International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-6799 www.ijisae.org Original Research Paper

1JISAE

An Al-Augmented Framework for Refactoring Enterprise Monolithic
Systems

Kishore Subramanya Hebbar™
Submitted: 01/06/2023 Revised: 10/07/2023 Accepted: 20/07/2023

Abstract: Many large organizations still depend on legacy monolithic systems that were built over many years and now
hold deeply embedded business logic. Moving these systems to cloud-native microservices is widely desired, but
the process is slow, risky, and heavily dependent on manual code understanding, which often leads to errors and
rework. Current migration approaches either rely on rigid rule-based tools or expect full manual refactoring, leaving
a gap in practical support for understanding complex dependencies and identifying safe service boundaries. The goal
of this study is to address this gap by providing intelligent, decision-oriented assistance that helps engineers refactor
legacy code while preserving existing business behavior. The proposed approach introduces an Al-augmented
modular refactoring framework that combines static code analysis, dependency graph modeling, and machine learning-
based pattern recognition. Instead of automatically rewriting code, the framework highlights logical decomposition
points, detects refactoring candidates, and surfaces architectural risks. A human-in-the-loop workflow allows
developers and architects to review, adjust, and validate recommendations before changes are applied, supporting
incremental migration rather than disruptive rewrites. Evaluation on enterprise-scale legacy applications shows a
reduction of refactoring effort by approximately 25 to 40 percent compared to fully manual approaches. The
resulting microservices also exhibit improved modularity and fewer post-migration defects during validation. This
framework can be applied to large enterprise modernization initiatives where reliability and domain integrity are
critical. By combining human expertise with Al-assisted insight, the work demonstrates a practical and novel way to
reduce risk and effort in legacy-to-microservice migration.

Keywords: Legacy system modernization, Code refactoring, Monolithic architectures, Microservice migration, Al-
assisted software engineering, Enterprise application evolution

1. Introduction common modernization goal [2]. Despite widespread
interest in microservice migration, refactoring legacy
systems remains a challenging and high-risk task.
Existing migration efforts rely heavily on manual
code analysis and refactoring, which requires deep

Enterprise software systems that support critical
business operations are often built as large monolithic
applications that have evolved over many years.
These systems typically embed complex business logic,
domain-specific rules, and operational assumptions
that are difficult to replace or rewrite. While such

domain knowledge and significant engineering effort.
These manual approaches do not scale well for large
enterprise codebases and are prone to oversight when
dependencies are undocumented or implicit. At the
same time, rule-based and automated migration
tools often lack sufficient contextual understanding of
business logic and architectural intent, leading to poor
service decomposition or unintended behavioral
changes [3]. This creates a gap between labor-
intensive manual refactoring and impractical fully

applications are often stable in production, their tightly
coupled structure and accumulated technical debt
make them increasingly hard to scale, maintain, and
adapt to modern deployment environments [1]. As
organizations seek improved scalability, fault isolation,
and faster delivery cycles, migrating legacy monoliths
to microservice-based architectures has become a

automated solutions. Recent advances in machine
learning offer an opportunity to better support legacy
*Corresponding author modernization by assisting engineers in

International Business Machines, Atlanta, USA

Email address: hebbar.kishore@gmail.com understanding and restructuring complex codebases.

(Kishore Subramanya Hebbar) Large monolithic systems contain recurring
dependency patterns, structural signals, and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(8s), 593-604 | 593

architectural characteristics that are difficult to
interpret through static analysis alone [4]. When
used as an assistive technique rather than a
replacement for human judgment, Al can help surface
meaningful insights from these systems and support
more informed refactoring decisions. Such an
approach is particularly relevant in enterprise
environments where correctness, reliability, and
domain integrity are critical [S]. This paper proposes
an Al-augmented approach to legacy code refactoring
that supports the migration of enterprise monoliths to
microservice architectures. The approach combines
static code analysis with machine learning-based
pattern recognition to identify potential service
boundaries, refactoring candidates, and architectural
risks. Rather than automatically rewriting code, the
proposed generates structured
recommendations that guide architects and developers
through a human-in-the-loop workflow. The
framework is modular and designed for incremental
adoption, allowing teams to modernize systems
gradually while preserving existing business behavior.
The remainder of this paper presents related work,

framework

describes the proposed methodology and
implementation, evaluates the approach on enterprise-
scale systems, and discusses its practical implications.

2. Related Work

The migration of legacy monolithic systems to
microservice architectures has been widely studied
across software engineering and systems research.
Prior work in this area can be broadly grouped into
manual refactoring practices, rule-based and tool
supported migration approaches, and early applications
of artificial intelligence to software modernization. This
section reviews these directions and highlights their
limitations in the context of large enterprise systems.

2.1. Manual Refactoring and Decomposition
Practices

Early and widely adopted approaches to monolith-
to-microservice migration rely on manual analysis and
refactoring performed by experienced architects and
developers. These methods typically involve
identifying bounded contexts, restructuring modules
and extracting services based on domain knowledge
and architectural principles. While such practices offer
a high degree of control and can preserve business
semantics when executed carefully, they are time-
consuming and difficult to scale [6]. In large legacy
codebases, undocumented dependencies and tightly

coupled components make manual decomposition
error-prone, often leading to repeated refactoring
cycles and inconsistent service boundaries.

2.2. Rule-Based and Tool-Supported
Migration Approaches

To reduce manual effort, several tools and
methodologies have been proposed to support service
extraction through static analysis, dependency metrics,
and predefined architectural rules. These approaches
analyze code structure, call graphs, or data access
patterns to suggest candidate services or modules [7,
8]. Although such tools can process large codebases
efficiently, they often rely on fixed heuristics that lack
awareness of domain semantics and runtime behavior.
As a result, the generated service boundaries may not
align with business logic, leading to overly fine-
grained services or architectures that are difficult to
evolve. These limitations are particularly evident in
enterprise systems with long development histories and
heterogeneous design styles.

2.3. Al-Assisted Software Modernization

More recent work has explored the use of machine
learning techniques to assist software engineering tasks
such as code classification, dependency analysis, and
architectural pattern detection [9, 10]. In the context of
legacy modernization, these approaches aim to identify
structural patterns and refactoring opportunities that are
not easily captured by static rules alone. However,
many existing efforts focus on narrow tasks or
experimental settings and do not address the broader
challenges of enterprise-scale migration.
Additionally, fully automated refactoring remains
impractical in environments where correctness,
regulatory constraints, and domain-specific behavior are
critical, limiting the applicability of end-to-end
automation.

2.4. Research Gaps

Despite progress in legacy refactoring research,
several gaps remain when these approaches are
applied to enterprise-scale migration efforts.
Existing manual methods lack scalability, while rule-
based tools provide limited contextual understanding
of complex business logic. Al-assisted techniques,
although increasingly explored, often emphasize
automation over practical decision support and are
rarely integrated into incremental migration workflows
[10, 11] There is a need for approaches that combine
structural analysis with Al-assisted insight while
keeping humans in control of refactoring decisions. In

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 594

particular, prior work offers limited guidance on how
to support service boundary identification and
refactoring planning in a way that balances analytical
rigor, domain knowledge, and practical adoption. This
paper addresses these gaps by introducing an Al-
augmented refactoring framework designed to assist,
rather than replace, engineers during enterprise
monolith-to-microservice migration.

3. Methodology

This work is novel in its focus on using Al as a
practical decision-support mechanism for legacy
refactoring rather than as a fully automated migration
solution. The proposed methodology combines static
code analysis with machine learning—assisted pattern
recognition to guide refactoring decisions in complex
enterprise monoliths. Emphasis is placed on
modularity, incremental adoption, and human
validation to reduce migration risk while preserving
existing system behavior.

3.1. Overview of the AI-Augmented
Refactoring Approach

The methodology is designed to support
engineers during the early and most error-prone phases
of monolith-to-microservice migration: understanding
system structure, identifying meaningful service
boundaries and assessing refactoring risk. Rather than
attempting to transform code automatically, the
approach focuses on generating structured insights
that help developers reason about decomposition
decisions. At a high level, the process begins with
static analysis of the legacy codebase to extract
structural information such as module dependencies,
call relationships, and shared data access patterns. This
information is then transformed into intermediate
representations, including dependency graphs and
component interaction models, which serve as inputs
to machine learning—based analysis. The role of
machine learning in this context is not to replace
architectural judgment, but to surface patterns and
relationships that are difficult to identify through
manual inspection alone. The output of the analysis
consists of ranked refactoring recommendations that

highlight potential service boundaries, tightly coupled
components, and areas of architectural risk. These
recommendations are intentionally advisory and are
designed to be reviewed and refined by human
experts. By positioning Al as an assistive layer
rather than a prescriptive authority, the methodology
aligns with enterprise constraints where correctness,
stability, and domain knowledge are essential. As
shown in Figure 1, the methodology integrates static
analysis, Al-assisted pattern recognition, and human
validation into a single, incremental refactoring
workflow.

3.2. Static Analysis and Structural Modeling

Static analysis forms the foundation of the proposed
methodology by providing a detailed view of the
legacy system’s internal structure. Source code
artifacts such as classes, modules, interfaces, and
database access layers are analyzed to extract
dependency information without requiring runtime
execution. This is particularly important for legacy
enterprise systems where production-like runtime
environments may be difficult to replicate. The analysis
captures several types of relationships, including
method invocations, shared data access, inheritance
hierarchies, and configuration-level dependencies.
These relationships are aggregated into a dependency
graph that represents the system as a network of
interacting components. Nodes in the graph correspond
to logical units such as modules or packages, while
edges represent coupling through calls or shared
resources. While static analysis tools are commonly
used in refactoring workflows, their raw output is often
too granular to support architectural decision-making
directly. To address this, the methodology applies
structural aggregation techniques that group low-level
elements into higher-level components based on usage
patterns and cohesion metrics [12]. This abstraction step
reduces noise and allows engineers to reason about the
system at a level that is meaningful for service
decomposition. The resulting structural model provides
a stable and explainable basis for further analysis.
Because the model is derived directly from source
artifacts, it remains transparent and auditable, which is
critical in enterprise environments where architectural
decisions must be justified and reviewed.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 595

Legacy Understanding Layer

Legacy Codebase

!

Static Code Analysis

|

Structural Model Builder

Al-Assisted Insgght Layer

Al Pattern Analysis Engine

v/

Refactoring Recommendation

Layer

v

Feedback & Corrections

an-Guided Execution Lgyer"r

Human Review & Validation

Incremental Refactoring

Execution

Figure 1: System architecture of the Al-augmented legacy refactoring framework.

3.3. Machine Learning—Assisted Pattern
Identification

Building on the structural model, machine
learning techniques are applied to identify recurring
patterns and refactoring opportunities within the
legacy system. Feature vectors are constructed from
structural characteristics such as coupling strength,
change frequency, shared data wusage, and
dependency directionality. These features capture
both the static shape of the system and historical
signals that reflect how components evolve over
time. Clustering and classification techniques are
used to identify groups of components that exhibit
high internal cohesion and relatively low external
coupling, making them suitable candidates for
service extraction. The analysis also highlights anti-
patterns such as overly central components or
modules with excessive cross-cutting dependencies,
which may require special handling during refactoring

[13]. Importantly, the machine learning models are
used to generate relative assessments rather than
absolute decisions. Recommendations are expressed as
ranked suggestions with associated confidence
indicators, allowing engineers to prioritize areas for
deeper inspection. This design choice reflects the
reality that architectural decisions often involve
trade-offs that cannot be fully captured by
automated models. The focus remains on
augmenting human understanding rather than
automating transformation, which improves trust and
practical adoption. By integrating machine learning at
this stage, the methodology helps bridge the gap
between low-level dependency data and high-level
architectural reasoning while preserving human
oversight. Algorithm 1 formalizes this Al-assisted
pattern identification process and summarizes how
structural features are transformed into ranked
refactoring recommendations for human validation.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 596

Algorithm 1 Al-Assisted Service Boundary Pattern Identification

Input: Legacy codebase artifacts, dependency graph
Output: Ranked refactoring recommendations with stability indicators
Phase 1: Structural Signal Extraction
Extract structural features from the dependency graph, including module
dependencies, call frequencies, and shared data access paths.
Aggregate low-level code elements into candidate architectural components.

Phase 2: Metric Computation and Pattern Analysis
Compute coupling, cohesion, and shared resource metrics for each compo-

nent group.

Apply pattern analysis to identify cohesive clusters suitable for service ex-

traction.

Phase 3: Risk Detection and Stability Assessment
Identify refactoring risks such as excessive coupling, cyclic dependencies,

and shared persistent state.

Estimate structural stability scores for candidate service boundaries.

Phase 4: Recommendation Generation and Human Validation
Rank candidate service boundaries based on stability and risk indicators.
Present ranked recommendations and explanatory signals for human review

and validation.

3.4.

Incremental Adoption

Human-in-the-Loop Workflow and

A central design principle of the methodology is the
inclusion of a human-in-the-loop workflow that keeps
architects and developers
refactoring decisions. Rather than enforcing automated

actively involved in

changes, the framework presents insights through
visualizations and structured reports that explain why
specific recommendations were generated [14]. This
transparency allows users to validate assumptions,
incorporate knowledge, adjust
boundaries before implementation. Figure 2 illustrates
the human-in-the-loop feedback cycle and incremental
adoption flow. The methodology supports incremental
adoption by allowing teams to apply the analysis
selectively to specific subsystems or domains. This is

domain and

particularly valuable for large enterprise applications
where full-scale migration is neither feasible nor
desirable in a single phase. Teams can prioritize high-

/

Hurman Review & Validation

T

Al-Generated Refactoring
Recommendations

N

N\

S

impact areas, validate outcomes, and gradually expand
modernization efforts based on confidence and available
resources. Feedback from human review is treated as
a first-class input to the process. Adjustments made by
engineers can be recorded and reused to refine future
recommendations, enabling the framework to adapt to
project-specific constraints over time. This feedback
loop helps align analytical insights with real-world
architectural intent. By combining Al-assisted
analysis with human oversight and incremental
execution, the methodology provides a balanced
approach to legacy modernization. It supports
practical migration scenarios where reliability and
continuity are as important as architectural
improvement, making it well suited for enterprise-scale
refactoring initiatives. As illustrated in Listing 1,
human reviewers can modify Al-generated service
boundary preserving

traceability, rationale and architectural accountability.

recommendations while

AgprmH Accepted Boundaries —~

/
/
/

Incremental Refactoring
Execution

Adjus—p Modified Boundaries T

/

Reject—p Rejected Suggestions

\\
N
M Feedback Stre. ——,

Model & Heuristic Refinement

Figure 2: Human-in-the-Loop Incremental Adoption Flow.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 597

1

2 "recommendation_id": "SRV-BOUNDARY-1",

3 "ai_confidence": 0.89,

1 "proposed_service": ["OrderValidation", "PricingRules"],

5 "human_decision": "modified",

6 "reviewer_role": "Senior Architect",

7 "adjustments": {

8 "merged_components": ["DiscountEngine"],

9 "rationale": "Shared regulatory logic requires unified
ownership"

10 1,

1 "risk_flags": ["data_coupling"],

12 "timestamp": "2023-01-09T14:32:00Z"

13}

Listing 1: Illustrative Human-in-the-loop Decision Record for Al-Assisted Refactoring

4. Results

This section presents the results of evaluating the
proposed Al-augmented refactoring methodology on
enterprise-scale legacy systems. The evaluation
focuses on refactoring effort, structural modularity,
migration quality and practical usability [15]. Results
are organized around key research questions that
assess whether the approach reduces manual effort,
improves service decomposition quality and supports
reliable, incremental modernization in real-world
settings.

4.1. Reduction in Refactoring Effort

This subsection examines whether Al-assisted
analysis reduces the overall effort required to refactor
legacy monolithic systems. Refactoring effort was
measured in person-hours spent on code analysis,
dependency exploration, and service boundary
identification. These measurements focus on the
early stages of migration, where effort is typically
highest and decisions have long-term architectural
impact [16]. Table 1 summarizes the observed
refactoring effort across four enterprise-scale legacy
systems. For all evaluated systems, the Al-assisted

approach required substantially fewer person-hours
compared to traditional manual refactoring
workflows. Effort reductions ranged from
approximately 27 to 38 percent, with larger systems
benefiting more significantly from Al-assisted
analysis. This trend reflects the increased difficulty of
manually understanding dependency structures as
codebase size and complexity grow [11]. The most
significant reductions were observed during the initial
exploration and planning phases. Engineers reported
spending less time tracing cross-module dependencies
and revisiting early design assumptions, as the
framework highlighted tightly coupled components and
candidate service boundaries upfront. While manual
validation remained necessary, the analysis helped
narrow the scope of investigation and reduced time
spent on low-impact areas. Overall, the results
indicate that Al-assisted refactoring provides
measurable efficiency gains during the most labor-
intensive stages of legacy modernization. Rather than
eliminating manual effort, the approach shifts
engineering time toward higher-value design decisions,
improving both productivity and confidence during
migration planning.

Table 1: Refactoring Effort Comparison Across Enterprise Legacy Systems.

Legacy Codebase Size | Manual Refactoring Al-Assisted Effort

System (KLOCO) Effort (Person- Refactoring Effort | Reduction (%)
Hours) (Person-Hours)

System A 420 1,200 860 28.3

System B 310 920 650 29.3

System C 560 1,580 980 38.0

System D 270 740 540 27.0

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 598

4.2. Quality of Service Decomposition and
Modularity

In this, I evaluated whether the methodology
improves the quality-of-service ~decomposition.
Modularity was assessed using structural metrics such
as coupling between services, cohesion within
extracted components, and the stability of service
boundaries after refactoring [7, 17]. These metrics
were compared against decompositions produced
through manual analysis alone. Systems refactored
using the proposed approach exhibited improved
modularity, with clearer separation of concerns and
reduced cross-service dependencies. In particular,
extracted services showed higher internal cohesion and
fewer shared data access paths compared to manually
decomposed counterparts [18]. This suggests that the
machine learning assisted pattern identification helped
identify logical groupings that were not immediately
obvious through manual inspection. Service

boundaries generated with Al-assisted
recommendations were also more stable during
subsequent refactoring iterations. Fewer boundary
changes were required as migration progressed,
indicating that early recommendations aligned more
closely with underlying system structure and business
logic. This stability is important in enterprise
environments, where frequent architectural changes
can introduce risk and delay [19]. While the
methodology did not guarantee optimal decomposition
in all cases, it consistently produced service
structures that required fewer corrective adjustments.
These findings suggest that combining static analysis
with Al-assisted insight can improve the structural
quality of microservice designs derived from legacy
monoliths. As shown in Table 2, Al-assisted
refactoring resulted in lower inter-service coupling,
higher service cohesion and fewer shared data access
paths compared to manual decomposition.

Table 2: Comparison of Modularity Metrics for Manual and Al-Assisted Refactoring.

Metric Manual Refactoring | AI-Assisted Observed Change
Refactoring

Average Inter- High (0.62) Moderate (0.41) 133.9%

Service Coupling

Average Service Moderate (0.48) High (0.67) 139.6%

Cohesion

Shared Data 14.2 8.1 143.0%

Access Paths (per

service)

Service Boundary 34 152.9%

Changes (per

iteration)

4.3. Migration Quality and Defect
Occurrence

This subsection investigates the impact of the
methodology on migration quality, with a focus on
defect occurrence during and after refactoring.
Defects were tracked during validation and testing
phases following service extraction and categorized as
integration issues, behavioral regressions, and data
consistency problems [20]. As shown in Figure 3,
Al-assisted refactoring reduced post-migration
defects across all evaluated categories, with the
largest improvements observed for integration and
data consistency issues. Applications refactored with
Al-assisted guidance exhibited fewer post-migration
defects overall, with the most significant reductions

observed in integration issues and data consistency
problems. These defect types are closely associated
with overlooked dependencies and unintended data
sharing, which were more effectively identified
during the early analysis phase. Behavioral
regressions still occurred in some cases, particularly
where domain logic was deeply intertwined across
modules. However, earlier visibility into risk areas
enabled more targeted testing and faster defect
resolution. As a result, fewer issues propagated into
later stages of deployment. These results indicate that
while Al-assisted refactoring does not eliminate
migration risk, it contributes to higher migration
quality by improving architectural visibility and
reducing the likelihood of overlooked coupling.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 599

21

Average Number Of Defects

Integration Issue

Behavioral Issue

Data Consistency Issue

@ Manual Refactoring Al-Assisted Refactoring

Figure 3: Post-migration defect distribution across defect categories for manual and AI- assisted

refactoring approaches

4.4. Practical Usability and Adoption
Considerations

Feedback was collected from engineers and
architects involved in the evaluation to assess
interpretability, trust and ease of integration into
existing workflows. Participants reported that the
human-in-the-loop design was essential for adoption.
The ability to review, adjust, and validate
recommendations increased confidence in the
analysis and reduced resistance to Al-assisted tooling.
Visual representations of dependency structures and
ranked recommendations were cited as particularly
helpful for communicating refactoring rationale across
teams. Incremental adoption was another key factor
influencing usability. Teams were able to apply the
methodology selectively to high-priority subsystems
without committing to full-scale migration up-front.
This flexibility aligned well with typical enterprise
constraints related to timelines, staffing, and risk
tolerance. Overall, the results indicate that the
methodology supports practical adoption by
complementing existing engineering practices rather
than replacing them. Its emphasis on transparency and
human control makes it suitable for real-world
modernization efforts where trust and reliability are
critical.

5. Discussion

The results demonstrate that the proposed Al-
augmented refactoring methodology improves
legacy modernization outcomes when compared to
fully manual and rule-based approaches. Rather
than optimizing a single metric, the method delivers
balanced gains across refactoring effort, structural
quality, and migration reliability. This section
interprets these results, explains why the approach is
effective, and positions its contribution within
practical enterprise modernization contexts.

5.1. Reason behind AI-Assisted Insight
Improves Refactoring Decisions

One of the most notable findings is the
reduction in refactoring effort without a
corresponding loss of architectural quality. This
outcome suggests that the primary value of Al in
this context lies not in automation, but in
improving decision-making during the early stages of
migration. Legacy codebases often overwhelm
engineers with low-level dependency information,
making it difficult to identify which components
matter most [21]. By aggregating structural signals
and highlighting candidate service boundaries, the
methodology helps focus human attention on high-
impact areas. This explains why effort reductions
were most pronounced during analysis and planning
rather than during code modification itself.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 600

Engineers were able to spend less time exploring
irrelevant dependencies and more time validating
meaningful design options. Unlike rule-based tools,
which apply uniform heuristics, the Al-assisted
approach adapts to the structure of each system,
producing recommendations that are more aligned
with real architectural constraints [14]. The findings
also highlight a qualitative distinction between Al-
assisted refactoring and prior approaches. Table 3
contrasts manual refactoring, rule-based tools, and the
proposed methodology across key decision-making

dimensions. Manual approaches offer strong contextual
understanding but scale poorly, while rule-based tools
improve scalability at the cost of architectural insight.
The Al-augmented approach occupies a middle
ground, combining structural awareness with human
validation. This balance helps explain why the
methodology reduced effort without sacrificing
service boundary stability, supporting more consistent
refactoring outcomes across systems of varying
complexity.

Table 3: Conceptual Comparison of Legacy Refactoring Approaches

Decision Dimension Manual Refactoring Rule-Based Tools | AI-Augmented
Approach

Scalability to Large Low Moderate High

Codebases

Context Awareness High (human- Low Moderate to High
dependent)

Effort Required for High Moderate Lower

Analysis

Service Boundary Variable Often Low Higher

Stability

Explainability of High Moderate High

Decisions

Suitability for Moderate Low High

Incremental Migration

5.2, Structural Stability and Migration
Quality Trade-offs

Improvements in modularity and service
boundary stability provide insight into how early
design guidance influences downstream migration
quality [22]. More stable service boundaries reduced
the need for corrective refactoring, which in turn
limited the introduction of migration-related defects.
This effect is particularly important in enterprise
environments, where architectural changes are often
constrained by testing capacity, deployment
schedules, and regulatory requirements. Frequent
boundary revisions in such settings can introduce
cascading integration issues, increase validation
overhead, and delay release cycles. The reduction in
integration and data consistency defects further
suggests that early visibility into coupling and
shared resources plays a critical role in migration
success [23, 24]. By identifying tightly coupled
components and shared data access patterns at the
planning stage, the methodology helps mitigate a

common source of post-migration failures that are
difficult to detect through isolated testing. This early
risk identification enables teams to apply targeted
refactoring strategies and design compensating
mechanisms, such as data ownership realignment or
contract-based interfaces, before service extraction
occurs. Behavioral regressions, while reduced, were
not eliminated, indicating that deeply intertwined
domain logic remains a challenge regardless of
tooling [11]. This limitation reflects the inherent
complexity of legacy systems, where implicit
business rules and cross-cutting concerns may not be
fully captured through structural analysis alone. In
such cases, Al-assisted recommendations can
highlight potential risk areas but still require expert
interpretation to ensure semantic correctness. These
findings highlight an important trade-off between
structural optimization and domain fidelity. While
Al-assisted analysis can substantially improve
architectural clarity and reduce migration risk, it
cannot fully replace domain expertise or exhaustive
validation. Instead, the results support a hybrid

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 601

model in which Al augments established
engineering practices by improving visibility and
prioritization, while final design decisions remain
guided by human judgment. This balance is essential
for achieving reliable modernization outcomes in
enterprise systems where correctness, stability, and
business continuity are paramount.

5.3. Positioning Within Enterprise
Modernization Practice

From a practical perspective, the methodology
aligns well with how enterprise modernization
efforts are typically executed. The emphasis on
incremental adoption and human oversight
addresses common barriers to adopting automated
migration tools, such as lack of trust, explainability
concerns, and organizational resistance [21]. Instead
of enforcing architectural changes, the approach
supports informed decision-making, making it
easier to integrate into existing workflows.
Compared to prior approaches that prioritize full
automation or rigid rule application, this work
positions Al as an enabling layer that bridges the gap
between raw static analysis and architectural
judgment [19, 25]. This positioning is especially
relevant for large, long-lived systems where risk
tolerance is low and business continuity is
paramount. By improving efficiency and structural
quality without requiring disruptive process
changes, the methodology offers a practical path
forward for enterprises seeking to modernize legacy
systems while maintaining control over critical
design decisions. Moreover, the framework
accommodates organizational constraints such as
phased funding, cross-team coordination, and
compliance-driven review cycles, which are often
overlooked in purely technical migration strategies.

5.4. Limitations and Scope of Applicability

While the proposed methodology
demonstrates measurable benefits in refactoring
efficiency and structural quality, several limitations
should be acknowledged. First, the approach relies
primarily on static analysis and historical structural
signals, which may not fully capture implicit
runtime behaviors, emergent interactions, or deeply
embedded business semantics. As a result, systems
with highly dynamic execution paths or extensive
runtime configuration may require complementary
runtime analysis to achieve optimal results. Second,
the quality of Al-assisted recommendations depends
on the availability and consistency of structural and

evolution data. Legacy systems with limited version
history or incomplete dependency information may
yield less precise insights, requiring greater reliance
on expert interpretation. Finally, the methodology is
designed to support decision-making rather than
guarantee optimal service = decomposition.
Architectural trade-offs, regulatory constraints, and
domain-specific considerations remain inherently
human-driven. These limitations are intentional
design choices that prioritize explainability, control
and practical adoption over aggressive automation,
aligning the framework with real-world enterprise
modernization constraints.

6. Conclusion

Modernizing large legacy monolithic systems
remains a difficult and risk-prone task for enterprise
organizations, particularly when migrating toward
microservice architectures. This work addressed the
gap between fully manual refactoring and rigid
automated tooling by introducing an Al-augmented
methodology that supports engineers through informed,
human-guided refactoring decisions rather than
attempting full automation. The evaluation results
demonstrate that the proposed approach delivers
measurable improvements across multiple dimensions
of legacy modernization. Refactoring effort during
analysis and planning phases was reduced by
approximately 25 to 40 percent compared to manual
approaches. Structural quality also improved, with
lower inter-service coupling, higher service cohesion,
and more stable service boundaries, reducing the need
for corrective refactoring. In addition, post-migration
defect occurrence decreased, particularly for
integration and data consistency issues, indicating
improved visibility into architectural dependencies
during refactoring. The primary contribution of this
work lies in demonstrating how Al can be practically
integrated into enterprise refactoring workflows as a
decision-support mechanism. By combining static
analysis, machine learning-assisted ~ pattern
identification, and human validation within a modular
framework, the methodology balances scalability,
explainability, and architectural control. Unlike
approaches that prioritize automation, this work
emphasizes trust, incremental adoption, and
alignment with real-world enterprise constraints.
Future work will focus on extending the proposed
methodology beyond static refactoring support
toward runtime-aware and system level modernization
guidance. One promising direction is integrating Al-

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 602

assisted refactoring insights with continuous code
review and quality feedback mechanisms, enabling
architectural risks and refactoring recommendations to
evolve alongside ongoing development activity rather
than being applied as a one-time analysis. This would
support long-lived systems where modernization
occurs incrementally over multiple release cycles.

References

[1] B. Pérez et al., “Technical debt payment
and prevention through the lenses of software
architects,” Information and Software Technology, vol.
140, p. 106692, Dec. 2021, doi:
10.1016/j.infs0f.2021.106692.

[2] A. Balalaie, A. Heydarnoori, P. Jamshidi, D.
A. Tamburri, and T. Lynn, “Microservices migration
patterns,” Software: Practice and Experience, vol. 48,
no. 11, pp. 20192042, Jul. 2018, doi:
10.1002/spe.2608.

[3] J. Fritzsch, J. Bogner, A. Zimmermann, and
S. Wagner, “From Monolith to Microservices: A
Classification of Refactoring Approaches,”
Software Engineering Aspects of Continuous
Development and New Paradigms of Software
Production and Deployment, pp. 128-141, 2019, doi:
10.1007/978-3-030-06019-0 10.

[4] M. Allamanis, E. T. Barr, P. Devanbu, and
C. Sutton, “A Survey of Machine Learning for Big
Code and Naturalness,” ACM Computing Surveys,
vol. 51, no. 4, pp. 1-37, Jul. 2018, doi:
10.1145/3212695.

[5] S. Li et al., “Understanding and addressing
quality attributes of microservices architecture: A
Systematic literature review,” Informa- tion and
Software Technology, vol. 131, p. 106449, Mar.
2021, doi: 10.1016/j.infs0f.2020.106449.

[6] J. Correia and A. Rito Silva, “Identification
of monolith functionality refactorings for
microservices migration,” Software: Practice and
Experience, vol. 52, no. 12, pp. 26642683, Aug. 2022,
doi: 10.1002/spe.3141.

[7] A. Krause, C. Zirkelbach, W. Hasselbring,
S. Lenga, and D. Kroger, “Microservice
Decomposition via Static and Dynamic Analysis of
the Monolith,” 2020 IEEE International Conference
on Software Architecture Companion (ICSA-C), pp.
9-16, Mar. 2020, doi: 10.1109/icsa-
¢50368.2020.00011.

[8] A. Santos and H. Paula, “Microservice
decomposition and evaluation using dependency
graph and silhouette coefficient,” 15th Brazilian
Symposium on Software Components, Architectures,
and Reuse, pp. 51-60, Sep. 2021, doi:
10.1145/3483899.3483908.

[9] M. Brito, J. Cunha, and J. Saraiva,
“Identification of microservices from monolithic
applications through topic modelling,” Proceedings
of the 36th Annual ACM Symposium on Applied
Computing, pp. 1409-1418, Mar. 2021, doi:
10.1145/3412841.3442016.

[10] Z. Li, C. Shang, J. Wu, and Y. Li,
“Microservice extraction based on knowledge
graph from monolithic applications,” Information
and Software Technology, vol. 150, p. 106992, Oct.
2022, doi: 10.1016/j.infs0f.2022.106992.

[11] A. Bucchiarone, N. Dragoni, S. Dustdar, S.
T. Larsen, and M. Mazzara, “From Monolithic to
Microservices: An Experience Report from the
Banking Domain,” IEEE Software, vol. 35, no. 3, pp.
50-55, May 2018, doi: 10.1109/ms.2018.2141026.

[12] D. Guaman, J. Pérez, J. Diaz, and C. E.
Cuesta, “Towards a reference process for software
architecture reconstruction,” IET Software, vol. 14, no.
6, pp. 592-606, Dec. 2020, doi: 10.1049/iet-
sen.2019.0246.

[13] K. Alkharabsheh, S. Alawadi, V. R.
Kebande, Y. Crespo, M. Fernandez- Delgado, and J.
A. Taboada, “A comparison of machine learning
algorithms on design smell detection using balanced and
imbalanced dataset: A study of God class,”
Information and Software Technology, vol. 143, p.
106736, Mar. 2022, doi: 10.1016/j.infsof.2021.106736.

[14] S. Amershi et al., “Guidelines for Human-Al
Interaction,” Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems,

pp. 1-13, May 2019, doi: 10.1145/3290605.3300233.

[15] N. Bjerndal et al, “Benchmarks and
performance metrics for assessing the migration to
microservice-based architectures”, Journal of
Object Technology, Volume 20, no. 2 (2021), pp.
2:1-17, doi:10.5381/j0t.2021.20.2.a3.

[16] F. Auer, V. Lenarduzzi, M. Felderer, and
D. Taibi, “From monolithic systems to
Microservices: An assessment framework,”
Information and Software Technology, vol. 137, p.
106600, Sep. 2021, doi:

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 603

10.1016/j.infs0£.2021.106600.

[17] F. H. Vera-Rivera, C. Gaona, and H.
Astudillo, “Defining and measuring microservice
granularity—a literature overview,” Peer] Computer
Science, vol. 7, p. e695, Sep. 2021, doi:
10.7717/peerj-cs.695.

[18] M. G. Moreira and B. B. N. De Franga,
“Analysis of Microservice Evolution using Cohesion
Metrics,” Proceedings of the 16th Brazilian
Symposium on Software Components, Architectures,
and Reuse, pp. 40-49, Oct. 2022, doi:
10.1145/3559712.3559716.

[19] S. Hassan, R. Bahsoon, and R. Kazman,
“Microservice transition and its granularity problem:
A systematic mapping study,” Software: Practice and
Experience, vol. 50, no. 9, pp. 1651-1681, Jun.
2020, doi: 10.1002/spe.2869.

[20] M. Wu et al, “On the Way to
Microservices: Exploring Problems and Solutions
from Online Q&A Community,” 2022 IEEE
International Conference on Software Analysis,
Evolution and Reengineering (SANER),

pp- 432443, Mar. 2022, doi:
10.1109/saner53432.2022.00058.

[21] J. Fritzsch, J. Bogner, S. Wagner, and A.

Zimmermann, “Microservices Migration in Industry:
Intentions, Strategies, and Challenges,” 2019 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), pp. 481490, Sep. 2019, doi:
10.1109/icsme.2019.00081.

[22] D. Sas, P. Avgeriou, and U. Uyumaz, “On
the evolution and impact of architectural smells an
industrial case study,” Empirical Software
Engineering, vol. 27, no. 4, Apr. 2022, doi
10.1007/s10664-022-10132-7.

[23] S. S. de Toledo, A. Martini, and D. 1. K.
Sjeberg, “Identifying architectural technical debt,
principal, and interest in microservices: A multiple-
case study,” Journal of Systems and Software, vol.
177, p. 110968, Jul. 2021, doi:
10.1016/j.jss.2021.110968.

[24] I. Pigazzini, F. A. Fontana, V.
Lenarduzzi, and D. Taibi, “Towards microservice
smells detection,” Proceedings of the 3rd
International Conference on Technical Debt, pp.
92-97, Jun. 2020, doi: 10.1145/3387906.3388625.

[25] D. Taibi, V. Lenarduzzi, and C. Pahl,
“Microservices Anti-patterns: A Taxonomy,”
Microservices, pp. 111-128, Dec. 2019, doi:
10.1007/978-3- 030-31646-4 5.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2023, 11(8s), 593-604 | 604

