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Abstract: Many large organizations still depend on legacy monolithic systems that were built over many years and now 

hold deeply embedded business logic. Moving these systems to cloud-native microservices is widely desired, but 

the process is slow, risky, and heavily dependent on manual code understanding, which often leads to errors and 

rework. Current migration approaches either rely on rigid rule-based tools or expect full manual refactoring, leaving 

a gap in practical support for understanding complex dependencies and identifying safe service boundaries. The goal 

of this study is to address this gap by providing intelligent, decision-oriented assistance that helps engineers refactor 

legacy code while preserving existing business behavior. The proposed approach introduces an AI-augmented 

modular refactoring framework that combines static code analysis, dependency graph modeling, and machine learning-

based pattern recognition. Instead of automatically rewriting code, the framework highlights logical decomposition 

points, detects refactoring candidates, and surfaces architectural risks. A human-in-the-loop workflow allows 

developers and architects to review, adjust, and validate recommendations before changes are applied, supporting 

incremental migration rather than disruptive rewrites. Evaluation on enterprise-scale legacy applications shows a 

reduction of refactoring effort by approximately 25 to 40 percent compared to fully manual approaches. The 

resulting microservices also exhibit improved modularity and fewer post-migration defects during validation. This 

framework can be applied to large enterprise modernization initiatives where reliability and domain integrity are 

critical. By combining human expertise with AI-assisted insight, the work demonstrates a practical and novel way to 

reduce risk and effort in legacy-to-microservice migration. 

Keywords: Legacy system modernization, Code refactoring, Monolithic architectures, Microservice migration, AI-

assisted software engineering, Enterprise application evolution 

1. Introduction 

Enterprise software systems that support critical 

business operations are often built as large monolithic 

applications that have evolved over many years. 

These systems typically embed complex business logic, 

domain-specific rules, and operational assumptions 

that are difficult to replace or rewrite. While such 

applications are often stable in production, their tightly 

coupled structure and accumulated technical debt 

make them increasingly hard to scale, maintain, and 

adapt to modern deployment environments [1]. As 

organizations seek improved scalability, fault isolation, 

and faster delivery cycles, migrating legacy monoliths 

to microservice-based architectures has become a 

common modernization goal [2]. Despite widespread 

interest in microservice migration, refactoring legacy 

systems remains a challenging and high-risk task. 

Existing migration efforts rely heavily on manual 

code analysis and refactoring, which requires deep 

domain knowledge and significant engineering effort. 

These manual approaches do not scale well for large 

enterprise codebases and are prone to oversight when 

dependencies are undocumented or implicit. At the 

same time, rule-based and automated migration 

tools often lack sufficient contextual understanding of 

business logic and architectural intent, leading to poor 

service decomposition or unintended behavioral 

changes [3]. This creates a gap between labor-

intensive manual refactoring and impractical fully 

automated solutions. Recent advances in machine 

learning offer an opportunity to better support legacy 

modernization by assisting engineers in 

understanding and restructuring complex codebases. 

Large monolithic systems contain recurring 

dependency patterns, structural signals, and 
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architectural characteristics that are difficult to 

interpret through static analysis alone [4]. When 

used as an assistive technique rather than a 

replacement for human judgment, AI can help surface 

meaningful insights from these systems and support 

more informed refactoring decisions. Such an 

approach is particularly relevant in enterprise 

environments where correctness, reliability, and 

domain integrity are critical [5]. This paper proposes 

an AI-augmented approach to legacy code refactoring 

that supports the migration of enterprise monoliths to 

microservice architectures. The approach combines 

static code analysis with machine learning-based 

pattern recognition to identify potential service 

boundaries, refactoring candidates, and architectural 

risks. Rather than automatically rewriting code, the 

proposed framework generates structured 

recommendations that guide architects and developers 

through a human-in-the-loop workflow. The 

framework is modular and designed for incremental 

adoption, allowing teams to modernize systems 

gradually while preserving existing business behavior. 

The remainder of this paper presents related work, 

describes the proposed methodology and 

implementation, evaluates the approach on enterprise-

scale systems, and discusses its practical implications. 

 

2. Related Work 

The migration of legacy monolithic systems to 

microservice architectures has been widely studied 

across software engineering and systems research. 

Prior work in this area can be broadly grouped into 

manual refactoring practices, rule-based and tool 

supported migration approaches, and early applications 

of artificial intelligence to software modernization. This 

section reviews these directions and highlights their 

limitations in the context of large enterprise systems. 

2.1. Manual Refactoring and Decomposition 

Practices 

Early and widely adopted approaches to monolith-

to-microservice migration rely on manual analysis and 

refactoring performed by experienced architects and 

developers. These methods typically involve 

identifying bounded contexts, restructuring modules 

and extracting services based on domain knowledge 

and architectural principles. While such practices offer 

a high degree of control and can preserve business 

semantics when executed carefully, they are time-

consuming and difficult to scale [6]. In large legacy 

codebases, undocumented dependencies and tightly 

coupled components make manual decomposition 

error-prone, often leading to repeated refactoring 

cycles and inconsistent service boundaries. 

2.2. Rule-Based and Tool-Supported 

Migration Approaches 

To reduce manual effort, several tools and 

methodologies have been proposed to support service 

extraction through static analysis, dependency metrics, 

and predefined architectural rules. These approaches 

analyze code structure, call graphs, or data access 

patterns to suggest candidate services or modules [7, 

8]. Although such tools can process large codebases 

efficiently, they often rely on fixed heuristics that lack 

awareness of domain semantics and runtime behavior. 

As a result, the generated service boundaries may not 

align with business logic, leading to overly fine-

grained services or architectures that are difficult to 

evolve. These limitations are particularly evident in 

enterprise systems with long development histories and 

heterogeneous design styles. 

2.3. AI-Assisted Software Modernization 

More recent work has explored the use of machine 

learning techniques to assist software engineering tasks 

such as code classification, dependency analysis, and 

architectural pattern detection [9, 10]. In the context of 

legacy modernization, these approaches aim to identify 

structural patterns and refactoring opportunities that are 

not easily captured by static rules alone. However, 

many existing efforts focus on narrow tasks or 

experimental settings and do not address the broader 

challenges of enterprise-scale migration. 

Additionally, fully automated refactoring remains 

impractical in environments where correctness, 

regulatory constraints, and domain-specific behavior are 

critical, limiting the applicability of end-to-end 

automation. 

2.4. Research Gaps 

Despite progress in legacy refactoring research, 

several gaps remain when these approaches are 

applied to enterprise-scale migration efforts. 

Existing manual methods lack scalability, while rule-

based tools provide limited contextual understanding 

of complex business logic. AI-assisted techniques, 

although increasingly explored, often emphasize 

automation over practical decision support and are 

rarely integrated into incremental migration workflows 

[10, 11] There is a need for approaches that combine 

structural analysis with AI-assisted insight while 

keeping humans in control of refactoring decisions. In 
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particular, prior work offers limited guidance on how 

to support service boundary identification and 

refactoring planning in a way that balances analytical 

rigor, domain knowledge, and practical adoption. This 

paper addresses these gaps by introducing an AI-

augmented refactoring framework designed to assist, 

rather than replace, engineers during enterprise 

monolith-to-microservice migration. 

 

3. Methodology 

This work is novel in its focus on using AI as a 

practical decision-support mechanism for legacy 

refactoring rather than as a fully automated migration 

solution. The proposed methodology combines static 

code analysis with machine learning–assisted pattern 

recognition to guide refactoring decisions in complex 

enterprise monoliths. Emphasis is placed on 

modularity, incremental adoption, and human 

validation to reduce migration risk while preserving 

existing system behavior. 

3.1. Overview of the AI-Augmented 

Refactoring Approach 

The methodology is designed to support 

engineers during the early and most error-prone phases 

of monolith-to-microservice migration: understanding 

system structure, identifying meaningful service 

boundaries and assessing refactoring risk. Rather than 

attempting to transform code automatically, the 

approach focuses on generating structured insights 

that help developers reason about decomposition 

decisions. At a high level, the process begins with 

static analysis of the legacy codebase to extract 

structural information such as module dependencies, 

call relationships, and shared data access patterns. This 

information is then transformed into intermediate 

representations, including dependency graphs and 

component interaction models, which serve as inputs 

to machine learning–based analysis. The role of 

machine learning in this context is not to replace 

architectural judgment, but to surface patterns and 

relationships that are difficult to identify through 

manual inspection alone. The output of the analysis 

consists of ranked refactoring recommendations that 

highlight potential service boundaries, tightly coupled 

components, and areas of architectural risk. These 

recommendations are intentionally advisory and are 

designed to be reviewed and refined by human 

experts. By positioning AI as an assistive layer 

rather than a prescriptive authority, the methodology 

aligns with enterprise constraints where correctness, 

stability, and domain knowledge are essential. As 

shown in Figure 1, the methodology integrates static 

analysis, AI-assisted pattern recognition, and human 

validation into a single, incremental refactoring 

workflow. 

3.2. Static Analysis and Structural Modeling 

Static analysis forms the foundation of the proposed 

methodology by providing a detailed view of the 

legacy system’s internal structure. Source code 

artifacts such as classes, modules, interfaces, and 

database access layers are analyzed to extract 

dependency information without requiring runtime 

execution. This is particularly important for legacy 

enterprise systems where production-like runtime 

environments may be difficult to replicate. The analysis 

captures several types of relationships, including 

method invocations, shared data access, inheritance 

hierarchies, and configuration-level dependencies. 

These relationships are aggregated into a dependency 

graph that represents the system as a network of 

interacting components. Nodes in the graph correspond 

to logical units such as modules or packages, while 

edges represent coupling through calls or shared 

resources. While static analysis tools are commonly 

used in refactoring workflows, their raw output is often 

too granular to support architectural decision-making 

directly. To address this, the methodology applies 

structural aggregation techniques that group low-level 

elements into higher-level components based on usage 

patterns and cohesion metrics [12]. This abstraction step 

reduces noise and allows engineers to reason about the 

system at a level that is meaningful for service 

decomposition. The resulting structural model provides 

a stable and explainable basis for further analysis. 

Because the model is derived directly from source 

artifacts, it remains transparent and auditable, which is 

critical in enterprise environments where architectural 

decisions must be justified and reviewed. 
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Figure 1: System architecture of the AI-augmented legacy refactoring framework. 

3.3. Machine Learning–Assisted Pattern 

Identification 

Building on the structural model, machine 

learning techniques are applied to identify recurring 

patterns and refactoring opportunities within the 

legacy system. Feature vectors are constructed from 

structural characteristics such as coupling strength, 

change frequency, shared data usage, and 

dependency directionality. These features capture 

both the static shape of the system and historical 

signals that reflect how components evolve over 

time. Clustering and classification techniques are 

used to identify groups of components that exhibit 

high internal cohesion and relatively low external 

coupling, making them suitable candidates for 

service extraction. The analysis also highlights anti-

patterns such as overly central components or 

modules with excessive cross-cutting dependencies, 

which may require special handling during refactoring 

[13]. Importantly, the machine learning models are 

used to generate relative assessments rather than 

absolute decisions. Recommendations are expressed as 

ranked suggestions with associated confidence 

indicators, allowing engineers to prioritize areas for 

deeper inspection. This design choice reflects the 

reality that architectural decisions often involve 

trade-offs that cannot be fully captured by 

automated models. The focus remains on 

augmenting human understanding rather than 

automating transformation, which improves trust and 

practical adoption. By integrating machine learning at 

this stage, the methodology helps bridge the gap 

between low-level dependency data and high-level 

architectural reasoning while preserving human 

oversight. Algorithm 1 formalizes this AI-assisted 

pattern identification process and summarizes how 

structural features are transformed into ranked 

refactoring recommendations for human validation. 
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3.4. Human-in-the-Loop Workflow and 

Incremental Adoption 

A central design principle of the methodology is the 

inclusion of a human-in-the-loop workflow that keeps 

architects and developers actively involved in 

refactoring decisions. Rather than enforcing automated 

changes, the framework presents insights through 

visualizations and structured reports that explain why 

specific recommendations were generated [14]. This 

transparency allows users to validate assumptions, 

incorporate domain knowledge, and adjust 

boundaries before implementation. Figure 2 illustrates 

the human-in-the-loop feedback cycle and incremental 

adoption flow. The methodology supports incremental 

adoption by allowing teams to apply the analysis 

selectively to specific subsystems or domains. This is 

particularly valuable for large enterprise applications 

where full-scale migration is neither feasible nor 

desirable in a single phase. Teams can prioritize high-

impact areas, validate outcomes, and gradually expand 

modernization efforts based on confidence and available 

resources. Feedback from human review is treated as 

a first-class input to the process. Adjustments made by 

engineers can be recorded and reused to refine future 

recommendations, enabling the framework to adapt to 

project-specific constraints over time. This feedback 

loop helps align analytical insights with real-world 

architectural intent. By combining AI-assisted 

analysis with human oversight and incremental 

execution, the methodology provides a balanced 

approach to legacy modernization. It supports 

practical migration scenarios where reliability and 

continuity are as important as architectural 

improvement, making it well suited for enterprise-scale 

refactoring initiatives. As illustrated in Listing 1, 

human reviewers can modify AI-generated service 

boundary recommendations while preserving 

traceability, rationale and architectural accountability. 

 

Figure 2: Human-in-the-Loop Incremental Adoption Flow. 
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         Listing 1: Illustrative Human-in-the-loop Decision Record for AI-Assisted Refactoring 

4. Results 

This section presents the results of evaluating the 

proposed AI-augmented refactoring methodology on 

enterprise-scale legacy systems. The evaluation 

focuses on refactoring effort, structural modularity, 

migration quality and practical usability [15]. Results 

are organized around key research questions that 

assess whether the approach reduces manual effort, 

improves service decomposition quality and supports 

reliable, incremental modernization in real-world 

settings. 

4.1. Reduction in Refactoring Effort 

This subsection examines whether AI-assisted 

analysis reduces the overall effort required to refactor 

legacy monolithic systems. Refactoring effort was 

measured in person-hours spent on code analysis, 

dependency exploration, and service boundary 

identification. These measurements focus on the 

early stages of migration, where effort is typically 

highest and decisions have long-term architectural 

impact [16]. Table 1 summarizes the observed 

refactoring effort across four enterprise-scale legacy 

systems. For all evaluated systems, the AI-assisted 

approach required substantially fewer person-hours 

compared to traditional manual refactoring 

workflows. Effort reductions ranged from 

approximately 27 to 38 percent, with larger systems 

benefiting more significantly from AI-assisted 

analysis. This trend reflects the increased difficulty of 

manually understanding dependency structures as 

codebase size and complexity grow [11]. The most 

significant reductions were observed during the initial 

exploration and planning phases. Engineers reported 

spending less time tracing cross-module dependencies 

and revisiting early design assumptions, as the 

framework highlighted tightly coupled components and 

candidate service boundaries upfront. While manual 

validation remained necessary, the analysis helped 

narrow the scope of investigation and reduced time 

spent on low-impact areas. Overall, the results 

indicate that AI-assisted refactoring provides 

measurable efficiency gains during the most labor-

intensive stages of legacy modernization. Rather than 

eliminating manual effort, the approach shifts 

engineering time toward higher-value design decisions, 

improving both productivity and confidence during 

migration planning. 

 

Table 1: Refactoring Effort Comparison Across Enterprise Legacy Systems. 

Legacy 

System 

Codebase Size 

(KLOC) 

Manual Refactoring 

Effort (Person-

Hours) 

AI-Assisted 

Refactoring Effort 

(Person-Hours) 

Effort 

Reduction (%) 

System A 420 1,200 860 28.3 

System B 310 920 650 29.3 

System C 560 1,580 980 38.0 

System D 270 740 540 27.0 
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4.2. Quality of Service Decomposition and 

Modularity 

In this, I evaluated whether the methodology 

improves the quality-of-service decomposition. 

Modularity was assessed using structural metrics such 

as coupling between services, cohesion within 

extracted components, and the stability of service 

boundaries after refactoring [7, 17]. These metrics 

were compared against decompositions produced 

through manual analysis alone. Systems refactored 

using the proposed approach exhibited improved 

modularity, with clearer separation of concerns and 

reduced cross-service dependencies. In particular, 

extracted services showed higher internal cohesion and 

fewer shared data access paths compared to manually 

decomposed counterparts [18]. This suggests that the 

machine learning assisted pattern identification helped 

identify logical groupings that were not immediately 

obvious through manual inspection. Service 

boundaries generated with AI-assisted 

recommendations were also more stable during 

subsequent refactoring iterations. Fewer boundary 

changes were required as migration progressed, 

indicating that early recommendations aligned more 

closely with underlying system structure and business 

logic. This stability is important in enterprise 

environments, where frequent architectural changes 

can introduce risk and delay [19]. While the 

methodology did not guarantee optimal decomposition 

in all cases, it consistently produced service 

structures that required fewer corrective adjustments. 

These findings suggest that combining static analysis 

with AI-assisted insight can improve the structural 

quality of microservice designs derived from legacy 

monoliths. As shown in Table 2, AI-assisted 

refactoring resulted in lower inter-service coupling, 

higher service cohesion and fewer shared data access 

paths compared to manual decomposition. 

Table 2: Comparison of Modularity Metrics for Manual and AI-Assisted Refactoring. 

Metric Manual Refactoring AI-Assisted 

Refactoring 

Observed Change 

Average Inter-

Service Coupling 

High (0.62) Moderate (0.41) ↓ 33.9% 

Average Service 

Cohesion 

Moderate (0.48) High (0.67) ↑ 39.6% 

Shared Data 

Access Paths (per 

service) 

14.2 8.1 ↓ 43.0% 

Service Boundary 

Changes (per 

iteration) 

3.4 1.6 ↓ 52.9% 

 

4.3. Migration Quality and Defect 

Occurrence 

This subsection investigates the impact of the 

methodology on migration quality, with a focus on 

defect occurrence during and after refactoring. 

Defects were tracked during validation and testing 

phases following service extraction and categorized as 

integration issues, behavioral regressions, and data 

consistency problems [20]. As shown in Figure 3, 

AI-assisted refactoring reduced post-migration 

defects across all evaluated categories, with the 

largest improvements observed for integration and 

data consistency issues. Applications refactored with 

AI-assisted guidance exhibited fewer post-migration 

defects overall, with the most significant reductions 

observed in integration issues and data consistency 

problems. These defect types are closely associated 

with overlooked dependencies and unintended data 

sharing, which were more effectively identified 

during the early analysis phase. Behavioral 

regressions still occurred in some cases, particularly 

where domain logic was deeply intertwined across 

modules. However, earlier visibility into risk areas 

enabled more targeted testing and faster defect 

resolution. As a result, fewer issues propagated into 

later stages of deployment. These results indicate that 

while AI-assisted refactoring does not eliminate 

migration risk, it contributes to higher migration 

quality by improving architectural visibility and 

reducing the likelihood of overlooked coupling. 
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Figure 3: Post-migration defect distribution across defect categories for manual and AI- assisted 

refactoring approaches 

4.4. Practical Usability and Adoption 

Considerations 

Feedback was collected from engineers and 

architects involved in the evaluation to assess 

interpretability, trust and ease of integration into 

existing workflows. Participants reported that the 

human-in-the-loop design was essential for adoption. 

The ability to review, adjust, and validate 

recommendations increased confidence in the 

analysis and reduced resistance to AI-assisted tooling. 

Visual representations of dependency structures and 

ranked recommendations were cited as particularly 

helpful for communicating refactoring rationale across 

teams. Incremental adoption was another key factor 

influencing usability. Teams were able to apply the 

methodology selectively to high-priority subsystems 

without committing to full-scale migration up-front. 

This flexibility aligned well with typical enterprise 

constraints related to timelines, staffing, and risk 

tolerance. Overall, the results indicate that the 

methodology supports practical adoption by 

complementing existing engineering practices rather 

than replacing them. Its emphasis on transparency and 

human control makes it suitable for real-world 

modernization efforts where trust and reliability are 

critical. 

 

5. Discussion 

The results demonstrate that the proposed AI-

augmented refactoring methodology improves 

legacy modernization outcomes when compared to 

fully manual and rule-based approaches. Rather 

than optimizing a single metric, the method delivers 

balanced gains across refactoring effort, structural 

quality, and migration reliability. This section 

interprets these results, explains why the approach is 

effective, and positions its contribution within 

practical enterprise modernization contexts. 

5.1. Reason behind AI-Assisted Insight 

Improves Refactoring Decisions 

One of the most notable findings is the 

reduction in refactoring effort without a 

corresponding loss of architectural quality. This 

outcome suggests that the primary value of AI in 

this context lies not in automation, but in 

improving decision-making during the early stages of 

migration. Legacy codebases often overwhelm 

engineers with low-level dependency information, 

making it difficult to identify which components 

matter most [21]. By aggregating structural signals 

and highlighting candidate service boundaries, the 

methodology helps focus human attention on high-

impact areas. This explains why effort reductions 

were most pronounced during analysis and planning 

rather than during code modification itself. 
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Engineers were able to spend less time exploring 

irrelevant dependencies and more time validating 

meaningful design options. Unlike rule-based tools, 

which apply uniform heuristics, the AI-assisted 

approach adapts to the structure of each system, 

producing recommendations that are more aligned 

with real architectural constraints [14]. The findings 

also highlight a qualitative distinction between AI-

assisted refactoring and prior approaches. Table 3 

contrasts manual refactoring, rule-based tools, and the 

proposed methodology across key decision-making 

dimensions. Manual approaches offer strong contextual 

understanding but scale poorly, while rule-based tools 

improve scalability at the cost of architectural insight. 

The AI-augmented approach occupies a middle 

ground, combining structural awareness with human 

validation. This balance helps explain why the 

methodology reduced effort without sacrificing 

service boundary stability, supporting more consistent 

refactoring outcomes across systems of varying 

complexity. 

Table 3: Conceptual Comparison of Legacy Refactoring Approaches 

 

5.2. Structural Stability and Migration 

Quality Trade-offs 

Improvements in modularity and service 

boundary stability provide insight into how early 

design guidance influences downstream migration 

quality [22]. More stable service boundaries reduced 

the need for corrective refactoring, which in turn 

limited the introduction of migration-related defects. 

This effect is particularly important in enterprise 

environments, where architectural changes are often 

constrained by testing capacity, deployment 

schedules, and regulatory requirements. Frequent 

boundary revisions in such settings can introduce 

cascading integration issues, increase validation 

overhead, and delay release cycles. The reduction in 

integration and data consistency defects further 

suggests that early visibility into coupling and 

shared resources plays a critical role in migration 

success [23, 24]. By identifying tightly coupled 

components and shared data access patterns at the 

planning stage, the methodology helps mitigate a 

common source of post-migration failures that are 

difficult to detect through isolated testing. This early 

risk identification enables teams to apply targeted 

refactoring strategies and design compensating 

mechanisms, such as data ownership realignment or 

contract-based interfaces, before service extraction 

occurs. Behavioral regressions, while reduced, were 

not eliminated, indicating that deeply intertwined 

domain logic remains a challenge regardless of 

tooling [11]. This limitation reflects the inherent 

complexity of legacy systems, where implicit 

business rules and cross-cutting concerns may not be 

fully captured through structural analysis alone. In 

such cases, AI-assisted recommendations can 

highlight potential risk areas but still require expert 

interpretation to ensure semantic correctness. These 

findings highlight an important trade-off between 

structural optimization and domain fidelity. While 

AI-assisted analysis can substantially improve 

architectural clarity and reduce migration risk, it 

cannot fully replace domain expertise or exhaustive 

validation. Instead, the results support a hybrid 

Decision Dimension Manual Refactoring Rule-Based Tools AI-Augmented 

Approach 

Scalability to Large 

Codebases 

Low Moderate High 

Context Awareness High (human-

dependent) 

Low Moderate to High 

Effort Required for 

Analysis 

High Moderate Lower 

Service Boundary 

Stability 

Variable Often Low Higher 

Explainability of 

Decisions 

High Moderate High 

Suitability for 

Incremental Migration 

Moderate Low High 
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model in which AI augments established 

engineering practices by improving visibility and 

prioritization, while final design decisions remain 

guided by human judgment. This balance is essential 

for achieving reliable modernization outcomes in 

enterprise systems where correctness, stability, and 

business continuity are paramount. 

5.3. Positioning Within Enterprise 

Modernization Practice 

From a practical perspective, the methodology 

aligns well with how enterprise modernization 

efforts are typically executed. The emphasis on 

incremental adoption and human oversight 

addresses common barriers to adopting automated 

migration tools, such as lack of trust, explainability 

concerns, and organizational resistance [21]. Instead 

of enforcing architectural changes, the approach 

supports informed decision-making, making it 

easier to integrate into existing workflows. 

Compared to prior approaches that prioritize full 

automation or rigid rule application, this work 

positions AI as an enabling layer that bridges the gap 

between raw static analysis and architectural 

judgment [19, 25]. This positioning is especially 

relevant for large, long-lived systems where risk 

tolerance is low and business continuity is 

paramount. By improving efficiency and structural 

quality without requiring disruptive process 

changes, the methodology offers a practical path 

forward for enterprises seeking to modernize legacy 

systems while maintaining control over critical 

design decisions. Moreover, the framework 

accommodates organizational constraints such as 

phased funding, cross-team coordination, and 

compliance-driven review cycles, which are often 

overlooked in purely technical migration strategies. 

5.4. Limitations and Scope of Applicability 

 While the proposed methodology 

demonstrates measurable benefits in refactoring 

efficiency and structural quality, several limitations 

should be acknowledged. First, the approach relies 

primarily on static analysis and historical structural 

signals, which may not fully capture implicit 

runtime behaviors, emergent interactions, or deeply 

embedded business semantics. As a result, systems 

with highly dynamic execution paths or extensive 

runtime configuration may require complementary 

runtime analysis to achieve optimal results. Second, 

the quality of AI-assisted recommendations depends 

on the availability and consistency of structural and 

evolution data. Legacy systems with limited version 

history or incomplete dependency information may 

yield less precise insights, requiring greater reliance 

on expert interpretation. Finally, the methodology is 

designed to support decision-making rather than 

guarantee optimal service decomposition. 

Architectural trade-offs, regulatory constraints, and 

domain-specific considerations remain inherently 

human-driven. These limitations are intentional 

design choices that prioritize explainability, control 

and practical adoption over aggressive automation, 

aligning the framework with real-world enterprise 

modernization constraints. 

 

6. Conclusion 

Modernizing large legacy monolithic systems 

remains a difficult and risk-prone task for enterprise 

organizations, particularly when migrating toward 

microservice architectures. This work addressed the 

gap between fully manual refactoring and rigid 

automated tooling by introducing an AI-augmented 

methodology that supports engineers through informed, 

human-guided refactoring decisions rather than 

attempting full automation. The evaluation results 

demonstrate that the proposed approach delivers 

measurable improvements across multiple dimensions 

of legacy modernization. Refactoring effort during 

analysis and planning phases was reduced by 

approximately 25 to 40 percent compared to manual 

approaches. Structural quality also improved, with 

lower inter-service coupling, higher service cohesion, 

and more stable service boundaries, reducing the need 

for corrective refactoring. In addition, post-migration 

defect occurrence decreased, particularly for 

integration and data consistency issues, indicating 

improved visibility into architectural dependencies 

during refactoring. The primary contribution of this 

work lies in demonstrating how AI can be practically 

integrated into enterprise refactoring workflows as a 

decision-support mechanism. By combining static 

analysis, machine learning-assisted pattern 

identification, and human validation within a modular 

framework, the methodology balances scalability, 

explainability, and architectural control. Unlike 

approaches that prioritize automation, this work 

emphasizes trust, incremental adoption, and 

alignment with real-world enterprise constraints. 

Future work will focus on extending the proposed 

methodology beyond static refactoring support 

toward runtime-aware and system level modernization 

guidance. One promising direction is integrating AI-
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assisted refactoring insights with continuous code 

review and quality feedback mechanisms, enabling 

architectural risks and refactoring recommendations to 

evolve alongside ongoing development activity rather 

than being applied as a one-time analysis. This would 

support long-lived systems where modernization 

occurs incrementally over multiple release cycles. 
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