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Abstract: Cloud-based data integration is an overlooked area of enterprise infrastructure despite being a crucial enabler of
scalable enterprise analytics. The integration patterns, principles, considerations, tools, and techniques relevant to data
integration and preparation in cloud-based environments are presented in this article. The emphasis is on cloud-native
integration architectures, which take advantage of managed services to eliminate undifferentiated heavy lifting. Such
architectures are typically optimised for cost, throughput, and latency rather than for simplicity and ease of management.
Attention is also given to scalability and governance concerns.

Scalable enterprise analytics relies on cloud data integration implementations that handle data from a multitude of sources and
deliver data in a variety of formats, using an eclectic collection of preparation methods. Effective data integration enables
modern data analysts and data scientists to focus on analytics. However, cloud data integration architectures represent an area
of enterprise infrastructure that has received relatively little attention relative to other areas, such as data analytics and machine
learning. Consequently, cloud data integration architectures are often manually constructed, involving an ad-hoc collection of
point-to-point data pipelines used for moving data between sources, intermediate sinks, and targets. Although such
architectures meet initial needs, they quickly become unwieldy as demand grows, with the overhead of maintaining manually
constructed data pipelines reaching a tipping point.
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Risks, Point-To-Point Integration, Pipeline Maintainability Challenges, Scalability Constraints, Manual Integration
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1. Introduction

Data integration is one of the central elements in the
data-driven enterprise. Data from multiple sources
has to be processed, combined, joined,
contextualized, transformed, aggregated,
summarized, filtered, or otherwise refined to a
common scheme before it can be analyzed or
consumed by other applications such as business
intelligence tools or machine learning services. In
cloud-native environments, integration patterns are
different from traditional on-premises enterprise
data warehouses. A variety of native services allows
common integration tasks to be accomplished
declaratively with little or no infrastructure
management, and the integration processes
themselves can react to events, run serverless, and
scale automatically.
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Although many elements of cloud data integration
can be implemented using managed services, cloud
providers also offer all the components required for
implementing custom pipelines. A serverless
computing model can be applied at all stages of the
integration  process, including  monitoring,
orchestration, supervision, and scheduling. Data
processing pipelines can be made event-driven or
can be equipped with auto-scaling capabilities.
However, some nonfunctional characteristics—such
as cost, performance, and maintainability—may
suggest a different design approach. One such aspect
is timing: in the cloud, the question is not whether
transformation should occur at extraction (ETL) or
loading (ELT) but rather how to decide when both
strategies should be employed concurrently. The
choice, indeed, often involves a trade-off between
compliance and speed.
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1.1. Overview of Cloud Computing and Data
Integration Fundamentals

Cloud computing provides remote access to shared
resources, processing power, storage, and services
over the Internet, and has become a de facto standard
for enterprises looking to reduce infrastructure costs
and enable new operational models. Cloud-native
architectures, services, and platforms are purpose-
built for deployment on such infrastructures and
facilitate the investment reallocation needed for
state-of-the-art enterprise data infrastructures. They
democratise data access across the enterprise and
enable scalable analytics and data processing
workloads by balancing the needs of power users
and business analysts. Data integration is a critical
foundation for enterprise analytics and typically
involves the collection, preparation, and processing

of data from multiple sources; the cloud opens up a
new range of integration possibilities.

Cloud-native data integration architectures share
several common patterns, such as a per-source data-
staging pattern for managed-service pipelines, a per-
destination pipeline pattern, or an architected event-
driven pattern. At the core of each integration effort
is a custom pipeline, orchestrated either by a service
or a separate orchestrator, that coordinates the flow
of data and services between a cloud storage service
and one or more cloud services performing
transformations on the data. While the cloud offers
several managed service options for a large portion
of the integration work—particularly the ingestion
and storage stages—a custom pipeline remains
necessary in order to perform quality enhancements,
detect events, or federate data across sources for
(near-) real-time analytics.
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Fig 1: Architecting the Modern Data Core: Cloud-Native Integration Patterns for Scalable Enterprise
Analytics

2. Foundations of Cloud-Based Data Integration

The term data integration refers to a set of processes
and technologies designed to unify data residing in
separate systems. Data integration occurs at
different levels, among which architecture is one of
the most important. A data integration architecture
is a blueprint for the integration of data from a
number of disparate sources into a target data store
or stores. It defines the components of the
integration processes, how the components interact,
the sequence of operations, and the way data flows
through the data integration processes. These high-
level structures evolve in order to meet changing
business requirements as organizations capture and

catalog more sources of data. Architectures can be
classified as point-to-point, hub-and-spoke, or
logical consolidation.

A survey of modern integration requirements
reveals an increasing focus on cloud-native
capabilities to support the new demands. To ensure
that these emerging requirements and capabilities
are collated into coherent patterns, these cloud
integration architectures are examined with respect
to supported components, data flows, orchestration,
governance, Scalability, and business-intelligence
support. Two issues clearly stand out: first, the
provision of managed services that address cloud
integration in a complete and integrated manner; and
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second, the adoption of event-driven architecture.
An examination of ETL and ELT supports
understanding of the differences between the
patterns in a cloud context, while an exploration of

serverless components clarifies the concept of
serverless endpoints. The discussion concludes with
an overview of auto-scaling.

lllustrative pipeline capacities (bottleneck sets throughput)
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Equation 1: Batch throughput (ETL/ELT job throughput)

Step-by-step derivation

1. Let the total data processed be D (bytes,
GB, records, etc.).

2. Let the total runtime be R (seconds,
minutes, hours—convert to seconds for
consistency).

3. Throughput means “how much per unit
time”, so:

amount D

Thaten = time R

Units check

e IfDisin MB and R in s, then Ty, is
MB/s.

Worked example
If a job processes 500 GiB in 2 hours:
e Convert time: 2h =2 X 3600 = 7200 s

o Convert data (optional): 500 GiB = 500 X
1024 = 512,000 MiB
512,000 MiB

Tbatch = W ~ 71.11 MiB/s

2.1. Data Sources and Data Lakes versus Data
Warehouses

Cloud-native data integration architecture combines
data from several internal and external sources,
focusing on business analytics. Data lakes, which
store information in its native form for future
analysis, differ from data warehouses, which only
store processed, schema-defined files suitable for
reporting. The two paradigms have separate schema
definitions and processing models. Data stored in
data lakes are later processed on demand, while data
warehouses continuously load newly received data
in defined schemas and data organizations. Modern
cloud architectures support both patterns but impose
major costs on storage and processing, requiring
careful consideration.

Data sources and supported integration pipelines
directly remain major components of enterprise
analytical solutions. Cloud-based solutions facilitate
the addition of external data sources and the
integration of data on cloud-centric storage services,
such as data lakes and warehouses, to predict future
trends. With increased use of IoT devices, users seek
to obtain rich and diverse data description. However,
external sources may have uncertain or delay
responses, negatively affecting performance for
predictive reports. Non-governed data already
present in enterprise sources may also affect the
quality of the predicted response.
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Illustrative streaming message latency distribution
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3. Cloud-Native Data Integration Architectures

Cloud integration architectures exploit the cloud’s
scalability characteristics by capturing data and
applying transformations in distributed processing
environments. Data-providing services can be

0.6

Latency (s)

exploited in different ways. Fully-managed
integration services from cloud providers abstract
the implementation complexities. Organizations that
require full control and/or more advanced features
can build end-to-end data pipelines with the cloud
provider’s distributed processing services.
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Fig 2: Optimizing Distributed Data Flows: A Comparative Analysis of ETL and ELT Architectures in
Cloud-Integrated Environments

Cloud environments support two types of data
integration pipelines: those in which the
transformation is performed before data storage
(ETL) and those in which data is loaded to the
storage service before transformation (ELT). In ETL
pipelines, the data extraction and transformation
operations are the most time-consuming, and scaling
out the storage service is usually more cost-effective
and offers a better performance. ELT pipelines, on
the other hand, rely on an analytics-ready storage
layer, which may require optimized storage format
and  distribution schemas. For workloads
characterized by high concurrency while requiring

low data freshness, dedicated or isolated storage
optimized for the workload (without considering
cost) are typically preferred. As a consequence, the
total workload change of an ELT pipeline is higher
than that of an ETL pipeline. It is worth noting that
ELT pipelines can also be constructed using a
managed ELT service to simplify the architecture
while retaining a transformation-processing layer.

3.1. ETL vs ELT in the Cloud

The cloud-native data integration architecture
pattern introduces the challenges of storing data with
a schema-on-read model (e.g., in a data lake) and

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2022, 10(3s), 472—483 | 475



performing transformation steps only later, as
required for analytics. Such an approach is generally
cheaper since transformation does not require a
compute cluster to be provisioned when the data
lands. With untamed data growth, however, this
advantage diminishes. The price benefits gained
with the shift from ETL to ELT diminish as data
volumes increase in a data lake. Cloud vendors
usually charge for data storage and data processing
independently, in contrast to the ETL process, when
all data remains for short periods in the staging area.

Selecting one model over another for a specific
pipeline also depends on other factors, such as the
tiered usage of the data. If the storage service
supports a pricing model that offers instant access to
warm or cold data (irrespective of the geolocation),
accessing highly tooled data lakes might become an
unimportant aspect. Processing time, data latency,
and any assets that consume cloud resources require
careful analysis to select the most adequate option.
Using second-class resources to perform the
transformation while the data remains in the data
lake might bring considerable cost savings. The
request for the query to be processed needs to be a
lot lower, but that doesn’t mean that related
orchestration shouldn’t be optimized via a
controlled scheduling mechanism.

3.2. Serverless Data  Processing and
Orchestration

Serverless technologies shield developers from
provisioning and managing servers. Processing
loads can effortlessly scale up or down according to
demand. In cloud integration scenarios, serverless
services often entail flexible processing capabilities
that are automatically allocated for data-intensive
tasks. Such processing, referred to as serverless data
processing, offers full infrastructure abstraction but
is typically priced according to usage rather than via
fixed contracts like pre-allocated resources.

In the context of cloud integration architectures,
serverless services can be applied for orchestration,
too. Orchestration is the automated process of
coordinating multiple data processing tasks,
executing predefined workflows, and integrating
different subsystems or services. Cloud providers

offer services that implement orchestration and
workflow automation in serverless mode.
Proponents can focus on developing the task logic
while relieving themselves of planning, selecting,
and managing the underlying infrastructure—that is,
using a cloud-native architecture. Orchestration can
also take on an event-driven mode, triggering
execution automatically and almost instantaneously
when specific events occur in the system.

4. Scalability and Performance Considerations

Scalability and performance are two key factors that
influence the design of data integration pipelines in
distributed cloud environments. Scalability focuses
on the capacity of a system to handle an increasing
amount of workload by adding resources, whereas
performance refers to the numerous completion
time, latency, and other characteristics during a
specific run. High data throughput, low latency,
small completion times, and high concurrency
capability contribute to good performance. While all
these factors are related to each other, it is important
to keep in mind that optimization in one factor often
comes at the expense of others.

The throughput of a data integration pipeline is
mainly determined by its least capable component,
also known as the bottleneck. Such a component
limits the maximum volume of data that can be
processed every given time unit. Bottlenecks are not
static, however, and they can change between
consecutive executions of a pipeline. Thus, with
some effort, it is possible to detect them
automatically. A  well-sized serverless data
integration pipeline can use concurrent members of
scalable components in equal, or at least similar,
proportions. Auto-scaling configurations can be
applied directly to a number of such components
during their deployment phase. For example, data
storage in a cloud provider can be configured to
automatically replicate itself based on the number of
I/O operations. This capability can be used to reduce
latency during ingestion at the expense of cost; for
instance, during peaks of activity, latency must
come first. Also, during an off-peak time, it is
interesting to minimize costs and, if needed, take
longer to complete the processes.
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lllustrative effect of scaling the transformation stage
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Equation 2: Streaming throughput (message/record/byte rate)

Step-by-step derivation

4. Choose a measurement window of duration
At seconds.

5. Count how many items arrived/processed
in that window:

o N messages (or records), or
o B bytes

6. Throughput:

N B
Tstream,msg = A_t Tstream,bytes = A_t

Worked example
1£ 1,200,000 messages are processed in 10 minutes:

e At=10x60=0600s

T 1,200,000 2000 y
= %00 - messages/s
4.1. Data  Throughput, Latency, and
Concurrency

Data throughput, latency, concurrency, and auto-
scaling are typical scalability and performance
metrics in cloud-native systems. Despite some
orchestrators providing built-in scaling capabilities,
bottlenecks might remain. These issues were
investigated for batch processing with Apache Spark
and data streaming with Apache Kafka at a large
South American telecommunications company.

Data throughput indicates the amount of data
successfully ingested from sources or processed
over each time unit. For batch workloads, it is
customary to calculate throughput as the amount of
data processed by a job divided by its total runtime.
In data streaming, the throughput tends to be quite
variable in the number of messages. It can also be

measured in volume-related quantities such as
records or bytes. Latency, on the other hand, is an
indicator of how fast responses are received or
results are generated. In batch processing, it can be
defined as the total time it takes to generate the
output of a given workload. In data streaming, it can
be expressed as the time taken to produce a message
— that is, the difference between the time it arrives in
a topic and the time it is consumed by another
application.

Concurrency translates into the ability to support
concurrent users or to handle multiple requests
simultaneously. In traditional databases, it is usually
limited by the configuration of the database engine
— such as the number of concurrent connections
allowed — or by hardware limitations. In HDFS
clusters, it is defined by the number of mappers that
can run in parallel, which is determined by the
HDEFS block size divided by the input file size for
map-only jobs. In Kafka, it is a function of
partitions; the more partitions a topic has, the more
consumers can read from it simultaneously without
impacting throughput — as long as the number of
consumers per group does not exceed the number of
partitions.

To optimize cloud-native data integration systems, a
common approach is to spin up additional resources
to cope with processing demands.
providing infrastructure with a large number of
nodes capable of absorbing peaks when they occur
at different parts of the pipeline does not guarantee
that the system can handle concurrent workloads or
that no bottlenecks exist in the worker nodes.

However,

5. Governance, Security, and Compliance in
Cloud Integration
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Access control, data protection, regulatory
compliance, and auditability are paramount
considerations for enterprise data integration.

Cloud-native integration solutions typically employ
a multi-layered security strategy incorporating
identity and access management, encryption, key
management, data masking, and policy enforcement
mechanisms. Authorization policies must adapt to
the shared nature of cloud resources and services,
granting access to data based on business roles and
ensuring that personnel retain access only as long as
required to fulfill their specified responsibilities.
Data encryption must effectively protect sensitive
data against leakage or unauthorized access while
ensuring that transformations or analytical activities
that rely on the decrypted values remain functional.

Cloud-Native

Cloud providers facilitate compliance with a broad
range of regulations by maintaining the required
legal documentation, implementing data protection
processes, undergoing regular audits by recognized
third parties, and offering certification reports to
their The importance of careful
management and documentation of personal data
usage in accordance with regulations such as the
General Data Protection Regulation (GDPR) has led
to increasing demand for data governance
procedures and solutions across organizations.
Auditability of data processing in the cloud can be
achieved by leveraging monitoring and auditing
services, together with data protection and data
quality services, either provided by the cloud vendor
or implemented using other cloud services.

customers.

Integration Security
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Fig 3: Securing the Sovereign Data Lifecycle: A Multi-Layered Governance Framework for Cloud-Native
Enterprise Integration

5.1. Access Control,
Management

Encryption, and Key

Cloud-Native Data Integration Architectures—
Architecture patterns, components, and typical data
flows. Cloud-native data pipelines leverage
managed services as much as possible; custom
development is reserved for cases that demand it.

Access control, encryption, key management, and
policy enforcement are essential features of any
cloud-centric data integration architecture. All
major cloud providers offer their own set of Identity
and Access Management (IAM) services. Unlike
most on-premise authorization management
systems, cloud IAM services support attributes that
can also be used for fine-grained authorization. For
example, a large financial institution can use Cloud

IAM to provide its portfolio managers access to data
stored in a data warehouse that is only related to
funds they are managing. In this context, attributes
could be the user’s position and the fund(s) he or she
is managing, while resources could be the datasets
tagged with the fund ID.

IAM distributes access keys that are used for
encrypting and decrypting data. The cloud providers
are responsible for key generation and management
as well as infrastructure and application logs. They
allow policy-based encryption and decryption of
data at rest, in transit, and in use. The encryption
keys are automatically stored in a centralized key
management service (KMS) and can be rotated on a
scheduled basis. Furthermore, clients can configure
policies to automatically delete access keys after a
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certain period of inactivity, as a security measure
against the risk of exposing data.

6. Data Quality, Provenance, and Reliability

Assuring the quality of processed data is crucial,
especially if it is routinely consumed by business
applications and may drive mission-critical
operational  decisions. Quality = management
frameworks should define select quality measures
and thresholds, along with mechanisms to detect and
remediate violations before consumers are affected.
Provenance needs may be different depending on
whether regulatory compliance is at stake or whether
customers expect an accurate picture of the
information conveyed by the datasets. Nevertheless,
customers of cloud integration platforms expect
comprehensive visibility over the entire processing
pipeline—from the origins of each data source,
through each transformation and blending operation
applied to the data, to the actual consumers
requesting the information. Finally, production data
pipelines must guarantee a target level of reliability

to avoid pipeline interruptions, data losses, or
erroneous business decisions triggered by stale or
incorrect information.

In cloud environments, data quality management,
provenance tracing, and reliability management
features can be integrated with existing cloud-native
services or quickly deployed as tailored solutions by
leveraging any missing building blocks that may be
available in the cloud platform. Cloud platforms also
facilitate management by providing a unified view
of data moving across different services of the
architecture, with  comprehensive  metadata
information that integrates technical, quality-
related, and business metadata attributes. Cloud-
native data integration removes barriers tying cloud
solution architecture design to a homogeneous set of
technology providers for data storage and
processing in a consistent manner. Native support
for cloud-native features instead shapes the design
decisions that LOB IT teams must face.

Kafka: partitions bound consumer parallelism (illustrative)

16

Max consumers per group
= = =
» o (-] o N »

N

4

8 12 16

Partitions (P)

Equation 3: Streaming message latency (end-to-end per message)

Step-by-step derivation
7. For message i:

O tamive, timestamp when it

arrives in the topic

O teonsume; = timestamp when a

consumer reads it

8. Latency per message:

Li = tconsume,i - tarrive,i

Worked example

If a message arrives at 12:00:00.100 and is
consumed at 12:00:00.245:

L =0.245-0.100 = 0.145 s

6.1. Data Quality Frameworks in the Cloud

Data quality is a multidisciplinary area concerned
with the improvement and assurance of data. There
is still no universally recognized framework able to
define data quality coherently and completely due to
the variety of perspectives and targeted fields
involved. At its most abstract level, data quality
consists of the structuration of multidisciplinary
efforts across human, information systems, and
information processes. These elements usually
interact with larger-scale constructs like information
flows, information control, or business process
support. Moreover, several authors have proposed
the concept of a “data quality framework” by
adopting different angles, including data quality
management, total data quality management, and
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data quality business processes. Thus, “data quality”
is sometimes confused with “data quality assurance”
or “data quality management.” In addition, data
quality is influenced by the use dimension, which
affects its whole life cycle; as a result, the use of data
depends on the quality required for the particular
application.

A data-cleansing problem is not only to delete
incorrect data or inconsistencies; it is also to assure
data usability for a specific purpose. When users
employ data in a context not originally intended,
without cumulative quality information, it may turn
out that they were not aware of latent quality
problems. These issues can be solved by providing
provenances explicitly describing when, how, and
by whom a data set was collected, curated, cleaned,
and integrated, together with which functions and
sources were used, and what the removal criteria
were. Provenance needs to integrate quality into
“data,” “information,” or “knowledge” with the
“determinism”  of  “functions” and ‘“non-
redundancy” of its “sources.” In this manner, it may
support interactions with the users and involve them
in detecting and correcting quality problems while
employing information instead of afterwards
through a post-processing stage.

7. Case Studies and Practical Implementations

On-Premises
Data Warehase

Transformation

Modernizing enterprise analytics solutions entails
multiple facets beyond technical excellence.
Transformation is often hindered by legacy systems
catering to time-consuming batch processing for
traditional reporting needs. Venerable investments
in on-premises data warehouses call for careful
stewardship; thus, data lake adoption is most
successful in organizations outgrowing or
dissatisfied with their data warchouse. Within this
context, the benefits of cloud-readiness realization
become evident.

Moving the analytics solution to the cloud provides
flexibility and scalability while relieving internal
analytics teams from operational overhead. Cloud
providers differ in the comprehensiveness of the
managed services offered but share a classic pattern
for cloud-native data integration architecture. At one
end, the services address the entire data movement
and transformation process; at the other, they cover
only the scheduling and analytics initiation and are
supplemented with custom pipelines. Many service
patterns, such as data orchestration, event-based
invocation of transformation processes, and support
of serverless compute processes, are borrowed from
parallel serverless computing and data management
services of the provider. Other services, such as data
quality frameworks or event streaming solutions
supporting message queuing, enhance the overall
data flow reliability.

Reduced
Operational
Ovethead

Cloud-Native
Analytics

Fig 4: Beyond Technical Excellence: Strategic Frameworks for Transitioning Legacy Analytics to Cloud-
Native Data Ecosystems

7.1. Enterprise Analytics Modernization

The rationale for data management and governance
in cloud-based data integration architectures stems
from business models increasingly relying on
federating and interlinking disparate datasets for
analytics—including cleansing, transformation, and
orchestrating data flows. Addressing these concerns
proves non-trivial, as the datasets typically abide by
different provenance, data quality, security,

governance, and privacy rules set by their respective
data sources. Hence, cloud platform vendors
package concepts and managed services in their
offerings, supporting enterprise data integration,
data lake, event-driven architecture, or data catalog
frameworks. Ideally, organizations and groups
democratize cloud data management through well-
controlled, group-based provisioning of virtual
cloud data warehouses, lakes, database caches, or
data marts.
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Adaptations of enterprise analytics environments in
cloud platforms confirm the findings of cloud-native
enterprise  analytics  architectures.  Several
organizations publicize data-integration proof-of-
concepts based on cloud platforms. Examples
include a banking group data strategy emphasizing
building an enterprise data lake—triggering a strong
demand for business intelligence practice; a global
intelligence company centralizing data to improve
business intelligence service quality and reduce
costs; and an airplane manufacturer enabling an
enterprise data lake to consolidate its global data—
cutting the data maturing cycle. Focus areas further
corroborate issues and challenges. Organizations
still developing or operating decentralized data-
warehousing initiatives are moving toward building
a cloud-based, federated data-lake infrastructure—
addressing cloud about security concerns in
managed-private-cloud integration services.

8. Conclusion

Cloud-Native Data Integration Architectures for
Scalable Enterprise Analytics—An objective,
evidence-based synthesis of cloud-native data
integration  architectures, data flows, and
technologies that Fully embrace scalability and
governance concerns of enterprise analytics at large.
Cloud vendors provide managed services that
abstract the complexity of integrations through
SMgerverless’ orchestration. The serverless pattern
generalizes to data-processing tasks, such as data

Serverless
Orchestration

ELT Pattern
(Cloud-Native)

pipeline orchestration and event-based task
execution and it naturally fit with cloud availability.
Despite this potential, modern enterprise analytics is
undermined by non-scalable manual ETL processes.
Serverless data processing services eliminate
infrastructure-management overhead and support
auto-scaling. A central challenge remains
configuration of data integration as a whole to fully
exploit these features. Cloud-based analytics
combine the ELT pattern with the data-lake
paradigm but their cost efficiency is determined by
the data-storage and compute-pricing models.
Adoption of the ELT pattern simplifies architecture
by shifting query surprises from transformation into
analysis.

Initial  data-lake  deployment often ignore
governance and quality but this undermines cloud-
native advantages, simplifies implementation but
endangers completion time and result reliability.
Enterprise-demanded solution is a data-quality
framework that cuts across the integration of data
lakes and warehouses, addresses BOTH cloud-
native and manual-data-pipeline integration. By
incorporating validation, monitoring, and repair
facilities, it eliminates the need of recreating of any
process after a specific event occurs in the data.
Provenance is required for auditing, usage and
health checks. To scale quality-enhancing solutions,
the framework supports tracing of data lineage in
cloud-native and manual-integration pipeline.

Manual ETL
(Legacy)

Data Warehouse
Compute

Data Lake
Storage

Fig 5: Modern Integration Pattern Weighting

8.1. Key Takeaways and Future Directions

Scalable Data Integration Architectures for
Enterprise Analytics—Cloud technology enables
scalable data integration architectures for enterprise
analytics. However, cloud-native data integration
patterns differ significantly from on-premises
deployments. Analytic workloads impose unique

requirements on throughput, latency, and
concurrency for the integration pipelines that
prepare data for consumption. These pipelines can
become performance bottlenecks, and careful design
is needed to maintain quality of service.

Data integration is subject to the same performance
and scaling considerations as any other cloud
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application. Scalability is usually achieved through
the provisioning of more resources or the addition of
parallel processing (horizontal scaling). An
architecture designed for scaling handles increased
demand without running into performance
problems, and automated scaling can mitigate cost
overheads. Cloud technology also provides
opportunities for optimized performance through
serverless  transformation and  orchestration
capabilities.

Automated cloud services seamlessly take care of
tasks such as resource provisioning and billing.
Abstraction layers hide the physical resources
consumed and translate them into charges based on
real use, while simplifying the development of
custom data ingestion, processing, or orchestration
components. Most popular cloud providers include
built-in managed services for transferring,
transforming, or orchestrating data flows. Such
services support HA and DR out-of-the-box, along
with a variety of reliability patterns. In a managed
services approach, data integration covers the
construction of data ingestion and orchestration
elements, as well as any required extensions to the
domain-specific services.
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