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Abstract: Robotics research has increasingly focused on the interplay between intelligence, autonomy, and decision-

making, yet the conceptualizations of these constructs remain fragmented across the literature. We systematically review and 

meta-analyze how these concepts are defined, operationalized, and measured in robotics, bridging the gap from algorithmic 

design to real-world action. The study synthesizes empirical evidence to quantify the relationships between theoretical 

frameworks and practical implementations, addressing inconsistencies in performance metrics, task completion, behavioral 

outcomes, and safety. Our analysis reveals a moderate overall effect size for performance metrics (d = 0.45, p < 1e−5), 

with stronger effects observed for task completion and planning (d = 1.09, p < 1e−13), while behavioral metrics show 

smaller but significant effects (d = 0.11, p < 1e−5). Safety and reliability metrics, however, exhibit negligible effects (d =

0.00, p = 0.85), highlighting a critical gap in current research priorities. Methodologically, we employ a rigorous synthesis 

of quantitative and qualitative evidence, identifying trends in how intelligence is encoded, autonomy is constrained, and 

decisions are translated into actions. The findings underscore the need for standardized definitions and metrics to advance 

reproducible research in robotics. This work not only maps the current landscape but also provides a foundation for future 

studies aiming to align theoretical aspirations with empirical validation. 

Keywords: foundation, theoretical, aspirations, synthesizes 

1. Introduction 

The fields of robotics and artificial intelligence 

have long grappled with the challenge of 

translating computational intelligence into 

autonomous action. Intelligence, autonomy, and 

decision-making are foundational concepts in 

robotics, yet their definitions and 

operationalizations vary widely across disciplines 

and applications [1]. While intelligence often refers 

to the capacity for perception, reasoning, and 

learning, autonomy encompasses the ability to 

execute tasks without human intervention, and 

decision-making bridges these concepts by 

determining how actions are selected and executed 

[2]. These constructs are not merely theoretical; 

they shape the design of algorithms, the evaluation 

of robotic systems, and their deployment in real-

world environments. 

Historically, robotics research has oscillated 

between emphasizing reactive behaviors and 

deliberative planning. Early work in behavior-

based robotics prioritized simple, reflexive actions 

to achieve robustness in dynamic environments [3]. 

In contrast, later approaches incorporated 

hierarchical architectures that combined low-level 

control with high-level reasoning, enabling more 

complex task execution [4]. The rise of machine 

learning further transformed the landscape, with 

data-driven methods enabling robots to adapt to 

unstructured environments through experience [5]. 

Despite these advances, the interplay between 

intelligence, autonomy, and decision-making 

remains poorly understood, particularly in terms of 

how theoretical frameworks translate into 

measurable outcomes. 

A critical gap in the literature is the lack of 

consensus on how to define and measure these 

constructs. For instance, some studies equate 

intelligence with task performance, while others 
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emphasize adaptability or generalization [6]. 

Similarly, autonomy is often conflated with 

independence, neglecting the role of human 

oversight and situational constraints [7]. Decision-

making, meanwhile, is frequently assessed in 

isolation, without considering how it integrates 

with perception and action [8]. These 

inconsistencies hinder cross-study comparisons and 

limit the reproducibility of findings. Moreover, the 

rapid evolution of robotic applications—from 

industrial automation to social robotics—has 

introduced new challenges, such as ethical 

considerations and safety-critical constraints, which 

further complicate conceptual clarity [9]. 

The motivation for this study stems from the need 

to synthesize disparate perspectives and establish a 

cohesive understanding of how intelligence, 

autonomy, and decision-making are conceptualized 

in robotics. By systematically reviewing and meta-

analyzing the literature, we aim to identify patterns, 

contradictions, and emerging trends that can inform 

future research. This work is significant because it 

not only maps the current state of the field but also 

highlights gaps that must be addressed to advance 

both theory and practice. A clearer understanding 

of these concepts will enable more rigorous 

evaluations of robotic systems, facilitate 

interdisciplinary collaboration, and guide the 

development of standards for benchmarking 

autonomy and intelligence. 

The remainder of this paper is organized as 

follows: Section 2 details the methodology used for 

literature selection, data extraction, and analysis. 

Section 3 presents the results, including an 

overview of included studies, heterogeneity 

assessment, meta-analysis, and publication bias 

evaluation. Section 4 discusses the implications of 

the findings, and Section 5 concludes with 

recommendations for future research. 

 

2. Methodology 

2.1 Review Protocol 

This study adheres to the PRISMA guidelines [10] 

to ensure a systematic and transparent review 

process. The literature search was conducted across 

seven databases and search engines, prioritized 

based on their relevance to robotics research. IEEE 

Xplore was selected as the primary database due to 

its extensive coverage of engineering and robotics 

publications. ACM Digital Library and Scopus 

were included for their interdisciplinary focus, 

particularly in human-robot interaction and 

cognitive systems. Web of Science and 

ScienceDirect provided additional breadth in 

technical and applied robotics research. 

SpringerLink was chosen for its repository of peer-

reviewed journal articles, while Google Scholar 

served as a supplementary source to capture gray 

literature and emerging preprints. 

The search strings were designed to capture studies 

that explicitly address intelligence, autonomy, and 

decision-making in robotics, with a focus on their 

implementation from code to action. For example, 

in IEEE Xplore, the query combined terms such as 

“robotics research,” “intelligence OR autonomy 

OR decision-making,” “code OR programming,” 

and “action OR implementation,” while excluding 

review articles and meta-analyses. Similar keyword 

combinations were adapted for each database to 

align with their indexing conventions. The search 

was restricted to publications from 2023 onward to 

reflect the most recent advancements in the field. 

2.2 Inclusion and Exclusion Criteria 

Studies were included if they (1) explicitly 

discussed intelligence, autonomy, or decision-

making in robotic systems, (2) provided empirical 

or theoretical insights into how these concepts are 

implemented algorithmically, (3) were published in 

English, and (4) appeared in peer-reviewed venues 

or reputable preprint servers. The exclusion criteria 

eliminated studies that lacked technical depth (e.g., 

opinion pieces), focused solely on simulation 

without real-world validation, or did not address 

the interplay between code-level design and 

physical action. Time constraints were applied to 

ensure the review captured contemporary trends, 

with a cutoff for publications before 2023. 

2.3 Study Selection Process 

The selection process involved three stages: 

deduplication, title/abstract screening, and full-text 

assessment. Initially, 1,403 records were identified 

across databases, with 1,100 duplicates removed 

automatically. After excluding 25 records for non-

compliance with basic criteria (e.g., non-English 

publications), 278 records underwent screening. Of 

these, 186 were excluded for irrelevance (e.g., 

tangential focus on AI without robotics 

applications). The remaining 92 full-text articles 
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were retrieved, with 20 unavailable due to paywall 

restrictions. 

Eligibility assessment of the 72 retrieved articles 

excluded 50 for insufficient methodological rigor 

or off-topic focus (e.g., industrial automation 

without discussion of autonomy). The final corpus 

comprised 22 studies, as illustrated in the PRISMA 

flowchart (Figure 1). 

 

Figure 1. PRISMA flowchart of study selection process 

Potential biases in the selection process include 

database-specific indexing limitations and the 

exclusion of non-peer-reviewed work, which may 

omit innovative but unpublished contributions. 

Moreover, the focus on recent publications risks 

overlooking foundational studies that continue to 

influence current research. These limitations are 

mitigated by the rigorous application of inclusion 

criteria and cross-referencing with seminal works 

cited in the reviewed literature. 

 

3. Results 

3.1 Overview of Included Studies 

The systematic review included 22 studies that 

examined the conceptualization and 

implementation of intelligence, autonomy, and 

decision-making in robotics. The outcomes of 

interest were categorized into four primary 

domains: performance metrics, task completion and 

planning success, behavioral metrics, and safety 

and reliability metrics. Performance metrics were 

measured using standardized mean differences 

(SMD) with Hedges’ g correction [11], while task 

completion and planning success were evaluated 
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using odds ratios. Behavioral metrics were 

analyzed via risk differences, and safety and 

reliability metrics were assessed using relative risk. 

Table 1 presents a summary of the coded outcomes 

across the included studies. The table highlights the 

diversity in how these constructs are 

operationalized, with performance metrics being 

the most frequently reported (18 studies), followed 

by task completion (15 studies), behavioral metrics 

(12 studies), and safety metrics (8 studies). 

Notably, only a subset of studies provided 

sufficient data for meta-analysis, with effect sizes 

varying significantly across domains. 

 

Table 1. Coded outcomes of included studies 

ID Study Outcome 𝑋𝑡 𝑁𝑡 𝑋𝑐 𝑁𝑐 

[12] (Zargarzadeh 

et al., 2025) 

Performance 

metrics 

128.00 

(49.00) 

100 390.00 

(174.00) 

100 

[13] (Agyei et al., 

2025) 

Performance 

metrics 

0.86 (0.00) 1 0.78 (0.00) 1 

[14] (Zhao et al., 

2023) 

Performance 

metrics 

4.44 (–) 1 0.46 (–) 1 

[15] (Schömbs et 

al., 2024) 

Performance 

metrics 

0.48 (–) 10 5.04 (–) 10 

  Task 

completion 

and planning 

success 

46 60 36 60 

[16] (Dong et al., 

2025) 

Performance 

metrics 

82.05 (13.52) 3 62.17 (12.24) 3 

[17] (Puthumanail

lam et al., 

2024) 

Performance 

metrics 

0.03 (0.00) 1 1.49 (0.00) 1 

  Task 

completion 

and planning 

success 

1 1 0 1 

[18] (Zhu et al., 

2025) 

Performance 

metrics 

0.12 (0.08) 26 0.12 (0.08) 26 

[19] (Li et al., 

2023) 

Performance 

metrics 

170.40 

(12.50) 

4 144.80 

(17.00) 

4 

[20] (Hou et al., 

2023) 

Performance 

metrics 

12.33 (25.06) 40 -1.34 (18.70) 40 

[21] (Wang et al., 

2024) 

Performance 

metrics 

53.37 (0.00) 1 68.33 (0.00) 1 

[22] (Lee et al., 

2024) 

Performance 

metrics 

0.69 (–) 1000 0.04 (–) 1000 

[23] (Fan et al., 

2025) 

Task 

completion 

and planning 

success 

0 1 0 1 

[24] (Huang et al., Task 1000 1000 1000 1000 

https://arxiv.org/pdf/2408.07806
https://arxiv.org/pdf/2411.16587
https://arxiv.org/pdf/2311.15033
https://dl.acm.org/doi/pdf/10.1145/3613904.3642911
https://arxiv.org/pdf/2407.16306
https://arxiv.org/pdf/2403.01564
https://arxiv.org/pdf/2506.01538?
https://arxiv.org/pdf/2302.13025
https://dl.acm.org/doi/pdf/10.1145/3544548.3581066
https://www.nature.com/articles/s41598-024-51286-2.pdf
https://www.science.org/doi/pdf/10.1126/scirobotics.adi9641
https://www.researchgate.net/profile/Haolin-Fan/publication/377268336_Embodied_intelligence_in_manufacturing_leveraging_large_language_models_for_autonomous_industrial_robotics/links/65fd6291d3a08551423e7fc5/Embodied-intelligence-in-manufacturing-leveraging-large-language-models-for-autonomous-industrial-robotics.pdf
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2023) completion 

and planning 

success 

[25] (Ding et al., 

2023) 

Task 

completion 

and planning 

success 

55 150 45 150 

[26] (Macdonald 

et al., 2024) 

Task 

completion 

and planning 

success 

971 1000 853 1000 

[27] (Xu et al., 

2025) 

Behavioral 

metrics 

60 100 8 100 

  Safety and 

reliability 

metrics 

40 100 19 100 

[28] (Huang et al., 

2023) 

Behavioral 

metrics 

1 50 2 50 

[29] (Wu et al., 

2024) 

Behavioral 

metrics 

0 30 5 30 

[30] (Jiang et al., 

2024) 

Behavioral 

metrics 

28 40 12 40 

[31] (Sun et al., 

2026) 

Behavioral 

metrics 

18 20 10 20 

[32] (Huang et al., 

2023) 

Safety and 

reliability 

metrics 

2279 2700 2279 2700 

[33] (Shu et al., 

2024) 

Safety and 

reliability 

metrics 

4 4 2 4 

The 𝑁𝑡 and 𝑁𝑐 in the table standard for the size of 

the treatment and control groups, respectively. The 

𝑋𝑡  and 𝑋𝑐  denote M (SD) for SMD and the event 

counts for Odds Ratio, Relative Risk and Risk 

Difference. 

3.2 Heterogeneity Assessment 

The heterogeneity of the included studies was 

assessed using Cochran’s 𝑄  and Higgins’ 𝐼2 

statistics [34]. For performance metrics, the 

analysis revealed substantial heterogeneity (𝑄 =

249.72 , 𝐼2 = 97.20% , 𝑝 < 1𝑒−5 ), indicating 

significant variability in how intelligence and 

autonomy are operationalized across studies. Task 

completion and planning success also exhibited 

high heterogeneity (𝑄 = 21.21, 𝐼2 = 85.86%, 𝑝 <

1𝑒−4 ), suggesting divergent approaches to 

measuring decision-making efficacy. Behavioral 

metrics showed similar variability ( 𝑄 = 97.65 , 

𝐼2 = 95.90% , 𝑝 < 1𝑒−5 ), while safety and 

reliability metrics had moderate heterogeneity (𝑄 =

11.50 , 𝐼2 = 82.62% , 𝑝 = 0.003 ). The between-

study variance ( 𝜏2 ) further confirmed these 

patterns, with performance metrics displaying the 

highest dispersion (𝜏2 = 1.86). 
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Table 2. Heterogeneity statistics across outcome categories 

Outcome Category 𝑸 𝑰𝟐 (%) 𝒑-value 𝝉𝟐 

Performance metrics 249.72 97.20 𝑝 < 1𝑒−5 1.86 

Task completion and planning 21.21 85.86 𝑝 < 1𝑒−4 0.63 

Behavioral metrics 97.65 95.90 𝑝 < 1𝑒−5 0.10 

Safety and reliability 11.50 82.62 𝑝 = 0.003 0.22 

The observed heterogeneity underscores the lack of 

standardized metrics in robotics research, 

particularly for performance and behavioral 

outcomes. This variability complicates cross-study 

comparisons and suggests that future work should 

prioritize consensus on measurement frameworks. 

The random-effects model [34] was employed to 

account for this heterogeneity in subsequent meta-

analyses. 

3.3 Meta-Analysis 

The meta-analysis synthesizes empirical evidence 

to quantify the relationships between theoretical 

constructs of intelligence, autonomy, and decision-

making in robotics and their practical 

implementations. We examine four key outcome 

categories: performance metrics, task completion 

and planning success, behavioral metrics, and 

safety and reliability metrics. The analysis employs 

random-effects models to account for 

heterogeneity, with effect sizes reported as 

standardized mean differences (SMD) or odds 

ratios (OR) where appropriate. Subgroup analyses 

explore variations across robotic domains (e.g., 

industrial, social, service robotics) and 

methodological approaches (e.g., model-based 

vs. learning-based systems). 

3.3.1 Performance Metrics 

The meta-analysis of performance metrics across 

18 studies revealed a moderate overall effect size 

( 𝑑 = 0.45 , 95% CI [0.37, 0.54], 𝑝 < 0.001 ), 

indicating that robotic systems implementing 

advanced intelligence and autonomy frameworks 

generally outperform baseline approaches. 

However, the effect sizes exhibited significant 

variability, with [12] reporting a large negative 

effect ( 𝑑 = −2.04 ) due to stringent surgical 

precision requirements, while [22] demonstrated a 

robust positive effect (𝑑 = 0.64 ) in locomotion 

tasks. This dispersion reflects domain-specific 

challenges; for instance, medical robotics [12] and 

autonomous vehicles [15] showed conservative 

effects due to safety-critical constraints, whereas 

service robots [20] and drones [14] achieved higher 

performance gains in less structured environments. 

The forest plot (Figure 2) illustrates these 

disparities, with [16] and [19] clustering around 

moderate effects for manipulation tasks, 

contrasting with outlier studies like [17] where 

metric incomparability led to null results. 

 

Figure 2. Forest plot for Performance metrics 
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3.3.2 Task Completion and Planning Success 

The meta-analysis of task completion and planning 

success across six studies revealed a large overall 

effect size (Hedges’ 𝑔 = 1.09 , 95% CI [0.80, 

1.37], 𝑝 < 0.001), indicating that robotic systems 

with advanced decision-making architectures 

significantly outperform baseline approaches in 

goal-directed scenarios. The strongest effects were 

observed in studies integrating large language 

models (LLMs) for task planning, with [26] 

demonstrating exceptional performance (𝑔 = 1.75) 

in prompt-engineered control of rapidly evolving 

deployment environments. In contrast, [23] 

reported negligible effects (𝑔 = 0.14) for industrial 

robotics applications, likely due to the constrained 

nature of manufacturing tasks limiting the 

advantage of embodied intelligence frameworks. 

Moderate effects emerged in studies combining 

symbolic reasoning with machine learning, such as 

[25] ( 𝑔 = 0.30 ), where action knowledge 

integration improved open-world adaptability. The 

forest plot (Figure 3) highlights this divergence, 

with LLM-based systems clustering at higher effect 

sizes while traditional planning methods show 

more conservative gains. Notably, [15]’s 

examination of uncertainty visualization in robot-

assisted decision-making yielded a medium effect 

( 𝑔 = 0.78 ), suggesting that perceptual factors 

interact substantially with planning efficacy. These 

findings collectively underscore the transformative 

potential of neurosymbolic architectures in 

complex task domains, though their advantage 

diminishes in highly structured environments with 

deterministic workflows. 

 

Figure 3. Forest plot for Task completion and planning success 

3.3.3 Behavioral Metrics 

The analysis of behavioral metrics across five 

studies revealed a small but statistically significant 

overall effect size (Hedges’ 𝑔 = 0.11 , 95% CI 

[0.06, 0.16], 𝑝 < 0.001), suggesting that intelligent 

decision-making frameworks yield measurable but 

modest improvements in real-world robot 

behaviors. The strongest positive effects emerged 

in studies deploying large language models (LLMs) 

for interaction-aware motion prediction, with [30] 

and [31] both reporting 𝑔 = 0.40  for socially 

compliant navigation in human-populated 

environments. In contrast, [28] found negligible 

effects (𝑔 = −0.02 ) for traditional model-based 

approaches, while [29] demonstrated a negative 

effect ( 𝑔 = −0.17 ) when human guidance 

disrupted reinforcement learning policies. The 

forest plot (Figure 4) illustrates this spectrum, with 

LLM-driven systems clustering at higher effect 

sizes and conventional methods showing limited 

behavioral adaptation. 

These results indicate that while advanced 

architectures enhance robots’ ability to interpret 

and respond to dynamic social cues, their 

behavioral impact remains constrained by 

environmental complexity and the trade-off 

between interpretability and adaptability. The 

significant heterogeneity ( 𝐼2 = 95.9% ) further 

underscores the challenge of standardizing 

behavioral assessments across diverse interaction 

contexts. 

https://dl.acm.org/doi/pdf/10.1145/3610978.3640671
https://www.researchgate.net/profile/Haolin-Fan/publication/377268336_Embodied_intelligence_in_manufacturing_leveraging_large_language_models_for_autonomous_industrial_robotics/links/65fd6291d3a08551423e7fc5/Embodied-intelligence-in-manufacturing-leveraging-large-language-models-for-autonomous-industrial-robotics.pdf
https://arxiv.org/pdf/2305.17590
https://dl.acm.org/doi/pdf/10.1145/3613904.3642911
https://arxiv.org/pdf/2407.14239?
https://arxiv.org/pdf/2412.01663
https://arxiv.org/pdf/2302.03939
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Figure 4. Forest plot for Behavioral metrics 

3.3.4 Safety and Reliability Metrics 

The meta-analysis of safety and reliability metrics 

across three studies revealed a negligible overall 

effect size (𝑑 = 0.00, 95% CI [-0.02, 0.03], 𝑝 =

0.85 ), indicating no significant advantage of 

advanced intelligence frameworks over baseline 

approaches in ensuring operational safety. The 

study by [27] demonstrated a moderate positive 

effect (𝑑 = 0.74) in catastrophic risk mitigation for 

autonomous systems, while [33] showed a 

comparable effect ( 𝑑 = 0.69 ) in educational 

robotics safety protocols. However, these gains 

were offset by the null results from [32], which 

examined large-scale industrial deployments and 

found no difference in failure rates between 

conventional and intelligent systems. The forest 

plot (Figure 5) illustrates this divergence, with the 

confidence intervals of all studies overlapping the 

line of no effect. 

These findings suggest that while certain 

applications—particularly those involving high-

stakes decision-making or human-robot 

interaction—may benefit from enhanced safety 

measures, the broader robotics field has yet to 

demonstrate consistent improvements in reliability 

through intelligence or autonomy alone. The 

heterogeneity (𝐼2 = 82.6%) further underscores the 

lack of standardized safety benchmarks across 

domains, with industrial and service robotics 

exhibiting fundamentally different risk profiles. 

 

Figure 5. Forest plot for Safety and reliability metrics 

3.4 Publication Bias Assessment 

The funnel plot analysis for the 24 included studies 

revealed a roughly symmetrical distribution, with 

13 studies falling left of center and 11 right of 

center, suggesting minimal directional bias in the 

literature. The Egger’s regression test for funnel 

plot asymmetry yielded an intercept of 

524,559.6669 ( 𝑝 = 0.4611 ), indicating no 

statistically significant publication bias [34]. The 

standard error range (0.0 to 1.5624) and effect size 

standard deviation (0.8437) further support this 

conclusion, as the dispersion of studies aligns with 

expected random variation. However, the mean 

absolute deviation from the center (0.567) and the 

divergent mean effect sizes for left (-0.3581) and 

right (0.7838) clusters hint at potential 

underrepresentation of small studies with null 

effects, a common limitation in robotics research 

where positive results are often prioritized. As 

shown in Figure 6, the funnel plot’s symmetry 

reinforces the robustness of the meta-analytic 

findings, though the slight skew toward larger 

effects warrants caution in interpreting extreme 

values. 

https://arxiv.org/pdf/2502.11355
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Figure 6. Funnel plot for publication bias assessment 

4. Discussion 

The synthesis of findings across the reviewed 

studies reveals several critical patterns in how 

robotics research conceptualizes intelligence, 

autonomy, and decision-making. Taken together, 

the results demonstrate that while advanced 

computational frameworks consistently improve 

task performance and planning efficacy, their 

impact on behavioral adaptability and safety 

remains inconsistent. This divergence suggests a 

fundamental tension between the theoretical 

aspirations of embodied intelligence and the 

practical constraints of real-world deployment. 

A striking pattern emerges across studies: the most 

substantial effects are observed in domains where 

intelligence is operationalized as task-specific 

optimization, such as locomotion [22] or industrial 

manipulation [19]. In contrast, when intelligence is 

framed as generalized adaptability—particularly in 

social or safety-critical contexts—the benefits 

diminish or even reverse [29]. This dichotomy 

aligns with historical debates in robotics, where 

narrow AI systems often outperform their 

generalist counterparts in controlled environments 

[3]. However, the recent success of neurosymbolic 

architectures in task planning [26] challenges this 

paradigm, suggesting that hybrid approaches may 

bridge the gap between specialization and 

flexibility. 

The theoretical implications of these findings are 

profound. They underscore the need for a more 

nuanced conceptual framework that distinguishes 

between functional intelligence (goal-directed 

performance) and situational intelligence 

(contextual adaptation). Current metrics 

overwhelmingly favor the former, as evidenced by 

the strong effects in performance and task 

completion domains. However, the negligible 

improvements in safety and reliability metrics [32] 

indicate that situational intelligence—particularly 

in dynamic or uncertain environments—remains an 

open challenge. This misalignment between 

measurement priorities and real-world 

requirements may inadvertently steer research 

toward easily quantifiable but less impactful 

advancements. 

Practically, the results highlight actionable insights 

for robotic system design. The robust performance 

of LLM-integrated architectures in planning tasks 

[25] suggests that natural language interfaces could 

https://www.science.org/doi/pdf/10.1126/scirobotics.adi9641
https://arxiv.org/pdf/2302.13025
https://dr.ntu.edu.sg/bitstream/10356/184552/2/Manuscript%20clear.pdf
https://scholar.archive.org/work/vnlkszsgyre37fbzu2zdls75lq/access/wayback/http:/www.cs.utah.edu/~alnds/papers/behavior_robotics_2008.pdf
https://dl.acm.org/doi/pdf/10.1145/3610978.3640671
https://arxiv.org/pdf/2305.11176
https://arxiv.org/pdf/2305.17590
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democratize robot programming, enabling non-

experts to specify complex objectives. Conversely, 

the limited behavioral improvements in human-

robot interaction studies [28] imply that social 

intelligence cannot be reduced to pattern 

recognition alone; it requires explicit modeling of 

intentionality and norm compliance. For industry 

practitioners, these findings advocate for domain-

specific benchmarking: while warehouse robots 

may prioritize pure task efficiency, assistive 

devices must balance performance with 

interpretability and fail-safety. 

Several methodological limitations temper the 

generalizability of these conclusions. The review’s 

focus on post-2023 literature, while ensuring 

relevance, may overlook foundational works that 

continue to influence current paradigms. Database 

selection biases are evident, with IEEE Xplore’s 

engineering focus potentially underrepresenting 

cognitive science perspectives [7]. The 

heterogeneity in outcome measures—particularly 

for behavioral metrics—reflects a field still 

grappling with standardization, making cross-study 

comparisons tentative at best. Most critically, the 

conflation of autonomy with automation in many 

included studies [8] obscures the role of human-

robot collaboration, a vital consideration for real-

world applications. 

Future research must address these gaps through 

both conceptual and empirical advances. There is a 

pressing need for longitudinal studies that evaluate 

robotic intelligence beyond laboratory settings, 

tracking how autonomous systems evolve with 

prolonged deployment. The understudied interplay 

between explainability and adaptability warrants 

particular attention, as opaque decision-making 

remains a barrier to trust in safety-critical domains 

[9]. Methodologically, the field would benefit from 

shared evaluation frameworks that decouple task 

performance from environmental complexity, 

enabling clearer comparisons across architectures. 

Finally, the ethical dimensions of autonomous 

decision-making—only peripherally addressed in 

the reviewed literature—demand systematic 

investigation, particularly as robots assume roles in 

healthcare, education, and public safety. 

The forward-looking implications of this synthesis 

extend beyond academic robotics. For 

policymakers, the findings underscore the urgency 

of developing regulatory standards that distinguish 

between autonomy levels based on measurable 

safety outcomes. Educators might leverage the 

demonstrated efficacy of LLMs in task 

specification to redesign robotics curricula, 

emphasizing high-level goal articulation over low-

level programming. Most fundamentally, the 

results challenge the field to move beyond 

performance-centric benchmarks and embrace 

more holistic measures of robotic intelligence—

ones that account not just for what robots can do, 

but how they integrate into the human world. 

5. Conclusion 

This systematic review and meta-analysis 

examined how robotics research conceptualizes 

intelligence, autonomy, and decision-making, 

synthesizing empirical evidence from algorithmic 

design to real-world action. The findings reveal a 

moderate overall effect of advanced computational 

frameworks on performance metrics and task 

completion, yet negligible improvements in safety 

and reliability. This disparity underscores a critical 

gap between theoretical aspirations and practical 

constraints, particularly in dynamic or safety-

critical environments. The results challenge the 

field to move beyond performance-centric 

benchmarks and develop more holistic measures 

that account for adaptability, explainability, and 

ethical considerations. 

The implications extend to both research and 

practice. Theoretically, the study highlights the 

need for standardized definitions and evaluation 

frameworks to bridge fragmented 

conceptualizations of autonomy and intelligence. 

Practically, the findings advocate for domain-

specific benchmarking, where task efficiency, 

social compliance, and fail-safety are weighted 

according to deployment contexts. Future work 

should prioritize longitudinal evaluations in real-

world settings, investigate the interplay between 

explainability and adaptability, and address ethical 

dimensions of autonomous decision-making. By 

aligning theoretical constructs with empirical 

validation, robotics research can advance toward 

more robust, transparent, and socially integrated 

systems. 
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