination pipeline pattern, or an architected event-

driven pattern. At the core of each integration effort 

is a custom pipeline, orchestrated either by a service 

or a separate orchestrator, that coordinates the flow 

of data and services between a cloud storage service 

and one or more cloud services performing 

transformations on the data. While the cloud offers 

several managed service options for a large portion 

of the integration work—particularly the ingestion 

and storage stages—a custom pipeline remains 

necessary in order to perform quality enhancements, 

detect events, or federate data across sources for 

(near-) real-time analytics. 

 

Fig 1: Architecting the Modern Data Core: Cloud-Native Integration Patterns for Scalable Enterprise 

Analytics 

2. Foundations of Cloud-Based Data Integration 

The term data integration refers to a set of processes 

and technologies designed to unify data residing in 

separate systems. Data integration occurs at 

different levels, among which architecture is one of 

the most important. A data integration architecture 

is a blueprint for the integration of data from a 

number of disparate sources into a target data store 

or stores. It defines the components of the 

integration processes, how the components interact, 

the sequence of operations, and the way data flows 

through the data integration processes. These high-

level structures evolve in order to meet changing 

business requirements as organizations capture and 

catalog more sources of data. Architectures can be 

classified as point-to-point, hub-and-spoke, or 

logical consolidation. 

A survey of modern integration requirements 

reveals an increasing focus on cloud-native 

capabilities to support the new demands. To ensure 

that these emerging requirements and capabilities 

are collated into coherent patterns, these cloud 

integration architectures are examined with respect 

to supported components, data flows, orchestration, 

governance, Scalability, and business-intelligence 

support. Two issues clearly stand out: first, the 

provision of managed services that address cloud 

integration in a complete and integrated manner; and 
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second, the adoption of event-driven architecture. 

An examination of ETL and ELT supports 

understanding of the differences between the 

patterns in a cloud context, while an exploration of 

serverless components clarifies the concept of 

serverless endpoints. The discussion concludes with 

an overview of auto-scaling. 

 

Equation 1: Batch throughput (ETL/ELT job throughput) 

Step-by-step derivation 

1. Let the total data processed be 𝐷 (bytes, 

GB, records, etc.). 

2. Let the total runtime be 𝑅 (seconds, 

minutes, hours—convert to seconds for 

consistency). 

3. Throughput means “how much per unit 

time”, so: 

𝑇batch =
amount

time
=
𝐷

𝑅
 

Units check 

• If 𝐷 is in MB and 𝑅 in s, then 𝑇batch is 

MB/s. 

Worked example 

If a job processes 500 GiB in 2 hours: 

• Convert time: 2 h = 2 × 3600 = 7200 s 

• Convert data (optional): 500 GiB = 500 ×

1024 = 512,000 MiB 

𝑇batch =
512,000 MiB

7200 s
≈ 71.11 MiB/s 

2.1. Data Sources and Data Lakes versus Data 

Warehouses 

Cloud-native data integration architecture combines 

data from several internal and external sources, 

focusing on business analytics. Data lakes, which 

store information in its native form for future 

analysis, differ from data warehouses, which only 

store processed, schema-defined files suitable for 

reporting. The two paradigms have separate schema 

definitions and processing models. Data stored in 

data lakes are later processed on demand, while data 

warehouses continuously load newly received data 

in defined schemas and data organizations. Modern 

cloud architectures support both patterns but impose 

major costs on storage and processing, requiring 

careful consideration. 

Data sources and supported integration pipelines 

directly remain major components of enterprise 

analytical solutions. Cloud-based solutions facilitate 

the addition of external data sources and the 

integration of data on cloud-centric storage services, 

such as data lakes and warehouses, to predict future 

trends. With increased use of IoT devices, users seek 

to obtain rich and diverse data description. However, 

external sources may have uncertain or delay 

responses, negatively affecting performance for 

predictive reports. Non-governed data already 

present in enterprise sources may also affect the 

quality of the predicted response. 
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3. Cloud-Native Data Integration Architectures 

Cloud integration architectures exploit the cloud’s 

scalability characteristics by capturing data and 

applying transformations in distributed processing 

environments. Data-providing services can be 

exploited in different ways. Fully-managed 

integration services from cloud providers abstract 

the implementation complexities. Organizations that 

require full control and/or more advanced features 

can build end-to-end data pipelines with the cloud 

provider’s distributed processing services.  

 

Fig 2: Optimizing Distributed Data Flows: A Comparative Analysis of ETL and ELT Architectures in 

Cloud-Integrated Environments 

Cloud environments support two types of data 

integration pipelines: those in which the 

transformation is performed before data storage 

(ETL) and those in which data is loaded to the 

storage service before transformation (ELT). In ETL 

pipelines, the data extraction and transformation 

operations are the most time-consuming, and scaling 

out the storage service is usually more cost-effective 

and offers a better performance. ELT pipelines, on 

the other hand, rely on an analytics-ready storage 

layer, which may require optimized storage format 

and distribution schemas. For workloads 

characterized by high concurrency while requiring 

low data freshness, dedicated or isolated storage 

optimized for the workload (without considering 

cost) are typically preferred. As a consequence, the 

total workload change of an ELT pipeline is higher 

than that of an ETL pipeline. It is worth noting that 

ELT pipelines can also be constructed using a 

managed ELT service to simplify the architecture 

while retaining a transformation-processing layer. 

3.1. ETL vs ELT in the Cloud 

The cloud-native data integration architecture 

pattern introduces the challenges of storing data with 

a schema-on-read model (e.g., in a data lake) and 
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performing transformation steps only later, as 

required for analytics. Such an approach is generally 

cheaper since transformation does not require a 

compute cluster to be provisioned when the data 

lands. With untamed data growth, however, this 

advantage diminishes. The price benefits gained 

with the shift from ETL to ELT diminish as data 

volumes increase in a data lake. Cloud vendors 

usually charge for data storage and data processing 

independently, in contrast to the ETL process, when 

all data remains for short periods in the staging area. 

Selecting one model over another for a specific 

pipeline also depends on other factors, such as the 

tiered usage of the data. If the storage service 

supports a pricing model that offers instant access to 

warm or cold data (irrespective of the geolocation), 

accessing highly tooled data lakes might become an 

unimportant aspect. Processing time, data latency, 

and any assets that consume cloud resources require 

careful analysis to select the most adequate option. 

Using second-class resources to perform the 

transformation while the data remains in the data 

lake might bring considerable cost savings. The 

request for the query to be processed needs to be a 

lot lower, but that doesn’t mean that related 

orchestration shouldn’t be optimized via a 

controlled scheduling mechanism. 

3.2. Serverless Data Processing and 

Orchestration 

Serverless technologies shield developers from 

provisioning and managing servers. Processing 

loads can effortlessly scale up or down according to 

demand. In cloud integration scenarios, serverless 

services often entail flexible processing capabilities 

that are automatically allocated for data-intensive 

tasks. Such processing, referred to as serverless data 

processing, offers full infrastructure abstraction but 

is typically priced according to usage rather than via 

fixed contracts like pre-allocated resources. 

In the context of cloud integration architectures, 

serverless services can be applied for orchestration, 

too. Orchestration is the automated process of 

coordinating multiple data processing tasks, 

executing predefined workflows, and integrating 

different subsystems or services. Cloud providers 

offer services that implement orchestration and 

workflow automation in serverless mode. 

Proponents can focus on developing the task logic 

while relieving themselves of planning, selecting, 

and managing the underlying infrastructure—that is, 

using a cloud-native architecture. Orchestration can 

also take on an event-driven mode, triggering 

execution automatically and almost instantaneously 

when specific events occur in the system. 

4. Scalability and Performance Considerations 

Scalability and performance are two key factors that 

influence the design of data integration pipelines in 

distributed cloud environments. Scalability focuses 

on the capacity of a system to handle an increasing 

amount of workload by adding resources, whereas 

performance refers to the numerous completion 

time, latency, and other characteristics during a 

specific run. High data throughput, low latency, 

small completion times, and high concurrency 

capability contribute to good performance. While all 

these factors are related to each other, it is important 

to keep in mind that optimization in one factor often 

comes at the expense of others. 

The throughput of a data integration pipeline is 

mainly determined by its least capable component, 

also known as the bottleneck. Such a component 

limits the maximum volume of data that can be 

processed every given time unit. Bottlenecks are not 

static, however, and they can change between 

consecutive executions of a pipeline. Thus, with 

some effort, it is possible to detect them 

automatically. A well-sized serverless data 

integration pipeline can use concurrent members of 

scalable components in equal, or at least similar, 

proportions. Auto-scaling configurations can be 

applied directly to a number of such components 

during their deployment phase. For example, data 

storage in a cloud provider can be configured to 

automatically replicate itself based on the number of 

I/O operations. This capability can be used to reduce 

latency during ingestion at the expense of cost; for 

instance, during peaks of activity, latency must 

come first. Also, during an off-peak time, it is 

interesting to minimize costs and, if needed, take 

longer to complete the processes. 
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Equation 2:  Streaming throughput (message/record/byte rate) 

Step-by-step derivation 

4. Choose a measurement window of duration 

𝛥𝑡 seconds. 

5. Count how many items arrived/processed 

in that window: 

o 𝑁 messages (or records), or 

o 𝐵 bytes 

6. Throughput: 

𝑇stream,msg =
𝑁

𝛥𝑡
  𝑇stream,bytes =

𝐵

𝛥𝑡
 

Worked example 

If 1,200,000 messages are processed in 10 minutes: 

• 𝛥𝑡 = 10 × 60 = 600 s 

𝑇 =
1,200,000

600
= 2000 messages/s 

4.1. Data Throughput, Latency, and 

Concurrency 

Data throughput, latency, concurrency, and auto-

scaling are typical scalability and performance 

metrics in cloud-native systems. Despite some 

orchestrators providing built-in scaling capabilities, 

bottlenecks might remain. These issues were 

investigated for batch processing with Apache Spark 

and data streaming with Apache Kafka at a large 

South American telecommunications company. 

Data throughput indicates the amount of data 

successfully ingested from sources or processed 

over each time unit. For batch workloads, it is 

customary to calculate throughput as the amount of 

data processed by a job divided by its total runtime. 

In data streaming, the throughput tends to be quite 

variable in the number of messages. It can also be 

measured in volume-related quantities such as 

records or bytes. Latency, on the other hand, is an 

indicator of how fast responses are received or 

results are generated. In batch processing, it can be 

defined as the total time it takes to generate the 

output of a given workload. In data streaming, it can 

be expressed as the time taken to produce a message 

– that is, the difference between the time it arrives in 

a topic and the time it is consumed by another 

application. 

Concurrency translates into the ability to support 

concurrent users or to handle multiple requests 

simultaneously. In traditional databases, it is usually 

limited by the configuration of the database engine 

– such as the number of concurrent connections 

allowed – or by hardware limitations. In HDFS 

clusters, it is defined by the number of mappers that 

can run in parallel, which is determined by the 

HDFS block size divided by the input file size for 

map-only jobs. In Kafka, it is a function of 

partitions; the more partitions a topic has, the more 

consumers can read from it simultaneously without 

impacting throughput – as long as the number of 

consumers per group does not exceed the number of 

partitions. 

To optimize cloud-native data integration systems, a 

common approach is to spin up additional resources 

to cope with processing demands. However, 

providing infrastructure with a large number of 

nodes capable of absorbing peaks when they occur 

at different parts of the pipeline does not guarantee 

that the system can handle concurrent workloads or 

that no bottlenecks exist in the worker nodes. 

5. Governance, Security, and Compliance in 

Cloud Integration 
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Access control, data protection, regulatory 

compliance, and auditability are paramount 

considerations for enterprise data integration. 

Cloud-native integration solutions typically employ 

a multi-layered security strategy incorporating 

identity and access management, encryption, key 

management, data masking, and policy enforcement 

mechanisms. Authorization policies must adapt to 

the shared nature of cloud resources and services, 

granting access to data based on business roles and 

ensuring that personnel retain access only as long as 

required to fulfill their specified responsibilities. 

Data encryption must effectively protect sensitive 

data against leakage or unauthorized access while 

ensuring that transformations or analytical activities 

that rely on the decrypted values remain functional. 

Cloud providers facilitate compliance with a broad 

range of regulations by maintaining the required 

legal documentation, implementing data protection 

processes, undergoing regular audits by recognized 

third parties, and offering certification reports to 

their customers. The importance of careful 

management and documentation of personal data 

usage in accordance with regulations such as the 

General Data Protection Regulation (GDPR) has led 

to increasing demand for data governance 

procedures and solutions across organizations. 

Auditability of data processing in the cloud can be 

achieved by leveraging monitoring and auditing 

services, together with data protection and data 

quality services, either provided by the cloud vendor 

or implemented using other cloud services. 

 

Fig 3: Securing the Sovereign Data Lifecycle: A Multi-Layered Governance Framework for Cloud-Native 

Enterprise Integration 

5.1. Access Control, Encryption, and Key 

Management 

Cloud-Native Data Integration Architectures—

Architecture patterns, components, and typical data 

flows. Cloud-native data pipelines leverage 

managed services as much as possible; custom 

development is reserved for cases that demand it. 

Access control, encryption, key management, and 

policy enforcement are essential features of any 

cloud-centric data integration architecture. All 

major cloud providers offer their own set of Identity 

and Access Management (IAM) services. Unlike 

most on-premise authorization management 

systems, cloud IAM services support attributes that 

can also be used for fine-grained authorization. For 

example, a large financial institution can use Cloud 

IAM to provide its portfolio managers access to data 

stored in a data warehouse that is only related to 

funds they are managing. In this context, attributes 

could be the user’s position and the fund(s) he or she 

is managing, while resources could be the datasets 

tagged with the fund ID. 

IAM distributes access keys that are used for 

encrypting and decrypting data. The cloud providers 

are responsible for key generation and management 

as well as infrastructure and application logs. They 

allow policy-based encryption and decryption of 

data at rest, in transit, and in use. The encryption 

keys are automatically stored in a centralized key 

management service (KMS) and can be rotated on a 

scheduled basis. Furthermore, clients can configure 

policies to automatically delete access keys after a 
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certain period of inactivity, as a security measure 

against the risk of exposing data. 

6. Data Quality, Provenance, and Reliability 

Assuring the quality of processed data is crucial, 

especially if it is routinely consumed by business 

applications and may drive mission-critical 

operational decisions. Quality management 

frameworks should define select quality measures 

and thresholds, along with mechanisms to detect and 

remediate violations before consumers are affected. 

Provenance needs may be different depending on 

whether regulatory compliance is at stake or whether 

customers expect an accurate picture of the 

information conveyed by the datasets. Nevertheless, 

customers of cloud integration platforms expect 

comprehensive visibility over the entire processing 

pipeline—from the origins of each data source, 

through each transformation and blending operation 

applied to the data, to the actual consumers 

requesting the information. Finally, production data 

pipelines must guarantee a target level of reliability 

to avoid pipeline interruptions, data losses, or 

erroneous business decisions triggered by stale or 

incorrect information. 

In cloud environments, data quality management, 

provenance tracing, and reliability management 

features can be integrated with existing cloud-native 

services or quickly deployed as tailored solutions by 

leveraging any missing building blocks that may be 

available in the cloud platform. Cloud platforms also 

facilitate management by providing a unified view 

of data moving across different services of the 

architecture, with comprehensive metadata 

information that integrates technical, quality-

related, and business metadata attributes. Cloud-

native data integration removes barriers tying cloud 

solution architecture design to a homogeneous set of 

technology providers for data storage and 

processing in a consistent manner. Native support 

for cloud-native features instead shapes the design 

decisions that LOB IT teams must face. 

 

Equation 3: Streaming message latency (end-to-end per message) 

Step-by-step derivation 

7. For message 𝑖: 

o 𝑡arrive,𝑖 = timestamp when it 

arrives in the topic 

o 𝑡consume,𝑖 = timestamp when a 

consumer reads it 

8. Latency per message: 

𝐿𝑖 = 𝑡consume,𝑖 − 𝑡arrive,𝑖 

Worked example 

If a message arrives at 12:00:00.100 and is 

consumed at 12:00:00.245: 

𝐿 = 0.245 − 0.100 = 0.145 s 

6.1. Data Quality Frameworks in the Cloud 

Data quality is a multidisciplinary area concerned 

with the improvement and assurance of data. There 

is still no universally recognized framework able to 

define data quality coherently and completely due to 

the variety of perspectives and targeted fields 

involved. At its most abstract level, data quality 

consists of the structuration of multidisciplinary 

efforts across human, information systems, and 

information processes. These elements usually 

interact with larger-scale constructs like information 

flows, information control, or business process 

support. Moreover, several authors have proposed 

the concept of a “data quality framework” by 

adopting different angles, including data quality 

management, total data quality management, and 
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data quality business processes. Thus, “data quality” 

is sometimes confused with “data quality assurance” 

or “data quality management.” In addition, data 

quality is influenced by the use dimension, which 

affects its whole life cycle; as a result, the use of data 

depends on the quality required for the particular 

application. 

A data-cleansing problem is not only to delete 

incorrect data or inconsistencies; it is also to assure 

data usability for a specific purpose. When users 

employ data in a context not originally intended, 

without cumulative quality information, it may turn 

out that they were not aware of latent quality 

problems. These issues can be solved by providing 

provenances explicitly describing when, how, and 

by whom a data set was collected, curated, cleaned, 

and integrated, together with which functions and 

sources were used, and what the removal criteria 

were. Provenance needs to integrate quality into 

“data,” “information,” or “knowledge” with the 

“determinism” of “functions” and “non-

redundancy” of its “sources.” In this manner, it may 

support interactions with the users and involve them 

in detecting and correcting quality problems while 

employing information instead of afterwards 

through a post-processing stage. 

7. Case Studies and Practical Implementations 

Modernizing enterprise analytics solutions entails 

multiple facets beyond technical excellence. 

Transformation is often hindered by legacy systems 

catering to time-consuming batch processing for 

traditional reporting needs. Venerable investments 

in on-premises data warehouses call for careful 

stewardship; thus, data lake adoption is most 

successful in organizations outgrowing or 

dissatisfied with their data warehouse. Within this 

context, the benefits of cloud-readiness realization 

become evident. 

Moving the analytics solution to the cloud provides 

flexibility and scalability while relieving internal 

analytics teams from operational overhead. Cloud 

providers differ in the comprehensiveness of the 

managed services offered but share a classic pattern 

for cloud-native data integration architecture. At one 

end, the services address the entire data movement 

and transformation process; at the other, they cover 

only the scheduling and analytics initiation and are 

supplemented with custom pipelines. Many service 

patterns, such as data orchestration, event-based 

invocation of transformation processes, and support 

of serverless compute processes, are borrowed from 

parallel serverless computing and data management 

services of the provider. Other services, such as data 

quality frameworks or event streaming solutions 

supporting message queuing, enhance the overall 

data flow reliability.

 

Fig 4: Beyond Technical Excellence: Strategic Frameworks for Transitioning Legacy Analytics to Cloud-

Native Data Ecosystems 

7.1. Enterprise Analytics Modernization 

The rationale for data management and governance 

in cloud-based data integration architectures stems 

from business models increasingly relying on 

federating and interlinking disparate datasets for 

analytics—including cleansing, transformation, and 

orchestrating data flows. Addressing these concerns 

proves non-trivial, as the datasets typically abide by 

different provenance, data quality, security, 

governance, and privacy rules set by their respective 

data sources. Hence, cloud platform vendors 

package concepts and managed services in their 

offerings, supporting enterprise data integration, 

data lake, event-driven architecture, or data catalog 

frameworks. Ideally, organizations and groups 

democratize cloud data management through well-

controlled, group-based provisioning of virtual 

cloud data warehouses, lakes, database caches, or 

data marts. 
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Adaptations of enterprise analytics environments in 

cloud platforms confirm the findings of cloud-native 

enterprise analytics architectures. Several 

organizations publicize data-integration proof-of-

concepts based on cloud platforms. Examples 

include a banking group data strategy emphasizing 

building an enterprise data lake—triggering a strong 

demand for business intelligence practice; a global 

intelligence company centralizing data to improve 

business intelligence service quality and reduce 

costs; and an airplane manufacturer enabling an 

enterprise data lake to consolidate its global data—

cutting the data maturing cycle. Focus areas further 

corroborate issues and challenges. Organizations 

still developing or operating decentralized data-

warehousing initiatives are moving toward building 

a cloud-based, federated data-lake infrastructure—

addressing cloud about security concerns in 

managed-private-cloud integration services. 

8. Conclusion 

Cloud-Native Data Integration Architectures for 

Scalable Enterprise Analytics—An objective, 

evidence-based synthesis of cloud-native data 

integration architectures, data flows, and 

technologies that Fully embrace scalability and 

governance concerns of enterprise analytics at large. 

Cloud vendors provide managed services that 

abstract the complexity of integrations through 

℠serverless´ orchestration. The serverless pattern 

generalizes to data-processing tasks, such as data 

pipeline orchestration and event-based task 

execution and it naturally fit with cloud availability. 

Despite this potential, modern enterprise analytics is 

undermined by non-scalable manual ETL processes. 

Serverless data processing services eliminate 

infrastructure-management overhead and support 

auto-scaling. A central challenge remains 

configuration of data integration as a whole to fully 

exploit these features. Cloud-based analytics 

combine the ELT pattern with the data-lake 

paradigm but their cost efficiency is determined by 

the data-storage and compute-pricing models. 

Adoption of the ELT pattern simplifies architecture 

by shifting query surprises from transformation into 

analysis. 

Initial data-lake deployment often ignore 

governance and quality but this undermines cloud-

native advantages, simplifies implementation but 

endangers completion time and result reliability. 

Enterprise-demanded solution is a data-quality 

framework that cuts across the integration of data 

lakes and warehouses, addresses BOTH cloud-

native and manual-data-pipeline integration. By 

incorporating validation, monitoring, and repair 

facilities, it eliminates the need of recreating of any 

process after a specific event occurs in the data. 

Provenance is required for auditing, usage and 

health checks. To scale quality-enhancing solutions, 

the framework supports tracing of data lineage in 

cloud-native and manual-integration pipeline. 

 

Fig 5: Modern Integration Pattern Weighting 

8.1. Key Takeaways and Future Directions 

Scalable Data Integration Architectures for 

Enterprise Analytics—Cloud technology enables 

scalable data integration architectures for enterprise 

analytics. However, cloud-native data integration 

patterns differ significantly from on-premises 

deployments. Analytic workloads impose unique 

requirements on throughput, latency, and 

concurrency for the integration pipelines that 

prepare data for consumption. These pipelines can 

become performance bottlenecks, and careful design 

is needed to maintain quality of service. 

Data integration is subject to the same performance 

and scaling considerations as any other cloud 
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application. Scalability is usually achieved through 

the provisioning of more resources or the addition of 

parallel processing (horizontal scaling). An 

architecture designed for scaling handles increased 

demand without running into performance 

problems, and automated scaling can mitigate cost 

overheads. Cloud technology also provides 

opportunities for optimized performance through 

serverless transformation and orchestration 

capabilities. 

Automated cloud services seamlessly take care of 

tasks such as resource provisioning and billing. 

Abstraction layers hide the physical resources 

consumed and translate them into charges based on 

real use, while simplifying the development of 

custom data ingestion, processing, or orchestration 

components. Most popular cloud providers include 

built-in managed services for transferring, 

transforming, or orchestrating data flows. Such 

services support HA and DR out-of-the-box, along 

with a variety of reliability patterns. In a managed 

services approach, data integration covers the 

construction of data ingestion and orchestration 

elements, as well as any required extensions to the 

domain-specific services. 
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