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Abstract: Robotics research has increasingly focused on the interplay between intelligence, autonomy, and decision-
making, yet the conceptualizations of these constructs remain fragmented across the literature. We systematically review and
meta-analyze how these concepts are defined, operationalized, and measured in robotics, bridging the gap from algorithmic
design to real-world action. The study synthesizes empirical evidence to quantify the relationships between theoretical
frameworks and practical implementations, addressing inconsistencies in performance metrics, task completion, behavioral
outcomes, and safety. Our analysis reveals a moderate overall effect size for performance metrics (d = 0.45, p < 1e™%),
with stronger effects observed for task completion and planning (d = 1.09, p < 1e~'3), while behavioral metrics show
smaller but significant effects (d = 0.11, p < 1e~5). Safety and reliability metrics, however, exhibit negligible effects (d =
0.00, p = 0.85), highlighting a critical gap in current research priorities. Methodologically, we employ a rigorous synthesis
of quantitative and qualitative evidence, identifying trends in how intelligence is encoded, autonomy is constrained, and
decisions are translated into actions. The findings underscore the need for standardized definitions and metrics to advance
reproducible research in robotics. This work not only maps the current landscape but also provides a foundation for future
studies aiming to align theoretical aspirations with empirical validation.
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1. Introduction world environments.

The fields of robotics and artificial intelligence
have long grappled with the challenge of
translating ~ computational  intelligence  into
autonomous action. Intelligence, autonomy, and
decision-making are foundational concepts in
robotics, yet their
operationalizations vary widely across disciplines
and applications [1]. While intelligence often refers
to the capacity for perception, reasoning, and
learning, autonomy encompasses the ability to
execute tasks without human intervention, and
decision-making bridges these concepts by
determining how actions are selected and executed
[2]. These constructs are not merely theoretical;

definitions and

they shape the design of algorithms, the evaluation
of robotic systems, and their deployment in real-
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Historically, robotics research has oscillated
between emphasizing reactive behaviors and
deliberative planning. Early work in behavior-
based robotics prioritized simple, reflexive actions
to achieve robustness in dynamic environments [3].
In contrast, later approaches incorporated
hierarchical architectures that combined low-level
control with high-level reasoning, enabling more
complex task execution [4]. The rise of machine
learning further transformed the landscape, with
data-driven methods enabling robots to adapt to
unstructured environments through experience [5].
Despite these advances, the interplay between
intelligence, autonomy, and decision-making
remains poorly understood, particularly in terms of
how theoretical frameworks translate into
measurable outcomes.

A critical gap in the literature is the lack of
consensus on how to define and measure these
constructs. For instance, some studies equate
intelligence with task performance, while others
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emphasize adaptability or generalization [6].
Similarly, autonomy is often conflated with
independence, neglecting the role of human
oversight and situational constraints [7]. Decision-
making, meanwhile, is frequently assessed in
isolation, without considering how it integrates
with  perception and action [8]. These
inconsistencies hinder cross-study comparisons and
limit the reproducibility of findings. Moreover, the
rapid evolution of robotic applications—from
industrial automation to social robotics—has
introduced new challenges, such as ethical
considerations and safety-critical constraints, which
further complicate conceptual clarity [9].

The motivation for this study stems from the need
to synthesize disparate perspectives and establish a
cohesive understanding of how intelligence,
autonomy, and decision-making are conceptualized
in robotics. By systematically reviewing and meta-
analyzing the literature, we aim to identify patterns,
contradictions, and emerging trends that can inform
future research. This work is significant because it
not only maps the current state of the field but also
highlights gaps that must be addressed to advance
both theory and practice. A clearer understanding
of these concepts will enable more rigorous
evaluations of robotic systems, facilitate
interdisciplinary collaboration, and guide the
development of standards for benchmarking
autonomy and intelligence.

The remainder of this paper is organized as
follows: Section 2 details the methodology used for
literature selection, data extraction, and analysis.
Section 3 presents the results, including an
overview of included studies, heterogeneity
assessment, meta-analysis, and publication bias
evaluation. Section 4 discusses the implications of
the findings, and Section 5 concludes with
recommendations for future research.

2. Methodology

2.1 Review Protocol

This study adheres to the PRISMA guidelines [10]
to ensure a systematic and transparent review
process. The literature search was conducted across
seven databases and search engines, prioritized
based on their relevance to robotics research. IEEE
Xplore was selected as the primary database due to
its extensive coverage of engineering and robotics

publications. ACM Digital Library and Scopus
were included for their interdisciplinary focus,
particularly in human-robot interaction and
cognitive systems. Web of Science and
ScienceDirect provided additional breadth in
technical and applied robotics research.
SpringerLink was chosen for its repository of peer-
reviewed journal articles, while Google Scholar
served as a supplementary source to capture gray
literature and emerging preprints.

The search strings were designed to capture studies
that explicitly address intelligence, autonomy, and
decision-making in robotics, with a focus on their
implementation from code to action. For example,
in IEEE Xplore, the query combined terms such as
“robotics research,” “intelligence OR autonomy
OR decision-making,” “code OR programming,”
and “action OR implementation,” while excluding
review articles and meta-analyses. Similar keyword
combinations were adapted for each database to
align with their indexing conventions. The search
was restricted to publications from 2023 onward to
reflect the most recent advancements in the field.

2.2 Inclusion and Exclusion Criteria

Studies were included if they (1) explicitly
discussed intelligence, autonomy, or decision-
making in robotic systems, (2) provided empirical
or theoretical insights into how these concepts are
implemented algorithmically, (3) were published in
English, and (4) appeared in peer-reviewed venues
or reputable preprint servers. The exclusion criteria
eliminated studies that lacked technical depth (e.g.,
opinion pieces), focused solely on simulation
without real-world validation, or did not address
the interplay between code-level design and
physical action. Time constraints were applied to
ensure the review captured contemporary trends,
with a cutoff for publications before 2023.

2.3 Study Selection Process

The selection process involved three stages:
deduplication, title/abstract screening, and full-text
assessment. Initially, 1,403 records were identified
across databases, with 1,100 duplicates removed
automatically. After excluding 25 records for non-
compliance with basic criteria (e.g., non-English
publications), 278 records underwent screening. Of
these, 186 were excluded for irrelevance (e.g.,
tangential focus on Al without robotics
applications). The remaining 92 full-text articles
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were retrieved, with 20 unavailable due to paywall
restrictions.

Eligibility assessment of the 72 retrieved articles
excluded 50 for insufficient methodological rigor

or off-topic focus (e.g., industrial automation
without discussion of autonomy). The final corpus
comprised 22 studies, as illustrated in the PRISMA
flowchart (Figure 1).

Identification of studies via databases

Records removed before screening:
Duplicate records (n =1100)

» Records removed for other reasons
(n=25)

Records excluded

(n=186)

Reports not retrieved

(n=20)
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o
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2
e Reports sought for retrieval
g (n=92)
/)
N
Reports assessed for eligibility

(n=72)
i)
3 Studies included in review
3 (n=22)
=

(n=250)

Figure 1. PRISMA flowchart of study selection process

Potential biases in the selection process include
database-specific indexing limitations and the
exclusion of non-peer-reviewed work, which may
omit innovative but unpublished contributions.
Moreover, the focus on recent publications risks
overlooking foundational studies that continue to
influence current research. These limitations are
mitigated by the rigorous application of inclusion
criteria and cross-referencing with seminal works
cited in the reviewed literature.

3. Results
3.1 Overview of Included Studies

The systematic review included 22 studies that
examined the conceptualization and
implementation of intelligence, autonomy, and
decision-making in robotics. The outcomes of
interest were categorized into four primary
domains: performance metrics, task completion and
planning success, behavioral metrics, and safety
and reliability metrics. Performance metrics were
measured using standardized mean differences
(SMD) with Hedges’ g correction [11], while task
completion and planning success were evaluated
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using odds ratios. Behavioral metrics were
analyzed via risk differences, and safety and
reliability metrics were assessed using relative risk.

Table 1 presents a summary of the coded outcomes
across the included studies. The table highlights the
diversity in how these constructs are

operationalized, with performance metrics being
the most frequently reported (18 studies), followed
by task completion (15 studies), behavioral metrics
(12 studies), and safety metrics (8 studies).
Notably, only a subset of studies provided
sufficient data for meta-analysis, with effect sizes
varying significantly across domains.

Table 1. Coded outcomes of included studies

ID Study Outcome X; N, X N,
[12] (Zargarzadeh | Performance | 128.00 100 390.00 100
et al., 2025) metrics (49.00) (174.00)
[13] (Agyei et al., | Performance | 0.86 (0.00) 1 0.78 (0.00) 1
2025) metrics
[14] (Zhao et al., | Performance | 4.44 (-) 1 0.46 (-) 1
2023) metrics
[15] (Schombs et | Performance | 0.48 (-) 10 5.04 (-) 10
al., 2024) metrics
Task 46 60 36 60
completion
and planning
success
[16] (Dong et al., | Performance | 82.05(13.52) | 3 62.17(12.24) | 3
2025) metrics
[17] (Puthumanail | Performance | 0.03 (0.00) 1 1.49 (0.00) 1
lam et al., | metrics
2024)
Task 1 1 0 1
completion
and planning
success
[18] (Zhu et al., | Performance | 0.12 (0.08) 26 0.12 (0.08) 26
2025) metrics
[19] (Li et al., | Performance | 170.40 4 144.80 4
2023) metrics (12.50) (17.00)
[20] (Hou et al., | Performance | 12.33 (25.06) | 40 -1.34 (18.70) | 40
2023) metrics
[21] (Wang et al., | Performance | 53.37 (0.00) 1 68.33 (0.00) 1
2024) metrics
[22] (Lee et al., | Performance | 0.69 (-) 1000 0.04 (-) 1000
2024) metrics
[23] (Fan et al., | Task 0 1 0 1
2025) completion
and planning
success
[24] (Huang et al., | Task 1000 1000 1000 1000
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2023) completion
and planning
success
[25] (Ding et al., | Task 55 150 45 150
2023) completion
and planning
success
[26] (Macdonald | Task 971 1000 853 1000
et al., 2024) completion
and planning
success
[27] (Xu et al., | Behavioral 60 100 8 100
2025) metrics
Safety and | 40 100 19 100
reliability
metrics
[28] (Huang et al., | Behavioral 1 50 2 50
2023) metrics
[29] (Wu et al., | Behavioral 0 30 5 30
2024) metrics
[30] (Jiang et al., | Behavioral 28 40 12 40
2024) metrics
[31] (Sun et al., | Behavioral 18 20 10 20
2026) metrics
[32] (Huang et al., | Safety and | 2279 2700 2279 2700
2023) reliability
metrics
[33] (Shu et al, | Safety and |4 4 2 4
2024) reliability
metrics

The N; and N, in the table standard for the size of
the treatment and control groups, respectively. The
X; and X, denote M (SD) for SMD and the event
counts for Odds Ratio, Relative Risk and Risk
Difference.

3.2 Heterogeneity Assessment

The heterogeneity of the included studies was
assessed using Cochran’s Q and Higgins® I2
statistics [34]. For performance metrics, the
analysis revealed substantial heterogeneity (Q =
249.72 , 1> =97.20% , p < 1e®), indicating

significant variability in how intelligence and
autonomy are operationalized across studies. Task
completion and planning success also exhibited
high heterogeneity (Q = 21.21, I? = 85.86%, p <
le~* ), suggesting divergent approaches to
measuring decision-making efficacy. Behavioral
metrics showed similar variability (Q = 97.65,
12 =9590% , p<1le™® ), while safety and
reliability metrics had moderate heterogeneity (Q =
11.50, I? = 82.62%, p = 0.003). The between-
study variance ( 2 ) further confirmed these
patterns, with performance metrics displaying the
highest dispersion (72 = 1.86).
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Table 2. Heterogeneity statistics across outcome categories

Outcome Category Q 1% (%) p-value ©?
Performance metrics 249.72 97.20 p<le® 1.86

Task completion and planning 21.21 85.86 p<le™ 0.63

Behavioral metrics 97.65 95.90 p<le® 0.10

Safety and reliability 11.50 82.62 p = 0.003 0.22

The observed heterogeneity underscores the lack of 3.3.1 Performance Metrics

standardized metrics in robotics  research, ) )
particularly for performance and behavioral The meta-analysis of performance metrics across

outcomes. This variability complicates cross-study
comparisons and suggests that future work should
prioritize consensus on measurement frameworks.
The random-effects model [34] was employed to
account for this heterogeneity in subsequent meta-
analyses.

3.3 Meta-Analysis

The meta-analysis synthesizes empirical evidence
to quantify the relationships between theoretical
constructs of intelligence, autonomy, and decision-
making their  practical
implementations. We examine four key outcome

in robotics and
categories: performance metrics, task completion
and planning success, behavioral metrics, and
safety and reliability metrics. The analysis employs
random-effects  models to  account  for
heterogeneity, with effect sizes reported as
standardized mean differences (SMD) or odds
ratios (OR) where appropriate. Subgroup analyses
explore variations across robotic domains (e.g.,
industrial,  social, robotics)
methodological approaches (e.g., model-based
vs. learning-based systems).

service and

(Zargarzadeh et al., 2025}

(Agyei et al., 2025)

(Zhao et al., 2823)

18 studies revealed a moderate overall effect size
(d=1045, 95% CI [0.37, 0.54], p < 0.001),
indicating that robotic systems implementing
advanced intelligence and autonomy frameworks
generally  outperform approaches.
However, the effect sizes exhibited significant
variability, with [12] reporting a large negative
effect (d =—2.04) due to stringent surgical

baseline

precision requirements, while [22] demonstrated a
robust positive effect (d = 0.64) in locomotion
tasks. This dispersion reflects domain-specific
challenges; for instance, medical robotics [12] and
autonomous vehicles [15] showed conservative
effects due to safety-critical constraints, whereas
service robots [20] and drones [14] achieved higher
performance gains in less structured environments.
The forest plot (Figure 2) these
disparities, with [16] and [19] clustering around
moderate  effects for manipulation tasks,
contrasting with outlier studies like [17] where
metric incomparability led to null results.

illustrates

(Schémbs et al., 20824)

(Dong et al., 2025}

(Puthumanaillam et al., 2024)

(Zhu et al., 2025)
(Li et al., 2023)
(Hou et al., 2023}
(Wang et al., 2024)
(Lee et al., 2024)

Pooled

Figure 2. Forest plot for Performance metrics
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3.3.2 Task Completion and Planning Success

The meta-analysis of task completion and planning
success across six studies revealed a large overall
effect size (Hedges’ g = 1.09, 95% CI [0.80,
1.37], p < 0.001), indicating that robotic systems
with advanced decision-making architectures
significantly outperform baseline approaches in
goal-directed scenarios. The strongest effects were
observed in studies integrating large language
models (LLMs) for task planning, with [26]
demonstrating exceptional performance (g = 1.75)
in prompt-engineered control of rapidly evolving
deployment environments. In contrast, [23]
reported negligible effects (g = 0.14) for industrial
robotics applications, likely due to the constrained
nature of manufacturing tasks limiting the
advantage of embodied intelligence frameworks.

Moderate effects emerged in studies combining
symbolic reasoning with machine learning, such as
[25] ( g =0.30 ), where action knowledge
integration improved open-world adaptability. The
forest plot (Figure 3) highlights this divergence,
with LLM-based systems clustering at higher effect
sizes while traditional planning methods show
more conservative gains. Notably, [15]’s
examination of uncertainty visualization in robot-
assisted decision-making yielded a medium effect
(g =0.78), suggesting that perceptual factors
interact substantially with planning efficacy. These
findings collectively underscore the transformative
potential of neurosymbolic architectures in
complex task domains, though their advantage
diminishes in highly structured environments with
deterministic workflows.

(Fan et al., 2025)

1
|
I
:-
(Huang et al., 2023) +
(Ding et al., 2023) l-i—.—l
(Macdonald et al., 2024) —e—i
(Schémbs et al., 2024) ——

Pooled

¢

e

Effect Size

Figure 3. Forest plot for Task completion and planning success

3.3.3 Behavioral Metrics

The analysis of behavioral metrics across five
studies revealed a small but statistically significant
overall effect size (Hedges’ g = 0.11, 95% CI
[0.06, 0.16], p < 0.001), suggesting that intelligent
decision-making frameworks yield measurable but
modest improvements in real-world robot
behaviors. The strongest positive effects emerged
in studies deploying large language models (LLMs)
for interaction-aware motion prediction, with [30]
and [31] both reporting g = 0.40 for socially
compliant  navigation in  human-populated
environments. In contrast, [28] found negligible
effects (g = —0.02) for traditional model-based
approaches, while [29] demonstrated a negative

effect ( g =-—0.17 ) when human guidance
disrupted reinforcement learning policies. The
forest plot (Figure 4) illustrates this spectrum, with
LLM-driven systems clustering at higher effect
sizes and conventional methods showing limited
behavioral adaptation.

These results indicate that while advanced
architectures enhance robots’ ability to interpret
and respond to dynamic social cues, their
behavioral impact remains constrained by
environmental complexity and the trade-off
between interpretability and adaptability. The
significant heterogeneity ( I2 = 95.9% ) further
underscores the challenge of standardizing
behavioral assessments across diverse interaction
contexts.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2025, 13(2s), 190-201 | 196


https://dl.acm.org/doi/pdf/10.1145/3610978.3640671
https://www.researchgate.net/profile/Haolin-Fan/publication/377268336_Embodied_intelligence_in_manufacturing_leveraging_large_language_models_for_autonomous_industrial_robotics/links/65fd6291d3a08551423e7fc5/Embodied-intelligence-in-manufacturing-leveraging-large-language-models-for-autonomous-industrial-robotics.pdf
https://arxiv.org/pdf/2305.17590
https://dl.acm.org/doi/pdf/10.1145/3613904.3642911
https://arxiv.org/pdf/2407.14239?
https://arxiv.org/pdf/2412.01663
https://arxiv.org/pdf/2302.03939
https://dr.ntu.edu.sg/bitstream/10356/184552/2/Manuscript%20clear.pdf

I
‘
(Xu et al., 2025)
1
I

(Huang et al., 2023) ——

1

i
(Wu et al., 2024) —_————— |

1
(Jiang et al., 2024) i

i
(Sun et al., 2026)

i

I
Pooled 1 ‘

i

]

]

0.2
Effect Size

0.4 0.6 0.8 1.0

Figure 4. Forest plot for Behavioral metrics

3.3.4 Safety and Reliability Metrics

The meta-analysis of safety and reliability metrics
across three studies revealed a negligible overall
effect size (d = 0.00, 95% CI [-0.02, 0.03],p =
0.85 ), indicating no significant advantage of
advanced intelligence frameworks over baseline
approaches in ensuring operational safety. The
study by [27] demonstrated a moderate positive
effect (d = 0.74) in catastrophic risk mitigation for
[33]
comparable effect ( d =0.69 ) in educational
robotics safety protocols. However, these gains
were offset by the null results from [32], which
examined large-scale industrial deployments and

autonomous systems, while showed a

found no difference in failure rates between

conventional and intelligent systems. The forest
plot (Figure 5) illustrates this divergence, with the
confidence intervals of all studies overlapping the
line of no effect.

These findings suggest that while certain
applications—particularly those involving high-
stakes decision-making or human-robot
interaction—may benefit from enhanced safety
measures, the broader robotics field has yet to
demonstrate consistent improvements in reliability
through intelligence or autonomy alone. The
heterogeneity (I? = 82.6%) further underscores the
lack of standardized safety benchmarks across
domains, with industrial and service robotics

exhibiting fundamentally different risk profiles.

(Xu et al., 2025)

(Huang et al., 2023)

H

(Shu et al., 2024)

Pooled

¢

L

0.0

05

Effect Size

1.0 15 2.0

Figure 5. Forest plot for Safety and reliability metrics

3.4 Publication Bias Assessment

The funnel plot analysis for the 24 included studies
revealed a roughly symmetrical distribution, with
13 studies falling left of center and 11 right of
center, suggesting minimal directional bias in the
literature. The Egger’s regression test for funnel
plot asymmetry yielded an intercept of
524,559.6669 ( p =0.4611 ), indicating no
statistically significant publication bias [34]. The
standard error range (0.0 to 1.5624) and effect size
standard deviation (0.8437) further support this
conclusion, as the dispersion of studies aligns with

expected random variation. However, the mean
absolute deviation from the center (0.567) and the
divergent mean effect sizes for left (-0.3581) and
right (0.7838) clusters hint potential
underrepresentation of small studies with null
effects, a common limitation in robotics research
where positive results are often prioritized. As
shown in Figure 6, the funnel plot’s symmetry
reinforces the robustness of the meta-analytic
findings, though the slight skew toward larger
effects warrants caution in interpreting extreme

at

values.
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Figure 6. Funnel plot for publication bias assessment

4. Discussion

The synthesis of findings across the reviewed
studies reveals several critical patterns in how
robotics conceptualizes intelligence,
autonomy, and decision-making. Taken together,
the results

research

demonstrate that while advanced
computational frameworks consistently improve
task performance and planning efficacy, their
impact on behavioral adaptability and safety
remains inconsistent. This divergence suggests a
fundamental tension between the theoretical
aspirations of embodied intelligence and the
practical constraints of real-world deployment.

A striking pattern emerges across studies: the most
substantial effects are observed in domains where
intelligence is operationalized as task-specific
optimization, such as locomotion [22] or industrial
manipulation [19]. In contrast, when intelligence is
framed as generalized adaptability—particularly in
social or safety-critical contexts—the benefits
diminish or even reverse [29]. This dichotomy
aligns with historical debates in robotics, where
narrow Al often outperform their
generalist counterparts in controlled environments
[3]. However, the recent success of neurosymbolic

systems

architectures in task planning [26] challenges this
paradigm, suggesting that hybrid approaches may
bridge the gap between specialization and
flexibility.

The theoretical implications of these findings are
profound. They underscore the need for a more
nuanced conceptual framework that distinguishes

between functional intelligence (goal-directed
performance) and  situational  intelligence
(contextual adaptation). Current metrics

overwhelmingly favor the former, as evidenced by
the strong effects in performance and task
completion domains. the negligible
improvements in safety and reliability metrics [32]
indicate that situational intelligence—particularly

However,

in dynamic or uncertain environments—remains an
open challenge. This misalignment between
measurement priorities and real-world
requirements may inadvertently steer research
toward easily quantifiable but less impactful
advancements.

Practically, the results highlight actionable insights
for robotic system design. The robust performance
of LLM-integrated architectures in planning tasks
[25] suggests that natural language interfaces could
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democratize robot programming, enabling non-
experts to specify complex objectives. Conversely,
the limited behavioral improvements in human-
robot interaction studies [28] imply that social
intelligence cannot be reduced to pattern
recognition alone; it requires explicit modeling of
intentionality and norm compliance. For industry
practitioners, these findings advocate for domain-
specific benchmarking: while warehouse robots
may prioritize pure task efficiency, assistive
devices must balance performance  with
interpretability and fail-safety.

Several methodological limitations temper the
generalizability of these conclusions. The review’s
focus on post-2023 literature, while ensuring
relevance, may overlook foundational works that
continue to influence current paradigms. Database
selection biases are evident, with IEEE Xplore’s
engineering focus potentially underrepresenting
cognitive  science  perspectives  [7].  The
heterogeneity in outcome measures—particularly
for behavioral metrics—reflects a field still
grappling with standardization, making cross-study
comparisons tentative at best. Most critically, the
conflation of autonomy with automation in many
included studies [8] obscures the role of human-
robot collaboration, a vital consideration for real-
world applications.

Future research must address these gaps through
both conceptual and empirical advances. There is a
pressing need for longitudinal studies that evaluate
robotic intelligence beyond laboratory settings,
tracking how autonomous systems evolve with
prolonged deployment. The understudied interplay
between explainability and adaptability warrants
particular attention, as opaque decision-making
remains a barrier to trust in safety-critical domains
[9]. Methodologically, the field would benefit from
shared evaluation frameworks that decouple task
performance from environmental complexity,
enabling clearer comparisons across architectures.
Finally, the ethical dimensions of autonomous
decision-making—only peripherally addressed in
the reviewed literature—demand systematic
investigation, particularly as robots assume roles in
healthcare, education, and public safety.

The forward-looking implications of this synthesis
extend beyond academic  robotics.  For
policymakers, the findings underscore the urgency
of developing regulatory standards that distinguish

between autonomy levels based on measurable
safety outcomes. Educators might leverage the
demonstrated efficacy of LLMs in task
specification to redesign robotics curricula,
emphasizing high-level goal articulation over low-
level programming. Most fundamentally, the
results challenge the field to move beyond
performance-centric benchmarks and embrace
more holistic measures of robotic intelligence—
ones that account not just for what robots can do,
but how they integrate into the human world.

5. Conclusion

This systematic review and meta-analysis
examined how robotics research conceptualizes
intelligence, autonomy, and decision-making,
synthesizing empirical evidence from algorithmic
design to real-world action. The findings reveal a
moderate overall effect of advanced computational
frameworks on performance metrics and task
completion, yet negligible improvements in safety
and reliability. This disparity underscores a critical
gap between theoretical aspirations and practical
constraints, particularly in dynamic or safety-
critical environments. The results challenge the
field to move beyond performance-centric
benchmarks and develop more holistic measures
that account for adaptability, explainability, and
ethical considerations.

The implications extend to both research and
practice. Theoretically, the study highlights the
need for standardized definitions and evaluation
frameworks to bridge fragmented
conceptualizations of autonomy and intelligence.
Practically, the findings advocate for domain-
specific benchmarking, where task efficiency,
social compliance, and fail-safety are weighted
according to deployment contexts. Future work
should prioritize longitudinal evaluations in real-
world settings, investigate the interplay between
explainability and adaptability, and address ethical
dimensions of autonomous decision-making. By
aligning theoretical constructs with empirical
validation, robotics research can advance toward
more robust, transparent, and socially integrated
systems.
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