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Abstract: Video super-resolution (VSR) has emerged as a critical research domain with extensive applications spanning surveillance, 

medical imaging, entertainment, and remote sensing. This study presents a rigorous and comprehensive evaluation of four state-of-the-art 

Generative Adversarial Network (GAN) architectures for video super-resolution: GFPGAN (Generative Facial Prior GAN), ESRGAN 

(Enhanced Super-Resolution GAN), TecoGAN (Temporally Coherent GAN), and RRDB-ESRGAN (Residual-in-Residual Dense Block 

ESRGAN). We conduct exhaustive experiments on the Low-Dose Video (LDV) benchmark dataset, employing a multi-faceted evaluation 

framework encompassing both distortion-based metrics (Peak Signal-to-Noise Ratio and Structural Similarity Index) and perceptual quality 

metrics (Learned Perceptual Image Patch Similarity and Natural Image Quality Evaluator). Additionally, we introduce temporal 

consistency analysis using optical flow warping error and inter-frame similarity metrics to assess motion coherence in reconstructed video 

sequences. Our experimental findings reveal that GFPGAN achieves the highest PSNR (34.052 dB) and SSIM (0.952), while TecoGAN 

demonstrates superior temporal consistency with the lowest temporal warping error (0.0234). Furthermore, we present comprehensive 

ablation studies examining the impact of architectural components, loss function configurations, and training strategies on reconstruction 

quality. Computational complexity analysis reveals significant variations in inference time and memory requirements across algorithms, 

providing practical guidance for deployment scenarios. This research contributes valuable insights for researchers and practitioners seeking 

optimal GAN-based solutions for video enhancement applications. 

Keywords: Video super-resolution, Generative Adversarial Networks, GFPGAN, ESRGAN, TecoGAN, RRDB-ESRGAN, Deep learning, 

Perceptual quality, Temporal consistency, Benchmark evaluation 

1. Introduction 

The exponential growth in video content generation and 

consumption has intensified the demand for high-quality visual 

media across diverse application domains. Video super-resolution 

(VSR), a fundamental problem in computational imaging, 

addresses the challenge of reconstructing high-resolution (HR) 

video sequences from their low-resolution (LR) counterparts. 

Unlike single-image super-resolution (SISR), which processes 

individual frames independently, VSR leverages temporal 

correlations across consecutive frames to achieve superior 

reconstruction quality, effectively exploiting the redundancy 

inherent in video data [1-4]. 

The theoretical foundations of super-resolution trace back to 

frequency-domain approaches and interpolation techniques 

developed in the 1980s and 1990s. Traditional VSR methodologies 

predominantly relied on bicubic and bilinear interpolation 

algorithms, which approximate missing pixel values based on 

neighboring samples [5]. While computationally efficient, these 

methods exhibit inherent limitations in capturing complex spatial-

temporal dependencies and high-frequency textural details, often 

producing over-smoothed outputs devoid of fine structural 

information. The advent of deep learning, particularly 

Convolutional Neural Networks (CNNs), has catalyzed a paradigm 

shift in super-resolution research, enabling the learning of 

sophisticated mapping functions between LR and HR image 

domains [6]. 

The practical significance of VSR extends across multiple critical 

application domains. In video surveillance systems, enhanced 

resolution enables accurate identification of facial features, license 

plate characters, and subtle object movements essential for security 

applications [7, 8]. Medical imaging applications benefit 

substantially from VSR, where improved resolution in modalities 

such as MRI, ultrasound, and endoscopic imaging facilitates more 

precise diagnostic assessments and treatment planning [9, 10]. The 

entertainment industry leverages VSR for content remastering, 

format conversion, and quality enhancement of streaming media, 

significantly improving viewer experience [11, 12]. Remote 

sensing applications employ VSR to enhance satellite imagery 

resolution, enabling more detailed environmental monitoring, 

urban planning, and agricultural analysis [13, 14]. 

Generative Adversarial Networks (GANs), introduced by 

Goodfellow et al. in 2014 [15], have emerged as a transformative 

framework for image and video super-resolution. The GAN 

architecture comprises two competing neural networks: a 

generator that synthesizes realistic data samples and a 

discriminator that distinguishes between authentic and generated 

samples. This adversarial training paradigm drives the generator 

toward producing increasingly realistic outputs that closely 
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approximate the true data distribution [16]. The incorporation of 

adversarial loss functions enables GAN-based VSR methods to 

generate perceptually superior results with enhanced textural 

details and reduced artifacts compared to traditional mean squared 

error (MSE) optimized approaches [17]. 

The evolution of GAN-based super-resolution has witnessed 

significant architectural innovations. SRGAN [18] established the 

foundational framework by combining adversarial training with 

perceptual loss functions derived from pretrained VGG networks. 

ESRGAN [19] advanced this paradigm through the introduction of 

Residual-in-Residual Dense Blocks (RRDB) and refined 

perceptual loss formulations. Temporal modeling approaches, 

exemplified by TDAN [20] and BasicVSR [21], addressed the 

challenge of maintaining temporal coherence across reconstructed 

frames through optical flow estimation and recurrent architectures. 

Despite these advances, challenges persist regarding 

computational complexity, temporal consistency, and 

generalization across diverse video content types [22]. 

This research presents a comprehensive comparative analysis of 

four prominent GAN-based VSR algorithms: GFPGAN [23], 

ESRGAN [19], TecoGAN [24], and RRDB-ESRGAN [25]. Our 

study contributes to the field through: (1) systematic evaluation 

using multiple complementary quality metrics spanning distortion-

based, perceptual, and temporal consistency measures; (2) detailed 

ablation studies examining the influence of architectural 

components and training configurations; (3) computational 

complexity profiling providing practical deployment guidance; 

and (4) cross-dataset generalization analysis assessing algorithm 

robustness. The findings presented herein offer valuable guidance 

for researchers and practitioners in selecting appropriate VSR 

algorithms for specific application requirements. 

2. Literature Review 

The historical trajectory of super-resolution research reflects the 

broader evolution of image processing and computer vision 

methodologies. Early super-resolution approaches, developed 

primarily in the 1980s and 1990s, operated within frequency-

domain frameworks and utilized techniques such as iterative back-

projection and regularization-based optimization [26]. These 

methods formulated super-resolution as an inverse problem, 

seeking to recover high-frequency components lost during the 

imaging degradation process. Multi-frame super-resolution 

techniques emerged as a natural extension, exploiting sub-pixel 

displacements between frames to reconstruct high-resolution 

imagery from multiple low-resolution observations [27, 28]. 

The transition to learning-based approaches marked a significant 

paradigm shift in super-resolution research. Example-based 

methods established the concept of learning correspondences 

between low and high-resolution image patches from training data. 

Sparse coding and dictionary learning techniques further refined 

this approach, enabling the representation of image patches as 

sparse linear combinations of dictionary atoms [29]. However, 

these methods remained constrained by the limited 

representational capacity of handcrafted features and linear 

transformation models. 

The introduction of deep learning fundamentally transformed 

super-resolution capabilities, enabling the direct learning of 

complex nonlinear mappings between low and high-resolution 

image domains. SRCNN [33], proposed by Dong et al. in 2014, 

demonstrated that a three-layer convolutional neural network 

could significantly outperform traditional interpolation methods. 

This seminal work established the effectiveness of end-to-end 

learning for super-resolution and catalyzed extensive research into 

deeper and more sophisticated network architectures [30-32]. 

Subsequent architectural innovations addressed limitations of early 

CNN-based approaches. VDSR (Very Deep Super-Resolution) 

demonstrated that substantially deeper networks with residual 

learning could achieve improved reconstruction accuracy. The 

introduction of perceptual loss functions, computed as feature 

differences in pretrained classification networks, shifted 

optimization objectives from pixel-level fidelity toward 

perceptually meaningful similarity metrics. SRGAN integrated 

adversarial training with perceptual loss, establishing the 

foundation for GAN-based super-resolution. ESRGAN further 

refined this approach through architectural improvements 

including the removal of batch normalization and the introduction 

of RRDB structures [15-19]. 

Recent advances have incorporated attention mechanisms and self-

attention modules to enable adaptive feature refinement based on 

spatial content importance [34, 35]. Transformer-based 

architectures have demonstrated promising results by capturing 

long-range dependencies through self-attention operations. Video-

specific approaches, including BasicVSR, IconVSR, and their 

variants, have advanced temporal modeling through bidirectional 

propagation and feature alignment strategies, achieving state-of-

the-art performance on standard benchmarks.  

3. Video Super Resolution Techiques 

3.1. Single-frame vs. Multi-frame Super-Resolution 

Video super-resolution methodologies can be categorized along 

multiple dimensions, with the distinction between single-frame 

and multi-frame approaches representing a fundamental taxonomic 

division. Single-frame VSR methods process individual video 

frames independently, applying image super-resolution techniques 

without exploiting temporal dependencies [36, 37]. These 

approaches offer computational efficiency and straightforward 

implementation but sacrifice the rich temporal information 

inherent in video sequences. The absence of temporal modeling 

often results in temporal flickering artifacts and inconsistent 

reconstruction quality across frames. 

Multi-frame VSR approaches explicitly model temporal 

relationships between consecutive frames, leveraging motion 

information and temporal redundancy to improve reconstruction 

quality [38]. These methods typically incorporate motion 

estimation and compensation modules that align features or pixels 

across frames before aggregation. Optical flow-based alignment, 

deformable convolutions, and attention-based correspondence 

mechanisms represent common strategies for temporal feature 

fusion. While multi-frame approaches generally achieve superior 

reconstruction quality, they introduce additional computational 

overhead and complexity in handling large temporal receptive 

fields and diverse motion patterns. 

3.2. Traditional Methods vs. Deep Learning-Based Methods 

Traditional VSR methods rely on handcrafted features and explicit 

motion models to perform reconstruction. Bicubic interpolation, 

Lanczos resampling, and edge-directed interpolation represent 

common baseline approaches. While computationally efficient and 

theoretically well-understood, these methods exhibit limited 

capacity to recover high-frequency textural details and complex 

spatial structures. The assumption of specific degradation models 

and motion patterns further constrains their applicability to diverse 

real-world scenarios. 
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Deep learning-based VSR methods have demonstrated substantial 

improvements in reconstruction quality by learning sophisticated 

feature representations and transformation functions from large-

scale training data. Convolutional neural networks with skip 

connections, residual learning, and attention mechanisms enable 

effective capture of both local and global contextual information. 

The flexibility of deep learning approaches in modeling complex 

degradation processes and diverse content types has established 

them as the predominant paradigm in contemporary VSR research. 

3.3. Challenges in Video Super-Resolution 

Despite significant advances, several fundamental challenges 

persist in video super-resolution research. Computational 

complexity represents a primary concern, as high-quality VSR 

models often require substantial processing resources that preclude 

real-time applications on resource-constrained devices. The trade-

off between reconstruction quality and computational efficiency 

remains an active area of investigation, with lightweight 

architectures and efficient attention mechanisms emerging as 

promising solutions. 

Temporal consistency presents another critical challenge, as 

independent frame-level processing can introduce temporal 

flickering and motion artifacts. Maintaining natural motion 

dynamics while enhancing spatial resolution requires sophisticated 

temporal modeling and consistency constraints. Generalization 

across diverse content types, degradation conditions, and imaging 

scenarios represents a further challenge, as models trained on 

specific datasets may exhibit degraded performance on out-of-

distribution inputs. The scarcity of high-quality paired training 

data, particularly for real-world degradation scenarios, additionally 

constrains the development and evaluation of VSR algorithms. 

spaces. It is good practice to explain the significance of the figure in the 

caption. 

4. Generative Adversarial Networks (GANs) 

Generative Adversarial Networks represent a class of generative 

models that learn to synthesize realistic data samples through 

adversarial training between two competing neural networks [39]. 

The generator network G transforms random noise vectors z 

sampled from a prior distribution p(z) into synthetic data samples 

G(z), while the discriminator network D learns to distinguish 

between real samples x from the data distribution p_data(x) and 

generated samples G(z). The training objective can be formulated 

as a minimax optimization problem [40-41]. 

The adversarial training process drives both networks toward 

improved performance, with the generator producing increasingly 

realistic samples while the discriminator develops enhanced 

discrimination capability. At convergence, the generator ideally 

produces samples indistinguishable from real data, with the 

discriminator unable to reliably differentiate between real and 

generated samples. 

In the context of super-resolution, GANs offer significant 

advantages over traditional MSE-optimized approaches. Mean 

squared error minimization tends to produce overly smooth outputs 

that, while achieving high PSNR values, lack perceptually 

important high-frequency details and textures. Adversarial training 

encourages the generator to produce outputs that lie within the 

manifold of natural high-resolution images, resulting in more 

realistic textures and sharper edges even when pixel-level fidelity 

is slightly compromised. 

 

Fig. 1. High-Resolution Image Generator using GANs 

5. GAN-based Video Super- Resolution 
Algorithms 

This section presents detailed descriptions of the four GAN-based 

VSR algorithms evaluated in this study, examining their 

architectural designs, training strategies, and distinctive features. 

5.1. GFPGAN (Generative Facial Prior GAN) 

GFPGAN, developed by Zhang et al., introduces an innovative 

architecture combining generative feedback mechanisms with 

progressive training strategies for high-quality image restoration 

[42, 43]. The architecture leverages pretrained generative priors 

from StyleGAN to provide rich facial feature information, 

enabling the recovery of realistic facial details and textures. The 

generative feedback mechanism iteratively refines reconstructed 

features through feedback connections between decoder layers and 

the generative prior, progressively enhancing output quality 

through multiple refinement stages. 

The progressive training strategy employed by GFPGAN ensures 

stable convergence during the learning of high-resolution feature 

mappings. Training proceeds through multiple stages with 

gradually increasing resolution, allowing the network to establish 

coarse-to-fine representations. Channel-split spatial feature 

transform modules enable adaptive feature modulation based on 

degradation characteristics, enhancing robustness to diverse input 

quality levels. 

5.2. ESRGAN (Enhanced Super-Resolution GAN) 

ESRGAN represents a significant architectural advancement over 

the original SRGAN, introducing several key modifications that 

substantially improve reconstruction quality [19]. The primary 

innovation is the Residual-in-Residual Dense Block (RRDB) 

structure, which removes batch normalization layers and 

incorporates dense connections for improved gradient flow and 

feature reuse. ESRGAN refines the perceptual loss formulation by 

computing feature differences before activation functions in the 

VGG network, preserving more discriminative feature 

information. 

RANDOM

INPUT

REAL  IMAGES SAMPLE

GENERATOR SAMPLE

DISCRIMINATOR

DISCRIMINATOR  LOSS

GENERATOR  LOSS
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5.3. TecoGAN (Temporally Coherent GAN) 

TecoGAN specifically addresses the temporal consistency 

challenge inherent in video super-resolution through a specialized 

architecture designed for spatio-temporal processing [24]. The 

generator employs a recurrent architecture that processes frames 

sequentially while maintaining temporal state information across 

the sequence. A distinctive feature of TecoGAN is the spatio-

temporal discriminator that operates on video clips rather than 

individual frames, enforcing temporal coherence in addition to 

spatial quality. 

5.4. RRDB-ESRGAN 

RRDB-ESRGAN extends the ESRGAN architecture through 

enhanced residual dense block configurations and optimized 

training procedures [25]. The architecture increases the depth of 

RRDB structures and incorporates attention mechanisms for 

adaptive feature refinement. Multi-scale feature extraction at 

different network depths enables the capture of both fine details 

and global structural information. 

Table 1. Performance Metrics for Different GAN Architectures 

Algorithm PSNR 

(dB) 

SSIM LPIPS NIQE 

GFPGAN 34.052 0.952 0.0823 3.842 

TecoGAN 34.033 0.848 0.0756 3.621 

RRDB-

ESRGAN 

32.244 0.841 0.0912 4.128 

ESRGAN 30.825 0.714 0.0689 3.457 

 

6. Low-Dose Video (LDV) Dataset 

For ensuring equitable and consistent assessment of video super-

resolution algorithms' performance, this paper has utilized LDV 

(Low-Dose Video) dataset [44]. The LDV dataset is a publicly 

accessible benchmark created explicitly for the assessment of 

video super-resolution methods. It comprises a varied assortment 

of low-resolution video sequences acquired under low-dose 

imaging circumstances, emulating situations observed in medical 

imaging and surveillance applications. 

The LDV collection comprises video sequences exhibiting diverse 

resolutions, frame rates, and content categories, encompassing 

natural environments, medical imaging scans, and surveillance 

recordings. The videos are recorded under various imaging 

settings, including poor light, motion blur, and noise, to replicate 

real-world issues in video super-resolution. Each video sequence 

in the LDV dataset is paired with high-resolution ground truth 

frames, facilitating quantitative assessment of super-resolution 

methods. 

7. Results and Discussions 

The In order to evaluate video super-resolution algorithms' 

performance objectively, evaluation metrics are essential. Two 

frequently utilized metrics are Peak Signal-to-Noise Ratio (PSNR) 

and Structural Similarity Index (SSIM). PSNR is a commonly 

employed statistic that evaluates the quality of reconstructed 

pictures or videos by juxtaposing them with the original reference. 

SSIM is a perceptual metric that assesses the structural 

resemblance between two images or videos, evaluating brightness, 

contrast, and structural similarity components. 

Table 1. Performance Metrics for Different GAN Architectures 

Algorithm PSNR 

(dB) 

SSIM LPIPS NIQE 

GFPGAN 34.052 0.952 0.0823 3.842 

TecoGAN 34.033 0.848 0.0756 3.621 

RRDB-

ESRGAN 

32.244 0.841 0.0912 4.128 

ESRGAN 30.825 0.714 0.0689 3.457 

7.1. GFPGAN Results 

GFPGAN has competitive performance regarding PSNR and 

SSIM metrics. The generative feedback pyramid architecture 

facilitates the creation of high-resolution images with intricate 

features and textures. By integrating recurrent connections and 

adversarial training, it adeptly models intricate motion dynamics 

and generates realistic images with improved resolution as shown 

in Fig 2. 

    

(a) 

  

(b) 

Fig. 2 (a) Low-Resolution Input Image (b) High-Resolution Output 

Generated by GFPAN 

7.2. ESRGAN Results 

ESRGAN is a prominent picture super-resolution method 

recognized for its capacity to produce high-quality images with 

improved resolution as depicted in Fig 3. In our assessment, 

ESRGAN demonstrates comparatively inferior PSNR and SSIM 

values relative to the other techniques. Although it yields 

aesthetically pleasing outcomes, its performance on quantitative 

metrics lags behind TECOGAN, RRDB, and GFPGAN. The 

results of ESRGAN highlight its efficacy and promise in enhancing 

video resolution. 
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(a) 

 

(b) 

Fig. 3 (a) Low-Resolution Input Image (b) High-Resolution Output 

Generated by ESRGAN 

7.3. RRDB-ESRGAN Results 

RRDB demonstrates superior performance in our assessment, 

exceeding ESRGAN in PSNR and SSIM metrics. The residual 

component in the residual dense block architecture facilitates 

effective feature capture and propagation, leading to superior 

picture reconstructions. The results of RRDB, as indicated by 

PSNR and SSIM values, highlight its efficacy and promise in video 

resolution augmentation as shown in Fig 4. 

   

(a) 

 

(b) 

Fig. 4 (a) Low-Resolution Input Image (b) High-Resolution Output 

Generated by RRDB ESRGAN 

7.4. TecoGAN Results 

TecoGAN emphasizes the generation of temporally consistent 

high-resolution video sequences as depicted in Fig 5. Its capacity 

to capture temporal dependencies and produce temporally coherent 

frames leads to enhanced image quality and fidelity. TecoGAN's 

sophisticated architecture, featuring recurrent connections and 

adversarial training, allows it to adeptly describe intricate motion 

dynamics and generate high-resolution, realistic images. 

 

(a) 

 

(b) 

Fig. 5 (a) Low-Resolution Input Image (b) High-Resolution Output 

Generated by TecoGAN 

Table 2. Temporal Consistency Metrics 

Algorithm TWE ↓ IF-SSIM Flicker 

Index ↓ 

GFPGAN 0.0312 0.9234 0.0187 

TecoGAN 0.0234 0.9512 0.0124 

RRDB-

ESRGAN 

0.0456 0.8967 0.0298 

ESRGAN 0.0523 0.8745 0.0342 

TWE: Temporal Warping Error; IF-SSIM: Inter-Frame SSIM; ↓ indicates 

lower is better 

Table 2 presents temporal consistency metrics, highlighting 

TecoGAN's superior performance in this dimension. TecoGAN 

achieves the lowest temporal warping error (0.0234) and flicker 

index (0.0124), along with the highest inter-frame structural 

similarity (0.9512). These results validate the effectiveness of 

TecoGAN's spatio-temporal discriminator and temporal 

consistency loss in producing smooth, natural video sequences. 
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Table 3. PSNR Performance Stratified by Motion Complexity 

Algorithm Low 

Motion 

Moderate 

Motion 

High 

Motion 

GFPGAN 36.234 dB 34.052 dB 31.456 dB 

TecoGAN 35.867 dB 34.033 dB 32.123 dB 

RRDB-
ESRGAN 

34.512 dB 32.244 dB 29.876 dB 

ESRGAN 32.987 dB 30.825 dB 28.543 dB 

All algorithms exhibit expected performance degradation with 

increasing motion complexity. However, TecoGAN demonstrates 

the smallest performance drop from low to high motion scenarios 

(3.744 dB), compared to GFPGAN (4.778 dB), RRDB-ESRGAN 

(4.636 dB), and ESRGAN (4.444 dB). This robustness to motion 

complexity underscores the value of explicit temporal modeling 

for video super-resolution applications. 

Table 4. Computational Complexity Analysis 

Algorithm Params 

(M) 

FLOPs 

(G) 

Time 

(ms) 

Memory 

(GB) 

GFPGAN 72.3 234.5 156.2 4.8 

TecoGAN 45.6 312.8 198.4 6.2 

RRDB-

ESRGAN 

23.4 178.2 89.3 3.1 

ESRGAN 16.7 142.6 67.8 2.4 

Inference time measured for 720p to 4K upscaling on NVIDIA A100 GPU 

Table 5. Ablation Study Results 

Configuration PSNR SSIM LPIPS 

GFPGAN (Full) 34.052 0.952 0.0823 
  w/o Generative Prior 32.456 0.912 0.1024 

  w/o Progressive Training 33.234 0.934 0.0912 
TecoGAN (Full) 34.033 0.848 0.0756 

  w/o Temporal Discriminator 33.567 0.823 0.0834 

  w/o Bidirectional Propagation 33.234 0.812 0.0856 

Table 6. Statistical Significance of PSNR Differences (p-values) 

 GFPGAN TecoGAN RRDB-

ESRGAN 

ESRGAN 

GFPGAN - 0.8234 <0.001* <0.001* 

TecoGAN 0.8234 - <0.001* <0.001* 

RRDB-
ESRGAN 

<0.001* <0.001* - 0.0023* 

ESRGAN <0.001* <0.001* 0.0023* - 

*Statistically significant at α = 0.05 

The quality and fidelity of the reconstructed videos are greatly 

influenced by the method used in the field of video resolution 

improvement. In our comparison examination, GFPGAN stands 

out as the superior approach, exceeding other candidates in both 

PSNR and SSIM metrics. GFPGAN demonstrates its advantage in 

generating high-quality, visually appealing movies with improved 

resolution and fidelity, evidenced by a PSNR of 34.052 and an 

SSIM of 0.952. 

The efficacy of GFPGAN is due to its novel Generative Feedback 

Pyramid architecture, enabling the production of high-resolution 

films with intricate details and textures. This hierarchical structure 

utilizes various feedback loops at many scales, allowing the 

network to efficiently capture and transmit characteristics across 

video frames. GFPGAN integrates feedback mechanisms at every 

pyramid level to guarantee that the produced videos demonstrate 

improved resolution, sharpness, and clarity. 

8. Conclusion and Future Work 

This comprehensive study presented a rigorous comparative 

evaluation of four state-of-the-art GAN-based video super-

resolution algorithms: GFPGAN, ESRGAN, RRDB-ESRGAN, 

and TecoGAN. Through systematic experimentation on the LDV 

benchmark dataset employing multiple complementary quality 

metrics encompassing distortion-based measures (PSNR, SSIM), 

perceptual quality indicators (LPIPS, NIQE), and temporal 

consistency metrics (TWE, IF-SSIM), we have established 

quantitative performance rankings and identified the distinctive 

strengths of each approach. 

Our experimental findings demonstrate that GFPGAN achieves 

superior performance in distortion-based metrics with PSNR of 

34.052 dB and SSIM of 0.952, attributed to its innovative 

generative feedback architecture and progressive training strategy 

that enables the recovery of intricate facial details and high-

frequency textures. The generative prior mechanism contributes 

significantly to performance improvement, as evidenced by the 

ablation study showing a 1.596 dB PSNR gain when this 

component is included. TecoGAN excels in temporal consistency 

metrics with the lowest temporal warping error (0.0234) and 

highest inter-frame structural similarity (0.9512), validating the 

effectiveness of its spatio-temporal discriminator design in 

producing smooth, natural video sequences with minimal 

flickering artifacts. 

ESRGAN demonstrates favorable perceptual quality metrics 

(LPIPS: 0.0689, NIQE: 3.457) while maintaining the lowest 

computational requirements with only 16.7M parameters and 

67.8ms inference time, making it particularly suitable for resource-

constrained deployment scenarios. RRDB-ESRGAN provides a 

balanced compromise across quality dimensions, offering 

improved feature extraction through its enhanced residual dense 

block configurations. The motion-stratified analysis reveals that 

TecoGAN exhibits the greatest robustness to motion complexity 

with only 3.744 dB performance degradation from low to high 

motion scenarios, compared to 4.778 dB for GFPGAN, 

underscoring the value of explicit temporal modeling for video 

applications. 

The statistical significance analysis confirms that GFPGAN and 

TecoGAN do not differ significantly in PSNR performance (p = 

0.8234), while both significantly outperform RRDB-ESRGAN and 

ESRGAN with p-values less than 0.001. The computational 

complexity profiling provides practical deployment guidance, with 

inference times ranging from 67.8ms for ESRGAN to 198.4ms for 

TecoGAN on NVIDIA A100 GPU for 4K video processing. These 

findings offer valuable guidance for researchers and practitioners 

in selecting appropriate VSR algorithms based on specific 

application requirements, whether prioritizing spatial detail 

preservation, temporal consistency, perceptual quality, or 

computational efficiency. 

Future research directions emerging from this study include the 

development of hybrid architectures that combine the temporal 

modeling capabilities of TecoGAN with the generative prior 

approach of GFPGAN to achieve superior performance across both 

spatial and temporal dimensions. Additionally, exploring 

lightweight network designs through neural architecture search 

and knowledge distillation, investigating self-supervised learning 

approaches to reduce dependence on paired training data, and 

developing real-time implementations for edge devices represent 

promising avenues for advancing the field of video super-

resolution. 
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