

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 593

An AI-Augmented Framework for Refactoring Enterprise Monolithic

Systems

Kishore Subramanya Hebbar∗

Submitted: 01/06/2023 Revised: 10/07/2023 Accepted: 20/07/2023

Abstract: Many large organizations still depend on legacy monolithic systems that were built over many years and now

hold deeply embedded business logic. Moving these systems to cloud-native microservices is widely desired, but

the process is slow, risky, and heavily dependent on manual code understanding, which often leads to errors and

rework. Current migration approaches either rely on rigid rule-based tools or expect full manual refactoring, leaving

a gap in practical support for understanding complex dependencies and identifying safe service boundaries. The goal

of this study is to address this gap by providing intelligent, decision-oriented assistance that helps engineers refactor

legacy code while preserving existing business behavior. The proposed approach introduces an AI-augmented

modular refactoring framework that combines static code analysis, dependency graph modeling, and machine learning-

based pattern recognition. Instead of automatically rewriting code, the framework highlights logical decomposition

points, detects refactoring candidates, and surfaces architectural risks. A human-in-the-loop workflow allows

developers and architects to review, adjust, and validate recommendations before changes are applied, supporting

incremental migration rather than disruptive rewrites. Evaluation on enterprise-scale legacy applications shows a

reduction of refactoring effort by approximately 25 to 40 percent compared to fully manual approaches. The

resulting microservices also exhibit improved modularity and fewer post-migration defects during validation. This

framework can be applied to large enterprise modernization initiatives where reliability and domain integrity are

critical. By combining human expertise with AI-assisted insight, the work demonstrates a practical and novel way to

reduce risk and effort in legacy-to-microservice migration.

Keywords: Legacy system modernization, Code refactoring, Monolithic architectures, Microservice migration, AI-

assisted software engineering, Enterprise application evolution

1. Introduction

Enterprise software systems that support critical

business operations are often built as large monolithic

applications that have evolved over many years.

These systems typically embed complex business logic,

domain-specific rules, and operational assumptions

that are difficult to replace or rewrite. While such

applications are often stable in production, their tightly

coupled structure and accumulated technical debt

make them increasingly hard to scale, maintain, and

adapt to modern deployment environments [1]. As

organizations seek improved scalability, fault isolation,

and faster delivery cycles, migrating legacy monoliths

to microservice-based architectures has become a

common modernization goal [2]. Despite widespread

interest in microservice migration, refactoring legacy

systems remains a challenging and high-risk task.

Existing migration efforts rely heavily on manual

code analysis and refactoring, which requires deep

domain knowledge and significant engineering effort.

These manual approaches do not scale well for large

enterprise codebases and are prone to oversight when

dependencies are undocumented or implicit. At the

same time, rule-based and automated migration

tools often lack sufficient contextual understanding of

business logic and architectural intent, leading to poor

service decomposition or unintended behavioral

changes [3]. This creates a gap between labor-

intensive manual refactoring and impractical fully

automated solutions. Recent advances in machine

learning offer an opportunity to better support legacy

modernization by assisting engineers in

understanding and restructuring complex codebases.

Large monolithic systems contain recurring

dependency patterns, structural signals, and

International Business Machines, Atlanta, USA

∗Corresponding author

Email address: hebbar.kishore@gmail.com

(Kishore Subramanya Hebbar)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 594

architectural characteristics that are difficult to

interpret through static analysis alone [4]. When

used as an assistive technique rather than a

replacement for human judgment, AI can help surface

meaningful insights from these systems and support

more informed refactoring decisions. Such an

approach is particularly relevant in enterprise

environments where correctness, reliability, and

domain integrity are critical [5]. This paper proposes

an AI-augmented approach to legacy code refactoring

that supports the migration of enterprise monoliths to

microservice architectures. The approach combines

static code analysis with machine learning-based

pattern recognition to identify potential service

boundaries, refactoring candidates, and architectural

risks. Rather than automatically rewriting code, the

proposed framework generates structured

recommendations that guide architects and developers

through a human-in-the-loop workflow. The

framework is modular and designed for incremental

adoption, allowing teams to modernize systems

gradually while preserving existing business behavior.

The remainder of this paper presents related work,

describes the proposed methodology and

implementation, evaluates the approach on enterprise-

scale systems, and discusses its practical implications.

2. Related Work

The migration of legacy monolithic systems to

microservice architectures has been widely studied

across software engineering and systems research.

Prior work in this area can be broadly grouped into

manual refactoring practices, rule-based and tool

supported migration approaches, and early applications

of artificial intelligence to software modernization. This

section reviews these directions and highlights their

limitations in the context of large enterprise systems.

2.1. Manual Refactoring and Decomposition

Practices

Early and widely adopted approaches to monolith-

to-microservice migration rely on manual analysis and

refactoring performed by experienced architects and

developers. These methods typically involve

identifying bounded contexts, restructuring modules

and extracting services based on domain knowledge

and architectural principles. While such practices offer

a high degree of control and can preserve business

semantics when executed carefully, they are time-

consuming and difficult to scale [6]. In large legacy

codebases, undocumented dependencies and tightly

coupled components make manual decomposition

error-prone, often leading to repeated refactoring

cycles and inconsistent service boundaries.

2.2. Rule-Based and Tool-Supported

Migration Approaches

To reduce manual effort, several tools and

methodologies have been proposed to support service

extraction through static analysis, dependency metrics,

and predefined architectural rules. These approaches

analyze code structure, call graphs, or data access

patterns to suggest candidate services or modules [7,

8]. Although such tools can process large codebases

efficiently, they often rely on fixed heuristics that lack

awareness of domain semantics and runtime behavior.

As a result, the generated service boundaries may not

align with business logic, leading to overly fine-

grained services or architectures that are difficult to

evolve. These limitations are particularly evident in

enterprise systems with long development histories and

heterogeneous design styles.

2.3. AI-Assisted Software Modernization

More recent work has explored the use of machine

learning techniques to assist software engineering tasks

such as code classification, dependency analysis, and

architectural pattern detection [9, 10]. In the context of

legacy modernization, these approaches aim to identify

structural patterns and refactoring opportunities that are

not easily captured by static rules alone. However,

many existing efforts focus on narrow tasks or

experimental settings and do not address the broader

challenges of enterprise-scale migration.

Additionally, fully automated refactoring remains

impractical in environments where correctness,

regulatory constraints, and domain-specific behavior are

critical, limiting the applicability of end-to-end

automation.

2.4. Research Gaps

Despite progress in legacy refactoring research,

several gaps remain when these approaches are

applied to enterprise-scale migration efforts.

Existing manual methods lack scalability, while rule-

based tools provide limited contextual understanding

of complex business logic. AI-assisted techniques,

although increasingly explored, often emphasize

automation over practical decision support and are

rarely integrated into incremental migration workflows

[10, 11] There is a need for approaches that combine

structural analysis with AI-assisted insight while

keeping humans in control of refactoring decisions. In

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 595

particular, prior work offers limited guidance on how

to support service boundary identification and

refactoring planning in a way that balances analytical

rigor, domain knowledge, and practical adoption. This

paper addresses these gaps by introducing an AI-

augmented refactoring framework designed to assist,

rather than replace, engineers during enterprise

monolith-to-microservice migration.

3. Methodology

This work is novel in its focus on using AI as a

practical decision-support mechanism for legacy

refactoring rather than as a fully automated migration

solution. The proposed methodology combines static

code analysis with machine learning–assisted pattern

recognition to guide refactoring decisions in complex

enterprise monoliths. Emphasis is placed on

modularity, incremental adoption, and human

validation to reduce migration risk while preserving

existing system behavior.

3.1. Overview of the AI-Augmented

Refactoring Approach

The methodology is designed to support

engineers during the early and most error-prone phases

of monolith-to-microservice migration: understanding

system structure, identifying meaningful service

boundaries and assessing refactoring risk. Rather than

attempting to transform code automatically, the

approach focuses on generating structured insights

that help developers reason about decomposition

decisions. At a high level, the process begins with

static analysis of the legacy codebase to extract

structural information such as module dependencies,

call relationships, and shared data access patterns. This

information is then transformed into intermediate

representations, including dependency graphs and

component interaction models, which serve as inputs

to machine learning–based analysis. The role of

machine learning in this context is not to replace

architectural judgment, but to surface patterns and

relationships that are difficult to identify through

manual inspection alone. The output of the analysis

consists of ranked refactoring recommendations that

highlight potential service boundaries, tightly coupled

components, and areas of architectural risk. These

recommendations are intentionally advisory and are

designed to be reviewed and refined by human

experts. By positioning AI as an assistive layer

rather than a prescriptive authority, the methodology

aligns with enterprise constraints where correctness,

stability, and domain knowledge are essential. As

shown in Figure 1, the methodology integrates static

analysis, AI-assisted pattern recognition, and human

validation into a single, incremental refactoring

workflow.

3.2. Static Analysis and Structural Modeling

Static analysis forms the foundation of the proposed

methodology by providing a detailed view of the

legacy system’s internal structure. Source code

artifacts such as classes, modules, interfaces, and

database access layers are analyzed to extract

dependency information without requiring runtime

execution. This is particularly important for legacy

enterprise systems where production-like runtime

environments may be difficult to replicate. The analysis

captures several types of relationships, including

method invocations, shared data access, inheritance

hierarchies, and configuration-level dependencies.

These relationships are aggregated into a dependency

graph that represents the system as a network of

interacting components. Nodes in the graph correspond

to logical units such as modules or packages, while

edges represent coupling through calls or shared

resources. While static analysis tools are commonly

used in refactoring workflows, their raw output is often

too granular to support architectural decision-making

directly. To address this, the methodology applies

structural aggregation techniques that group low-level

elements into higher-level components based on usage

patterns and cohesion metrics [12]. This abstraction step

reduces noise and allows engineers to reason about the

system at a level that is meaningful for service

decomposition. The resulting structural model provides

a stable and explainable basis for further analysis.

Because the model is derived directly from source

artifacts, it remains transparent and auditable, which is

critical in enterprise environments where architectural

decisions must be justified and reviewed.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 596

Figure 1: System architecture of the AI-augmented legacy refactoring framework.

3.3. Machine Learning–Assisted Pattern

Identification

Building on the structural model, machine

learning techniques are applied to identify recurring

patterns and refactoring opportunities within the

legacy system. Feature vectors are constructed from

structural characteristics such as coupling strength,

change frequency, shared data usage, and

dependency directionality. These features capture

both the static shape of the system and historical

signals that reflect how components evolve over

time. Clustering and classification techniques are

used to identify groups of components that exhibit

high internal cohesion and relatively low external

coupling, making them suitable candidates for

service extraction. The analysis also highlights anti-

patterns such as overly central components or

modules with excessive cross-cutting dependencies,

which may require special handling during refactoring

[13]. Importantly, the machine learning models are

used to generate relative assessments rather than

absolute decisions. Recommendations are expressed as

ranked suggestions with associated confidence

indicators, allowing engineers to prioritize areas for

deeper inspection. This design choice reflects the

reality that architectural decisions often involve

trade-offs that cannot be fully captured by

automated models. The focus remains on

augmenting human understanding rather than

automating transformation, which improves trust and

practical adoption. By integrating machine learning at

this stage, the methodology helps bridge the gap

between low-level dependency data and high-level

architectural reasoning while preserving human

oversight. Algorithm 1 formalizes this AI-assisted

pattern identification process and summarizes how

structural features are transformed into ranked

refactoring recommendations for human validation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 597

3.4. Human-in-the-Loop Workflow and

Incremental Adoption

A central design principle of the methodology is the

inclusion of a human-in-the-loop workflow that keeps

architects and developers actively involved in

refactoring decisions. Rather than enforcing automated

changes, the framework presents insights through

visualizations and structured reports that explain why

specific recommendations were generated [14]. This

transparency allows users to validate assumptions,

incorporate domain knowledge, and adjust

boundaries before implementation. Figure 2 illustrates

the human-in-the-loop feedback cycle and incremental

adoption flow. The methodology supports incremental

adoption by allowing teams to apply the analysis

selectively to specific subsystems or domains. This is

particularly valuable for large enterprise applications

where full-scale migration is neither feasible nor

desirable in a single phase. Teams can prioritize high-

impact areas, validate outcomes, and gradually expand

modernization efforts based on confidence and available

resources. Feedback from human review is treated as

a first-class input to the process. Adjustments made by

engineers can be recorded and reused to refine future

recommendations, enabling the framework to adapt to

project-specific constraints over time. This feedback

loop helps align analytical insights with real-world

architectural intent. By combining AI-assisted

analysis with human oversight and incremental

execution, the methodology provides a balanced

approach to legacy modernization. It supports

practical migration scenarios where reliability and

continuity are as important as architectural

improvement, making it well suited for enterprise-scale

refactoring initiatives. As illustrated in Listing 1,

human reviewers can modify AI-generated service

boundary recommendations while preserving

traceability, rationale and architectural accountability.

Figure 2: Human-in-the-Loop Incremental Adoption Flow.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 598

 Listing 1: Illustrative Human-in-the-loop Decision Record for AI-Assisted Refactoring

4. Results

This section presents the results of evaluating the

proposed AI-augmented refactoring methodology on

enterprise-scale legacy systems. The evaluation

focuses on refactoring effort, structural modularity,

migration quality and practical usability [15]. Results

are organized around key research questions that

assess whether the approach reduces manual effort,

improves service decomposition quality and supports

reliable, incremental modernization in real-world

settings.

4.1. Reduction in Refactoring Effort

This subsection examines whether AI-assisted

analysis reduces the overall effort required to refactor

legacy monolithic systems. Refactoring effort was

measured in person-hours spent on code analysis,

dependency exploration, and service boundary

identification. These measurements focus on the

early stages of migration, where effort is typically

highest and decisions have long-term architectural

impact [16]. Table 1 summarizes the observed

refactoring effort across four enterprise-scale legacy

systems. For all evaluated systems, the AI-assisted

approach required substantially fewer person-hours

compared to traditional manual refactoring

workflows. Effort reductions ranged from

approximately 27 to 38 percent, with larger systems

benefiting more significantly from AI-assisted

analysis. This trend reflects the increased difficulty of

manually understanding dependency structures as

codebase size and complexity grow [11]. The most

significant reductions were observed during the initial

exploration and planning phases. Engineers reported

spending less time tracing cross-module dependencies

and revisiting early design assumptions, as the

framework highlighted tightly coupled components and

candidate service boundaries upfront. While manual

validation remained necessary, the analysis helped

narrow the scope of investigation and reduced time

spent on low-impact areas. Overall, the results

indicate that AI-assisted refactoring provides

measurable efficiency gains during the most labor-

intensive stages of legacy modernization. Rather than

eliminating manual effort, the approach shifts

engineering time toward higher-value design decisions,

improving both productivity and confidence during

migration planning.

Table 1: Refactoring Effort Comparison Across Enterprise Legacy Systems.

Legacy

System

Codebase Size

(KLOC)

Manual Refactoring

Effort (Person-

Hours)

AI-Assisted

Refactoring Effort

(Person-Hours)

Effort

Reduction (%)

System A 420 1,200 860 28.3

System B 310 920 650 29.3

System C 560 1,580 980 38.0

System D 270 740 540 27.0

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 599

4.2. Quality of Service Decomposition and

Modularity

In this, I evaluated whether the methodology

improves the quality-of-service decomposition.

Modularity was assessed using structural metrics such

as coupling between services, cohesion within

extracted components, and the stability of service

boundaries after refactoring [7, 17]. These metrics

were compared against decompositions produced

through manual analysis alone. Systems refactored

using the proposed approach exhibited improved

modularity, with clearer separation of concerns and

reduced cross-service dependencies. In particular,

extracted services showed higher internal cohesion and

fewer shared data access paths compared to manually

decomposed counterparts [18]. This suggests that the

machine learning assisted pattern identification helped

identify logical groupings that were not immediately

obvious through manual inspection. Service

boundaries generated with AI-assisted

recommendations were also more stable during

subsequent refactoring iterations. Fewer boundary

changes were required as migration progressed,

indicating that early recommendations aligned more

closely with underlying system structure and business

logic. This stability is important in enterprise

environments, where frequent architectural changes

can introduce risk and delay [19]. While the

methodology did not guarantee optimal decomposition

in all cases, it consistently produced service

structures that required fewer corrective adjustments.

These findings suggest that combining static analysis

with AI-assisted insight can improve the structural

quality of microservice designs derived from legacy

monoliths. As shown in Table 2, AI-assisted

refactoring resulted in lower inter-service coupling,

higher service cohesion and fewer shared data access

paths compared to manual decomposition.

Table 2: Comparison of Modularity Metrics for Manual and AI-Assisted Refactoring.

Metric Manual Refactoring AI-Assisted

Refactoring

Observed Change

Average Inter-

Service Coupling

High (0.62) Moderate (0.41) ↓ 33.9%

Average Service

Cohesion

Moderate (0.48) High (0.67) ↑ 39.6%

Shared Data

Access Paths (per

service)

14.2 8.1 ↓ 43.0%

Service Boundary

Changes (per

iteration)

3.4 1.6 ↓ 52.9%

4.3. Migration Quality and Defect

Occurrence

This subsection investigates the impact of the

methodology on migration quality, with a focus on

defect occurrence during and after refactoring.

Defects were tracked during validation and testing

phases following service extraction and categorized as

integration issues, behavioral regressions, and data

consistency problems [20]. As shown in Figure 3,

AI-assisted refactoring reduced post-migration

defects across all evaluated categories, with the

largest improvements observed for integration and

data consistency issues. Applications refactored with

AI-assisted guidance exhibited fewer post-migration

defects overall, with the most significant reductions

observed in integration issues and data consistency

problems. These defect types are closely associated

with overlooked dependencies and unintended data

sharing, which were more effectively identified

during the early analysis phase. Behavioral

regressions still occurred in some cases, particularly

where domain logic was deeply intertwined across

modules. However, earlier visibility into risk areas

enabled more targeted testing and faster defect

resolution. As a result, fewer issues propagated into

later stages of deployment. These results indicate that

while AI-assisted refactoring does not eliminate

migration risk, it contributes to higher migration

quality by improving architectural visibility and

reducing the likelihood of overlooked coupling.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 600

Figure 3: Post-migration defect distribution across defect categories for manual and AI- assisted

refactoring approaches

4.4. Practical Usability and Adoption

Considerations

Feedback was collected from engineers and

architects involved in the evaluation to assess

interpretability, trust and ease of integration into

existing workflows. Participants reported that the

human-in-the-loop design was essential for adoption.

The ability to review, adjust, and validate

recommendations increased confidence in the

analysis and reduced resistance to AI-assisted tooling.

Visual representations of dependency structures and

ranked recommendations were cited as particularly

helpful for communicating refactoring rationale across

teams. Incremental adoption was another key factor

influencing usability. Teams were able to apply the

methodology selectively to high-priority subsystems

without committing to full-scale migration up-front.

This flexibility aligned well with typical enterprise

constraints related to timelines, staffing, and risk

tolerance. Overall, the results indicate that the

methodology supports practical adoption by

complementing existing engineering practices rather

than replacing them. Its emphasis on transparency and

human control makes it suitable for real-world

modernization efforts where trust and reliability are

critical.

5. Discussion

The results demonstrate that the proposed AI-

augmented refactoring methodology improves

legacy modernization outcomes when compared to

fully manual and rule-based approaches. Rather

than optimizing a single metric, the method delivers

balanced gains across refactoring effort, structural

quality, and migration reliability. This section

interprets these results, explains why the approach is

effective, and positions its contribution within

practical enterprise modernization contexts.

5.1. Reason behind AI-Assisted Insight

Improves Refactoring Decisions

One of the most notable findings is the

reduction in refactoring effort without a

corresponding loss of architectural quality. This

outcome suggests that the primary value of AI in

this context lies not in automation, but in

improving decision-making during the early stages of

migration. Legacy codebases often overwhelm

engineers with low-level dependency information,

making it difficult to identify which components

matter most [21]. By aggregating structural signals

and highlighting candidate service boundaries, the

methodology helps focus human attention on high-

impact areas. This explains why effort reductions

were most pronounced during analysis and planning

rather than during code modification itself.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 601

Engineers were able to spend less time exploring

irrelevant dependencies and more time validating

meaningful design options. Unlike rule-based tools,

which apply uniform heuristics, the AI-assisted

approach adapts to the structure of each system,

producing recommendations that are more aligned

with real architectural constraints [14]. The findings

also highlight a qualitative distinction between AI-

assisted refactoring and prior approaches. Table 3

contrasts manual refactoring, rule-based tools, and the

proposed methodology across key decision-making

dimensions. Manual approaches offer strong contextual

understanding but scale poorly, while rule-based tools

improve scalability at the cost of architectural insight.

The AI-augmented approach occupies a middle

ground, combining structural awareness with human

validation. This balance helps explain why the

methodology reduced effort without sacrificing

service boundary stability, supporting more consistent

refactoring outcomes across systems of varying

complexity.

Table 3: Conceptual Comparison of Legacy Refactoring Approaches

5.2. Structural Stability and Migration

Quality Trade-offs

Improvements in modularity and service

boundary stability provide insight into how early

design guidance influences downstream migration

quality [22]. More stable service boundaries reduced

the need for corrective refactoring, which in turn

limited the introduction of migration-related defects.

This effect is particularly important in enterprise

environments, where architectural changes are often

constrained by testing capacity, deployment

schedules, and regulatory requirements. Frequent

boundary revisions in such settings can introduce

cascading integration issues, increase validation

overhead, and delay release cycles. The reduction in

integration and data consistency defects further

suggests that early visibility into coupling and

shared resources plays a critical role in migration

success [23, 24]. By identifying tightly coupled

components and shared data access patterns at the

planning stage, the methodology helps mitigate a

common source of post-migration failures that are

difficult to detect through isolated testing. This early

risk identification enables teams to apply targeted

refactoring strategies and design compensating

mechanisms, such as data ownership realignment or

contract-based interfaces, before service extraction

occurs. Behavioral regressions, while reduced, were

not eliminated, indicating that deeply intertwined

domain logic remains a challenge regardless of

tooling [11]. This limitation reflects the inherent

complexity of legacy systems, where implicit

business rules and cross-cutting concerns may not be

fully captured through structural analysis alone. In

such cases, AI-assisted recommendations can

highlight potential risk areas but still require expert

interpretation to ensure semantic correctness. These

findings highlight an important trade-off between

structural optimization and domain fidelity. While

AI-assisted analysis can substantially improve

architectural clarity and reduce migration risk, it

cannot fully replace domain expertise or exhaustive

validation. Instead, the results support a hybrid

Decision Dimension Manual Refactoring Rule-Based Tools AI-Augmented

Approach

Scalability to Large

Codebases

Low Moderate High

Context Awareness High (human-

dependent)

Low Moderate to High

Effort Required for

Analysis

High Moderate Lower

Service Boundary

Stability

Variable Often Low Higher

Explainability of

Decisions

High Moderate High

Suitability for

Incremental Migration

Moderate Low High

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 602

model in which AI augments established

engineering practices by improving visibility and

prioritization, while final design decisions remain

guided by human judgment. This balance is essential

for achieving reliable modernization outcomes in

enterprise systems where correctness, stability, and

business continuity are paramount.

5.3. Positioning Within Enterprise

Modernization Practice

From a practical perspective, the methodology

aligns well with how enterprise modernization

efforts are typically executed. The emphasis on

incremental adoption and human oversight

addresses common barriers to adopting automated

migration tools, such as lack of trust, explainability

concerns, and organizational resistance [21]. Instead

of enforcing architectural changes, the approach

supports informed decision-making, making it

easier to integrate into existing workflows.

Compared to prior approaches that prioritize full

automation or rigid rule application, this work

positions AI as an enabling layer that bridges the gap

between raw static analysis and architectural

judgment [19, 25]. This positioning is especially

relevant for large, long-lived systems where risk

tolerance is low and business continuity is

paramount. By improving efficiency and structural

quality without requiring disruptive process

changes, the methodology offers a practical path

forward for enterprises seeking to modernize legacy

systems while maintaining control over critical

design decisions. Moreover, the framework

accommodates organizational constraints such as

phased funding, cross-team coordination, and

compliance-driven review cycles, which are often

overlooked in purely technical migration strategies.

5.4. Limitations and Scope of Applicability

 While the proposed methodology

demonstrates measurable benefits in refactoring

efficiency and structural quality, several limitations

should be acknowledged. First, the approach relies

primarily on static analysis and historical structural

signals, which may not fully capture implicit

runtime behaviors, emergent interactions, or deeply

embedded business semantics. As a result, systems

with highly dynamic execution paths or extensive

runtime configuration may require complementary

runtime analysis to achieve optimal results. Second,

the quality of AI-assisted recommendations depends

on the availability and consistency of structural and

evolution data. Legacy systems with limited version

history or incomplete dependency information may

yield less precise insights, requiring greater reliance

on expert interpretation. Finally, the methodology is

designed to support decision-making rather than

guarantee optimal service decomposition.

Architectural trade-offs, regulatory constraints, and

domain-specific considerations remain inherently

human-driven. These limitations are intentional

design choices that prioritize explainability, control

and practical adoption over aggressive automation,

aligning the framework with real-world enterprise

modernization constraints.

6. Conclusion

Modernizing large legacy monolithic systems

remains a difficult and risk-prone task for enterprise

organizations, particularly when migrating toward

microservice architectures. This work addressed the

gap between fully manual refactoring and rigid

automated tooling by introducing an AI-augmented

methodology that supports engineers through informed,

human-guided refactoring decisions rather than

attempting full automation. The evaluation results

demonstrate that the proposed approach delivers

measurable improvements across multiple dimensions

of legacy modernization. Refactoring effort during

analysis and planning phases was reduced by

approximately 25 to 40 percent compared to manual

approaches. Structural quality also improved, with

lower inter-service coupling, higher service cohesion,

and more stable service boundaries, reducing the need

for corrective refactoring. In addition, post-migration

defect occurrence decreased, particularly for

integration and data consistency issues, indicating

improved visibility into architectural dependencies

during refactoring. The primary contribution of this

work lies in demonstrating how AI can be practically

integrated into enterprise refactoring workflows as a

decision-support mechanism. By combining static

analysis, machine learning-assisted pattern

identification, and human validation within a modular

framework, the methodology balances scalability,

explainability, and architectural control. Unlike

approaches that prioritize automation, this work

emphasizes trust, incremental adoption, and

alignment with real-world enterprise constraints.

Future work will focus on extending the proposed

methodology beyond static refactoring support

toward runtime-aware and system level modernization

guidance. One promising direction is integrating AI-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 603

assisted refactoring insights with continuous code

review and quality feedback mechanisms, enabling

architectural risks and refactoring recommendations to

evolve alongside ongoing development activity rather

than being applied as a one-time analysis. This would

support long-lived systems where modernization

occurs incrementally over multiple release cycles.

References

[1] B. Pérez et al., “Technical debt payment

and prevention through the lenses of software

architects,” Information and Software Technology, vol.

140, p. 106692, Dec. 2021, doi:

10.1016/j.infsof.2021.106692.

[2] A. Balalaie, A. Heydarnoori, P. Jamshidi, D.

A. Tamburri, and T. Lynn, “Microservices migration

patterns,” Software: Practice and Experience, vol. 48,

no. 11, pp. 2019–2042, Jul. 2018, doi:

10.1002/spe.2608.

[3] J. Fritzsch, J. Bogner, A. Zimmermann, and

S. Wagner, “From Monolith to Microservices: A

Classification of Refactoring Approaches,”

Software Engineering Aspects of Continuous

Development and New Paradigms of Software

Production and Deployment, pp. 128–141, 2019, doi:

10.1007/978-3-030-06019-0_10.

[4] M. Allamanis, E. T. Barr, P. Devanbu, and

C. Sutton, “A Survey of Machine Learning for Big

Code and Naturalness,” ACM Computing Surveys,

vol. 51, no. 4, pp. 1–37, Jul. 2018, doi:

10.1145/3212695.

[5] S. Li et al., “Understanding and addressing

quality attributes of microservices architecture: A

Systematic literature review,” Informa- tion and

Software Technology, vol. 131, p. 106449, Mar.

2021, doi: 10.1016/j.infsof.2020.106449.

[6] J. Correia and A. Rito Silva, “Identification

of monolith functionality refactorings for

microservices migration,” Software: Practice and

Experience, vol. 52, no. 12, pp. 2664–2683, Aug. 2022,

doi: 10.1002/spe.3141.

[7] A. Krause, C. Zirkelbach, W. Hasselbring,

S. Lenga, and D. Kroger, “Microservice

Decomposition via Static and Dynamic Analysis of

the Monolith,” 2020 IEEE International Conference

on Software Architecture Companion (ICSA-C), pp.

9–16, Mar. 2020, doi: 10.1109/icsa-

c50368.2020.00011.

[8] A. Santos and H. Paula, “Microservice

decomposition and evaluation using dependency

graph and silhouette coefficient,” 15th Brazilian

Symposium on Software Components, Architectures,

and Reuse, pp. 51–60, Sep. 2021, doi:

10.1145/3483899.3483908.

[9] M. Brito, J. Cunha, and J. Saraiva,

“Identification of microservices from monolithic

applications through topic modelling,” Proceedings

of the 36th Annual ACM Symposium on Applied

Computing, pp. 1409–1418, Mar. 2021, doi:

10.1145/3412841.3442016.

[10] Z. Li, C. Shang, J. Wu, and Y. Li,

“Microservice extraction based on knowledge

graph from monolithic applications,” Information

and Software Technology, vol. 150, p. 106992, Oct.

2022, doi: 10.1016/j.infsof.2022.106992.

[11] A. Bucchiarone, N. Dragoni, S. Dustdar, S.

T. Larsen, and M. Mazzara, “From Monolithic to

Microservices: An Experience Report from the

Banking Domain,” IEEE Software, vol. 35, no. 3, pp.

50–55, May 2018, doi: 10.1109/ms.2018.2141026.

[12] D. Guamán, J. Pérez, J. Diaz, and C. E.

Cuesta, “Towards a reference process for software

architecture reconstruction,” IET Software, vol. 14, no.

6, pp. 592–606, Dec. 2020, doi: 10.1049/iet-

sen.2019.0246.

[13] K. Alkharabsheh, S. Alawadi, V. R.

Kebande, Y. Crespo, M. Fernández- Delgado, and J.

A. Taboada, “A comparison of machine learning

algorithms on design smell detection using balanced and

imbalanced dataset: A study of God class,”

Information and Software Technology, vol. 143, p.

106736, Mar. 2022, doi: 10.1016/j.infsof.2021.106736.

[14] S. Amershi et al., “Guidelines for Human-AI

Interaction,” Proceedings of the 2019 CHI Conference

on Human Factors in Computing Systems,

pp. 1–13, May 2019, doi: 10.1145/3290605.3300233.

[15] N. Bjørndal et al., “Benchmarks and

performance metrics for assessing the migration to

microservice-based architectures”, Journal of

Object Technology, Volume 20, no. 2 (2021), pp.

2:1-17, doi:10.5381/jot.2021.20.2.a3.

[16] F. Auer, V. Lenarduzzi, M. Felderer, and

D. Taibi, “From monolithic systems to

Microservices: An assessment framework,”

Information and Software Technology, vol. 137, p.

106600, Sep. 2021, doi:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593–604 | 604

10.1016/j.infsof.2021.106600.

[17] F. H. Vera-Rivera, C. Gaona, and H.

Astudillo, “Defining and measuring microservice

granularity—a literature overview,” PeerJ Computer

Science, vol. 7, p. e695, Sep. 2021, doi:

10.7717/peerj-cs.695.

[18] M. G. Moreira and B. B. N. De França,

“Analysis of Microservice Evolution using Cohesion

Metrics,” Proceedings of the 16th Brazilian

Symposium on Software Components, Architectures,

and Reuse, pp. 40–49, Oct. 2022, doi:

10.1145/3559712.3559716.

[19] S. Hassan, R. Bahsoon, and R. Kazman,

“Microservice transition and its granularity problem:

A systematic mapping study,” Software: Practice and

Experience, vol. 50, no. 9, pp. 1651–1681, Jun.

2020, doi: 10.1002/spe.2869.

[20] M. Wu et al., “On the Way to

Microservices: Exploring Problems and Solutions

from Online Q&A Community,” 2022 IEEE

International Conference on Software Analysis,

Evolution and Reengineering (SANER),

pp. 432–443, Mar. 2022, doi:

10.1109/saner53432.2022.00058.

[21] J. Fritzsch, J. Bogner, S. Wagner, and A.

Zimmermann, “Microservices Migration in Industry:

Intentions, Strategies, and Challenges,” 2019 IEEE

International Conference on Software Maintenance and

Evolution (ICSME), pp. 481–490, Sep. 2019, doi:

10.1109/icsme.2019.00081.

[22] D. Sas, P. Avgeriou, and U. Uyumaz, “On

the evolution and impact of architectural smells an

industrial case study,” Empirical Software

Engineering, vol. 27, no. 4, Apr. 2022, doi:

10.1007/s10664-022-10132-7.

[23] S. S. de Toledo, A. Martini, and D. I. K.

Sjøberg, “Identifying architectural technical debt,

principal, and interest in microservices: A multiple-

case study,” Journal of Systems and Software, vol.

177, p. 110968, Jul. 2021, doi:

10.1016/j.jss.2021.110968.

[24] I. Pigazzini, F. A. Fontana, V.

Lenarduzzi, and D. Taibi, “Towards microservice

smells detection,” Proceedings of the 3rd

International Conference on Technical Debt, pp.

92–97, Jun. 2020, doi: 10.1145/3387906.3388625.

[25] D. Taibi, V. Lenarduzzi, and C. Pahl,

“Microservices Anti-patterns: A Taxonomy,”

Microservices, pp. 111–128, Dec. 2019, doi:

10.1007/978-3- 030-31646-4_5.

