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A fuzzy-genetic based design of permanent magnet synchronous motor 
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Abstract: This paper presents a fuzzy-genetic based design of permanent magnet synchronous motor. The selected motor structure with 

surface magnet and double layer winding is for high torque and low speed applications. The design approach involves combining fuzzy 

logic and genetic algorithm in a powerful combination. While the genetic algorithm is used in scanning of the solution space, the fuzzy 

logic approach has been utilized in selecting the most appropriate solutions. While choosing geometric parameters as input for optimization, 

design equations are obtained by using geometrical, electrical and magnetic properties of the motor. The output results are evaluated with 

motor efficiency, motor weight and weight of magnets as the objective function. Furthermore, the multiobjective design optimization 

results are compared with the results obtained for each single objective and tested with a finite element program. The results are finally 

remarkable and quite compatible with the finite element results. 
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1. Introduction

Induction motor and permanent magnet synchronous motor 

(PMSM) are among the most used electric motors in industrial 

fields. While induction motors are of interest because of their low 

cost and ease of maintenance, permanent magnet synchronous 

motors have high power density and high efficiency. In addition, 

in today’s control applications, drive systems affect the motor 

selection. After all, whatever the performance criteria, due to high 

efficiency it is clear that the use of PMSMs is increasing. Most 

prominent feature of PMSMs is that they show structural 

differences according to the placement of the magnets. Naturally 

this affects the performances and the production costs of PMSMs. 

Due to the ease of design and low production cost, surface mounted 

PMSMs are the most preferred types for low speed applications. 

This structure is also preferred because of its low cogging torque 

based on slot and pole combination [1]. 

The design of electric motors is the most complex engineering 

problem. It is because the electric motors have the non-linear 

structures. To overcome this situation, when some simplifications 

are taken, linear equations are used in electric motor design studies. 

This is even more preliminary in optimization applications wherein 

artificial intelligence algorithms are used. In academic or industrial 

fields complex and realistic designs are provided by commercial 

programs using finite element method. In fact, analytically and 

numerically, two methods are basically applied in the design of 

electric motors. Working with the analytic equations is weak in 

terms of accuracy but advantageous in terms of duration. On the 

other hand working with the numerical methods such as finite 

element method is effective in terms of correctness of the results 

but weak in terms of duration [2]. Nevertheless, in the design 

optimization studies where analytic equations are used, electric 

motor designs can be flexibly directed to single objective or 

multiobjective. 

With a general evaluation, the design optimization studies which 

artificial intelligence used are based on the effectiveness of the 

algorithms. One of them is undoubtedly the most recognizable 

genetic algorithm. This algorithm has been applied to so many 

different electric motor design problems up to date [3-5]. In 

addition, the more strong algorithms constructed by combining the 

different artificial intelligence algorithms or other methods with 

genetic algorithm have been used [6-9]. 

The designs of permanent magnet synchronous motors are more 

complex and non-linear engineering problems and also contain 

some fuzzy facts such as other electric motor designs [10, 11]. The 

fuzzy-genetic approach is quite useful in terms of decision 

structure and ease of application in the choice of objective 

function. By using the fuzzy-genetic structure, a large solution 

space can be scanned and the designer’s experience, view and 

judgment are well reflected [10-14]. In this study, as 

multiobjective, a fuzzy-genetic based approach was firstly used in 

the design optimization of the surface mounted permanent magnet 

synchronous motor. Motor efficiency, motor weight and weight of 

magnets were selected as objective function and then the objective 

and constraint values were determined by using fuzzy rules. Single 

and multi objective optimization results were given comparatively, 

and the results were tested by a finite element program. The effects 

of the fuzzy-genetic structure used were shown in the PMSM 

design with graphics and tables. In this respect, PMSM design 

optimization has been examined in a versatile way and useful 

inferences have been provided for the technical staffs. 

2. Multidirectional Analysis of The PMSM

Electrical, magnetic, thermal and mechanical analyzes are carried 

out in the designs of electric motors. The solution of the differential 

equations obtained for each analysis is quite complex. Moreover, 

due to the non-linearity of the electric motors, it is almost 

impossible to do very precise solutions. Numerical methods such 

as finite element method are used in this case. Obviously, the use 

of linear equations for a basic design is sufficient. The geometrical 

model of the PMSM, the electrical and the magnetic circuits are 

investigated in each subdivision as follows. 
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2.1. The Geometric Model 

The use of magnetic and electrical equations commonly associated 

with the geometric modelling in the designs of electric motors is 

widespread. Such approaches are primitive but provide rapid 

analysis [2]. In this study based on the geometric model of the 

PMSM has 12 slots and 10 poles shown in Figure 1. By some 

assumptions, the objective functions are obtained with the help of 

magnetic and electric equations. Facilitating acceptance is the 

result of an optimal design that sets the grounds for these 

assumptions. 

 

Figure 1. 3D geometric model of the PMSM 

2.2. The Magnetic Circuit 

According to the magnetic circuit in Figure 2 [1, 2] it is very 

difficult to calculate the magnetic flux in each region of the 

PMSM. The most important issue in the magnetic design is the 

accurate calculation of air gap magnetic flux [15]. The magnetic 

flux at the points on the stator and the rotor is particularly 

important in terms of saturation. From this point of view, magnetic 

boundary values are the points to be considered in the PMSM 

design. Magnetic flux density equations of air gap, stator tooth, 

stator yoke and rotor yoke are as follows. 

𝐵𝑚 = (𝐵𝑟𝑘𝑙𝑒𝑎𝑘𝑙m) (𝑙m + 𝜇𝑟𝛿𝑘𝐶)⁄    (1) 

𝐵̂𝛿 = (4 π⁄ )𝐵𝑚 sin α    (2) 

𝐵𝑠𝑡 = (4𝛼𝐵𝑚(𝐷 2⁄ − 𝛿)(1 − 𝑘𝑙𝑒𝑎𝑘𝑡𝑜𝑜𝑡ℎ)) (2𝑝𝑞𝑏𝑠𝑡𝑠𝑡𝑓𝑐)⁄  (3) 

𝐵𝑠𝑦 = (4𝛼𝐵𝑚(𝐷 2⁄ − 𝛿)) (2𝑝ℎ𝑠𝑦𝑠𝑡𝑓𝑐)⁄   (4) 

𝐵𝑟𝑦 = (4𝛼𝐵𝑚(𝐷 2⁄ − 𝛿)) (2𝑝ℎ𝑟𝑦𝑠𝑡𝑓𝑐)⁄   (5) 

where, remanence flux density of permanent magnet is 𝐵𝑟, 

maximum of air gap flux density is 𝐵𝑚, fundamental of air gap flux 

density is 𝐵̂𝛿 , flux density in a stator tooth is 𝐵𝑠𝑡, flux density in 

stator yoke is 𝐵𝑠𝑦 , flux density in rotor yoke is 𝐵𝑟𝑦, correction 

factor for air gap flux density is 𝑘𝑙𝑒𝑎𝑘, relative magnet permeability 

is 𝜇𝑟 , Carter factor is 𝑘𝐶 , pole angle is 2𝛼, inner stator diameter is 

𝐷, correction factor for flux density in stator teeth is 𝑘𝑙𝑒𝑎𝑘𝑡𝑜𝑜𝑡ℎ, 

number of slots per pole per phase is 𝑞, stacking factor of the stator 

iron laminations is 𝑠𝑡𝑓𝑐, stator yoke height is ℎ𝑠𝑦, rotor yoke 

height is ℎ𝑟𝑦. 

 

Figure 2. Magnetic circuit for the geometrical model of the PMSM 

2.3. The Electrical Circuits 

Electromechanical conversions are the most important part of 

electrical circuit design. Here, the motor d-q electrical circuits at 

base speed (Fig. 3) and the equations were given. When the 

moment equation is examined, the number of windings of the 

motor is calculated only according to the 𝐼𝑞 current because the 𝐼𝑑 

current is zero in the non-salient permanent magnet synchronous 

motors [16, 17]. 

𝐸̂ = 𝜔𝑘𝜔1𝑞𝑛𝑠𝐵̂𝛿𝐿(𝐷 − 𝛿)    (6) 

𝑅𝐶𝑢 = (𝜌𝐶𝑢(𝑝𝐿 + 𝜋𝑘𝑐𝑜𝑖𝑙(𝐷 + ℎ𝑠𝑠))𝑛𝑠
2𝑞) 𝑓𝑠𝐴𝑠𝑙⁄   (7) 

𝐿𝑑,𝑞 = (𝑝𝑞𝜆 + 3 𝜋⁄ (𝑞𝑘𝜔1)
2 (𝐷 − 𝛿) (𝛿𝑘𝐶 + 𝑙𝑚 𝜇𝑟⁄ )⁄ )𝜇0𝐿𝑛𝑠

2(8) 

𝑈̂ = √𝑈𝑞
2 +𝑈𝑑

2 = √(𝐸̂ + 𝑅𝐶𝑢𝐼𝑞)
2
+ (𝐿𝑞𝜔𝐼𝑞)

2
  (9) 

where, electrical angular frequency is 𝜔, fundamental winding 

factor is𝑘𝜔1, conductor number per slot is 𝑛𝑠, stack length is 𝐿, 

copper wire resistivity is 𝜌𝐶𝑢, end-winding coefficient is 𝑘𝑐𝑜𝑖𝑙 , slot 

fill factor is 𝑓𝑠, slot area is 𝐴𝑠𝑙, specific permeance coefficient of 

the slot opening is 𝜆, d,q-axes terminal voltages are is 𝑈𝑑,𝑞, d,q-

axes currents are 𝐼𝑑,𝑞 , fundamental of the induced voltage is 𝐸̂, 

winding resistance is 𝑅𝐶𝑢, d,q-axes magnetizing inductance is 𝐿𝑑,𝑞. 

 

Figure 3. d-q equivalent circuits of the PMSM 

2.4. The Objective Functions 

The efficiency is generally the primary objective in the design of 

the electrical motor today. To improve efficiency in design studies, 

the reduction of copper losses is especially required for low-

frequency multi-poles PMSMs. It is also necessary to pay more 

attention to one issue that the gearless PMSMs are more efficient 

than other electric motors with gears. 

Motor weight and weight of magnets affect the cost as much as it 

is important in terms of the usage place. The permanent magnets 

are structurally the most expensive parts of the PMSMs, and their 
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prices are also rapidly changing, especially due to technological 

developments. The weight of magnets improves the power density 

of the PMSMs and but increases the motor weight. Especially this 

situation is overwhelmed by multi-poles PMSM structures. 

Three objective functions, namely motor efficiency, motor weight 

and weight of magnets, were used for the fuzzy-genetic based 

multiobjective design optimization. A suitable association for all 

objectives was aimed, namely to increase the motor efficiency, to 

reduce the motor weight and to reduce the weight of the magnets. 

The acquisition of these functions is a very detailed process and 

therefore references to different studies have been made [1, 2, 16-

19]. As a result, the objective functions required for this study were 

obtained in the following order, motor efficiency, motor weight 

and weight of magnets. 

𝜂 = 𝑃𝑜𝑢𝑡 (𝑃𝑜𝑢𝑡 + 𝑃𝐶𝑢 + 𝑃𝐹𝑒)⁄    (10) 

𝑊𝑇𝑜𝑡 = 𝑊𝑆ℎ𝑎𝑓𝑡 +𝑊𝑃𝑀𝑠 +𝑊𝑅𝑜𝑡𝑜𝑟 +𝑊𝑆𝑡𝑎𝑡𝑜𝑟 +𝑊𝑊𝑖𝑛𝑑𝑖𝑛𝑔 (11) 

𝑊𝑃𝑀 = 𝜌𝑃𝑀4𝛼𝐿𝑙𝑚(𝐷𝑟𝑐 + 𝑙𝑚)   (12) 

where, efficiency is 𝜂, output power is 𝑃𝑜𝑢𝑡, copper losses is 𝑃𝐶𝑢, 

iron losses are 𝑃𝐹𝑒, total motor weight is 𝑊𝑇𝑜𝑡, shaft weight is 

𝑊𝑆ℎ𝑎𝑓𝑡, rotor weight is 𝑊𝑅𝑜𝑡𝑜𝑟, stator weight is 𝑊𝑆𝑡𝑎𝑡𝑜𝑟, winding 

weight is 𝑊𝑊𝑖𝑛𝑑𝑖𝑛𝑔, weight of magnets is 𝑊𝑃𝑀𝑠. 

3. The Fuzzy-Genetic Based Multiobjective 
Approach 

The genetic algorithm has been applied to so many different 

electric motor design problems up to date [3-5]. In addition, the 

more strong algorithms constructed by combining the different 

artificial intelligence algorithms or other methods with genetic 

algorithm have been used [6-9]. In addition, the fuzzy-genetic 

approach has been used to solve some engineering problems such 

as selection of control parameters and induction motor design and 

so effective solutions have been made. Here, the definition and 

basic steps of the used fuzzy-genetic based multiobjective 

approach with the genetic algorithm are as follows [20, 21]: 

𝑓𝑖𝑛𝑑𝑋𝑤ℎ𝑖𝑐ℎ𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁄ 𝑓(𝑋) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜; ℎ𝑚(𝑋) = 0,               𝑚 = 1,2,… ,𝑀 

 𝑔𝑗(𝑋) ≤ 0,                 𝑗 = 1,2,… , 𝐽 

 𝑋𝑘
𝑙 ≤ 𝑋𝑘 ≤ 𝑋𝑘

𝑢, 𝑘 = 1,2,… , 𝐾 

 

where objective functions form the multiobjective function vector 

as 𝑓(𝑥) = [𝑓1(𝑋), 𝑓2(𝑋), . . . , 𝑓𝑛(𝑋)], ℎ𝑚(𝑋) and 𝑔𝑗(𝑋) are 

equality and inequality constraint functions. 𝑋𝑘
𝑢 and 𝑋𝑘

𝑙  are the 

upper and lower boundary values of the input parameter. The fuzzy 

objective is obtained by using the actual objective function values 

within the fuzzy boundaries. It uses the fuzzy membership s-

function defined below. 

𝜇𝑓𝑖(𝑋) =

{
 
 

 
 

0

1 − 2 (
𝑓𝑖(𝑋)−𝑓𝑖

𝑚𝑖𝑛

𝑓𝑖
𝑚𝑎𝑥−𝑓𝑖

𝑚𝑖𝑛)
2

2 (
𝑓𝑖
𝑚𝑎𝑥−𝑓𝑖(𝑋)

𝑓𝑖
𝑚𝑎𝑥−𝑓𝑖

𝑚𝑖𝑛)
2

1

𝑖𝑓 𝑓𝑖(𝑋) ≤ 𝑓𝑖
𝑚𝑖𝑛

𝑖𝑓 𝑓𝑖
𝑚𝑖𝑛 < 𝑓𝑖(𝑋) ≤ (𝑓𝑖

𝑚𝑎𝑥 + 𝑓𝑖
𝑚𝑖𝑛) 2⁄

𝑖𝑓 (𝑓𝑖
𝑚𝑎𝑥 + 𝑓𝑖

𝑚𝑖𝑛) 2⁄ < 𝑓𝑖(𝑋) ≤ 𝑓𝑖
𝑚𝑎𝑥

𝑖𝑓 𝑓𝑖
𝑚𝑎𝑥 ≤ 𝑓𝑖(𝑋)

(13) 

 

where 𝜇𝑓𝑖(𝑋):ℛ
𝑛 → [0,1] and it represents fuzzy correctness 

according to input parameters, 𝑓𝑖
𝑚𝑎𝑥 and 𝑓𝑖

𝑚𝑎𝑥 expressions are 

user-dependent minimum and maximum objective values. The 

fuzzy values of the objective function and the constraint values for 

fuzzy decision making must be calculated, and the conclusion for 

the constraint function is as follows. 

𝜇𝑔𝑗(𝑋) = {
0

1 − (𝑔𝑗(𝑋) − 𝑏𝑗) 𝑑𝑗⁄

1

𝑖𝑓 𝑔𝑗(𝑋) > 𝑏𝑗 + 𝑑𝑗
𝑖𝑓 𝑏𝑗 ≤ 𝑔𝑗(𝑋) ≤ 𝑏𝑗 + 𝑑𝑗

𝑖𝑓 𝑔𝑗(𝑋) < 𝑏𝑗

 (14) 

where 𝜇𝑔𝑗(𝑋):ℛ
𝑛 → [0,1] and it represents fuzzy constraints 

according to input parameters. 𝑏𝑗  is the desired value, 𝑑𝑗  is the 

tolerance value. 

3.1. Fuzzy Decision Making 

The aim of the multiobjective optimization is to find the best 

solution by using linearized fuzzy objective and constraint 

membership functions. That is to find a solution with maximum 

membership from the fuzzy solution space. This situation can be 

shown as follows [20, 22]: 

𝜇𝐷(𝑋
∗) = max(𝜇𝐷(𝑋)) , 𝜇𝐷 ∈ [0,1]   (15) 

Convex fuzzy decision criterion was chosen in this study. Convex 

decision is an approach that depends on the arithmetic mean and 

the weight of each fuzzy objective function. As shown below. 

𝐷 = 𝛼𝑓(𝑋) + 𝛽𝑔(𝑋)    (16) 

where 𝛼 and 𝛽 are weighting factors, which satisfy 

𝛼 + 𝛽 = 1   (𝛼 ≥ 0 ;  𝛽 ≥ 0)    (17) 

These coefficients can be obtained by the linear weight average of 

the objective functions. Thus, the membership function is provided 

for convex fuzzy inference. 

𝛼𝑖 = 𝜇𝑓𝑖 ∑ 𝜇𝑓𝑖
𝑛
𝑖=1⁄ 𝑎𝑛𝑑𝛽𝑗 = 𝜇𝑔𝑗 ∑ 𝜇𝑔𝑗

𝑚
𝑗=1⁄   (18) 

𝜇𝐷(𝑋) = ∑ 𝛼𝑖𝜇𝑓𝑖
𝑛
𝑖=1 + ∑ 𝛽𝑗𝜇𝑔𝑗

𝑚
𝑗=1    (19) 

where 𝛼𝑖 and 𝛽𝑗  satisfy 

∑ 𝛼𝑖
𝑛
𝑖=1 + ∑ 𝛽𝑗

𝑚
𝑗=1 = 1        

𝛼𝑖 ≥ 0   𝑖 = 1,2, … , 𝑛
𝛽𝑗 ≥ 0   𝑗 = 1,2, … ,𝑚

  (20) 

The multiobjective design algorithm used here includes properties 

of fuzzy logic and genetic algorithm. While fuzzy logic approach 

reflects human thought in selecting the best result of the solution 

spaces, genetic algorithm tries to find the most appropriate result 

in a large solution space. Hence, the hybrid algorithm will strongly 

reflect the goals of the motor design. 

The starting point is the geometric parameters in multiobjective 

design optimization. Selected geometric parameters are 

independent variable. Supply voltage, motor power and speed, etc. 

the quantities are invariable. Other design parameters are 

dependent variable. The objective functions were obtained by 

using the geometrical model, electrical and magnetic circuits of the 

motor. The most important aspect of optimization studies is the 

necessity of achieving objective functions with great accuracy. 

Objective functions for fuzzy multiobjective design optimization 

are formulated in different forms and compared with single 

objective studies with genetic algorithm. These formulations are 

shown in Table 1. 

Table 1. Objective functions for the design optimization 

Single objective functions Multiobjective functions 

𝑓1(to increase motor efficiency) 𝐹1: 𝑚𝑎𝑥[𝜇𝑓1, 𝜇𝑓2] 

𝑓2(to reduce motor weight) 𝐹2: 𝑚𝑎𝑥[𝜇𝑓1, 𝜇𝑓3] 

𝑓3(to reduce magnet weight) 𝐹3:𝑚𝑎𝑥[𝜇𝑓1 , 𝜇𝑓2, 𝜇𝑓3] 

 

The boundary values for fuzzification of the selected objective 

functions are given in Table 2. The appropriate values and 

tolerances for fuzzification of the constraints are given in Table 3. 
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Table 2. Boundary values of the objective functions for fuzzification 

Objective Functions Min value Max value 

𝑓1(%) 0 100 

𝑓2(𝑘𝑔) 50 150 

𝑓3(𝑘𝑔) 0 3 

Table 3.Constraint values and tolerances for fuzzification 

Constraint 
Desired value 

(𝒃𝒋) 
Tolerance value 

(𝒅𝒋) 

Stator tooth flux (𝐵𝑠𝑡) 1.6T 0.4T 

Stator yoke flux 

(𝐵𝑠𝑦) 
1.4T 0.4T 

Rotor yoke flux (𝐵𝑟𝑦) 1.4T 0.4T 

3.2. Steps of the optimization algorithm 

The multiobjective function can be written as Eq. 21 and the 

flowchart of the optimization algorithm and the content of each 

step were explained in detail. 

𝑚𝑎𝑥(𝜇𝐷𝑖) = ∑ 𝛼𝑖𝜇𝑓𝑖
𝑛
𝑖=1 + ∑ 𝛽𝑗𝜇𝑔𝑗

𝑚
𝑗=1    (21) 

It is not important to produce the first population, because the 

performance of artificial intelligence algorithms such as genetic 

algorithm is not dependent on initial population or individuals. 

However, the performance of the algorithm is affected by real-

valued or binary coding [23], where the binary code was used for 

software ease. Also, since electric motor design studies require a 

lot of equations, the boundaries of the independent variables must 

be carefully chosen according to experience and requirements. The 

geometrical, electrical and magnetic equations are interaction with 

each other. It is therefore an effective approach to derive design 

equations by making use of design experience to make some 

negligence or to reduce motor design equations by using 

coefficients. Thus, an effective and useful approach for the 

designer will be achieved. 

The obtained objective values are evaluated according to the 

previously described fuzzy decision approach. In this way, new 

populations are provided for the objective of the genetic algorithm 

and higher values are preserved. The termination criterion for the 

genetic algorithm was given as the iteration number or it could be 

the precision of the objective values. The important point here is to 

achieve the objectives with great accuracy. 

The characteristics of the genetic algorithm and how it works are 

as follows [23-25]. 

i. It works to select the best individual (solution) and more 

solution is produced with the population for the optimization 

problem. Individuals in the population are independent of 

each other, whereas individuals are made up of genes that 

contain the solution of each independent variable. The 

population size and the number of genes are related to the 

direct input parameters, which influences the solution 

accuracy [17]. 

ii. Genetic algorithms carry the genetic properties of 

individuals to new populations by using the fitness function. 

Due to natural selection, strong individuals are more 

fortunate to survive from weaker individuals. This situation 

is repeated in each iteration to converge to the optimal 

solution. 

iii. Genetic algorithms do not guarantee the optimal solution. 

Unfortunately, genetic algorithms can converge to a local 

solution. Genetic algorithms have reproduction, crossover 

and mutation operators. Using roulette wheel, tournament, or 

different crossover operators, individuals with high fitness 

values are selected. The crossover operator randomly 

changes the genes of two selected individuals. The mutation 

operator changes the gene of the preselected individual to "0" 

or vice versa for binary coding. In this way, the algorithm is 

prevented from converging with local solutions. 

4. The Design Application and The Evaluation of 
The Results 

Some constants must be predetermined in the design optimization. 

In this study permanent magnet synchronous motor with 

concentrated double layer winding has 340 volts of supply voltage, 

2400 watts of shaft power, 250 rpm and also outer stator diameter 

is 300mm, stack length is 120mm and electrical magnet angle is 

126°. After the invariables determined, variables and their 

boundary values was given in Table 4. The variable number was 

chosen to be sufficient for the geometry of the PMSM. 

Incorporating too many variables into the algorithm will affect 

sensitivity of the results and the optimization time. 

Table 4.Input variables of the design optimization 

Parameter Symbol 
Lower 

boundary 

Upper 

boundary 

Magnet thickness (mm) 𝑙𝑚 3.5 5.5 

Air gap length (mm) 𝛿 1 1.5 

Slot wedge height (mm) ℎ𝑠𝑤 0.5 3 

Stator tooth width (mm) 𝑏𝑡𝑠 10 50 

Outer rotor diameter (mm) 𝐷𝑟𝑐 150 250 

Stator slot height (mm) ℎ𝑠𝑠 25 45 

Ratio of the slot opening over the 
slot width 

𝑘𝑜𝑝𝑒𝑛 0.55 0.99 

 

No initial solution is predicted in the design optimization study 

made with single and multi objectives. The optimization results 

were randomly generated by algorithms using the objective 

function. In the case of single objective operation, the motor 

efficiency, the total motor weight, the total weight of the magnets 

have been tried to be improved separately and the result graphs are 

shown in Figs. 4 and 5. In the case of multiobjective operation, the 

motor efficiency, the total motor weight, the total weight of the 

magnets have been tried to be mixed with fuzzy decision making 

and the membership result graphs are given in Fig. 6. Algorithm 

parameters such as population number are 100, iteration number is 

100, crossover rate is 0.85 and mutual rate is 0.01 are taken the 

same in order to evaluate the optimization results correctly. When 

these graphs are examined, it can be said that genetic algorithm 

provides a good search and solution in single objective 

optimizations. In multiobjective optimizations, it can be stated that 

the fuzzy decision making and genetic algorithm provide a good 

fit and precise convergence. Furthermore, the selected population, 

iteration, crossover and mutation values are suitable. 

Table 5 shows the optimal geometric results and Table 6 shows the 

optimal objective results, the optimal boundary results and the 

iteration numbers and times in which the optimal results were 

obtained. The values given in bold are the most appropriate results 

found. According to Table 5, a common observation in all 

iterations is the reduction of the rotor diameter, the increase of the 

magnet thickness and the increase of the stator slot height. The 

rotor diameter and slot height are interconnected. The PMSM 

needs sufficient magnet weight and winding area to provide the 

required torque. Table 6 emphasizes that results are obtained in 

accordance with each objective function and the boundary values 

are not exceeded. The situation that affects the iteration numbers 

and times is in particular the effectiveness of the genetic algorithm. 
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Figure 4.Optimal values of f1 single objective function 

 

Figure 5.Optimal values of f2and f3 single objective functions 

 

Figure 6.Convergence graphics of F1, F2 and F3 multiobjectivefunctions 

 

Figure 7.Sum of the scaled objective results 

Fig. 7 shows linear curves showing the most appropriate solution 

for each row in Table 3. Each curve connects the points 

corresponding to sum of the scaled values of the three accepted 

objectives. According to Fig. 7, the motor efficiency and the motor 

weight are not changed sharply in the optimization, but the weight 

of the magnets sharply changes and affects the results. Linear 

curves emphasize that the weight of the magnets is a very effective 

objective function for the boundary values. 

Table 5.Optimal geometric results 

 
𝐃𝒓𝒄
(𝐦𝐦)

 
𝒍𝒎

(𝐦𝐦)
 

𝜹
(𝐦𝐦)

 
𝒉𝒔𝒘
(𝐦𝐦)

 
𝒃𝒕𝒔
(𝐦𝐦)

 
𝒉𝒔𝒔
(𝐦𝐦)

 𝒌𝒐𝒑𝒆𝒏 

analytica

l 
215 3.50 1.25 3.20 31.95 25.00 

0.7280

3 

f1 
165.5

4 
5.20 1.41 1.75 27.28 44.90 

0.8609

7 

f2 
171.4

1 
5.35 1.42 2.47 39.13 30.16 

0.9173
1 

f3 
155.1

8 
3.58 1.16 1.86 36.51 42.13 

0.8368

8 

F1 
195.5

5 
5.40 1.47 2.48 31.86 26.04 

0.8915

1 

F2 
150.4

9 
3.62 1.41 1.97 25.99 43.89 

0.9728
0 

F3 
194.2

8 
5.34 1.22 2.72 33.62 26.45 

0.6076
3 

 

The permanent magnet synchronous motor initially increased from 

analytical design to optimization, the motor efficiency increased 

from 92.33% to 94.9% while the total weight of the motor dropped 

from 62.83kg to 62.46kg and the total weight of the magnets 

dropped from 1.51kg to 1.1kg. While the improvement in motor 

efficiency is realized in the efficiency objective function (f1), the 

improvement in the total weight of the motor occurs in the 

efficiency-weight objective function (F1) and the improvement in 

the total weight of the magnets is in the efficiency-magnet 

objective function (F2). The most striking feature is the rate of 

change in the total weight of the magnets. If the results are 

generally evaluated in terms of constraint functions, the magnetic 

flux density does not increase so much as to cause saturation in any 

region on the motor sheet.  

 

Table 6.Optimal objective and boundary geometric results, iteration numbers and times 

 𝜼 (%) 𝑾𝒕𝒐𝒕(𝒌𝒈) 𝑾𝑷𝑴𝒔(𝒌𝒈) 𝑩𝒓𝒚(𝑻) 𝑩𝒔𝒚(𝑻) 𝑩𝒔𝒕(𝑻) Iter. number Iter. time (s) 

analytical 92.33 62.83 1.51 0.27 1.56 1.53 - - 

f1 94.90 63.58 1.76 0.34 1.09 1.54 73 16.119 

f2 91.87 62.56 1.87 0.35 0.69 1.18 68 14.277 

f3 92.55 63.32 1.12 0.36 0.63 1.08 18 14.467 

F1 93.61 62.46 2.15 0.31 1.03 1.53 20 20.229 

F2 93.54 63.29 1.10 0.32 0.53 1.29 69 15.718 

F3 93.81 62.64 2.11 0.33 1.09 1.57 66 15.759 
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This is good news. A clear observation is that the thickness of the 

rotor yoke increases all the optimization results. It is seen from the 

values in Table 5, Table 6 and Fig. 7 that the most effective 

geometric parameter are permanent magnets. Results of the 

preliminary design and the F3 multiobjective optimization have 

been tested by means of a finite element program. 

According to the finite element analyses, the input power of the 

motor is 2502.8W, the output power is 2251.6W, the efficiency is 

89.96% and the torque is 86Nm for preliminary design. Also for 

the F3 fuzzy multiobjective design optimization, the input power 

of the motor is 2546.6W, the output power is 2366.9W, the 

efficiency is 92.94% and the moment is 90.4Nm. Efficiency error 

values are 2.63% and 0.94% for preliminary design and for the F3 

fuzzy multiobjective design optimization respectively. In this case, 

the fuzzy multiobjective design optimization is confirmed with a 

low error and the design aims have been realized. In addition, the 

magnetic flux densities obtained by a finite element program are 

𝐵𝑠𝑡 = 1.14T, 𝐵𝑠𝑦 = 1.42T and 𝐵ry = 0.85T for the analytical 

design and 𝐵𝑠𝑡 = 1.57T, 𝐵𝑠𝑦 = 1.28T and 𝐵ry = 1.14T for the F3 

multiobjective design optimization. In this case, it can be said that 

the magnetic flux densities obtained as a result of the optimization 

are below the limit values and the multiobjective optimization 

modelling is useful. 

Motor performance is evaluated in terms of operating 

performance; torque ripples of the PMSM are about 7.49% for 

preliminary design and 7.16% for the F3 fuzzy multiobjective 

design optimization on average, which is due to the magnet angle 

and stator winding. The cogging torque is effectively 1.1Nm for 

preliminary design which corresponds to 1.28% of the nominal 

torque and 1.3Nm for the F3 fuzzy multiobjective design 

optimization which corresponds to 1.44% of the nominal torque. 

The choice of the slot number and the number of poles is influential 

in the formation of this value. As a result, PMSM design 

optimization with a very complex and non-linear structure has been 

tried to be solved with a different approach such as fuzzy-genetic. 

Taking into account the obtained optimization values, the finite 

element results and the iteration times, the fuzzy-genetic approach 

is quite useful for PMSM design and the designed PMSM provides 

the desired performance with great precision. 

5. Conclusion 

In this study, design optimization of the permanent magnet 

synchronous motor, which is frequently used in low speed high 

torque applications, was realized by using fuzzy decision making 

and genetic algorithm. Motor efficiency, motor weight and weight 

of magnets were selected as the single objective functions and to 

form multiobjective the single objective functions are combined 

with the fuzzy decision process. Here the goal was to achieve any 

single objective while other objectives were to achieve the desired 

values. 

Convergence curves of algorithms show performance. It can be 

argued that ability of the genetic algorithm to fall locally has been 

overcome by the fuzzy decision making process, which seems to 

be promising. Sensitive values in the obtained design parameters 

also demonstrate the ability of the algorithms to investigate. The 

most successful aspect of the multiobjective algorithm is to provide 

a highly flexible approach to the goals. It can be seen that both 

results, fuzzy multiobjective optimization and finite element 

program are very close to each other and the error margin can be 

deducted from the evaluation. 

 

References 

[1] J.R. Hendershot, T.H.E. Miller (1994). Design of brushless 

permanent magnet motors. Oxford University Press Inc., 

New York. 

[2] D.C. Hanselman (2006). Brushless permanent magnet motor 

design. Magna Physics Publishing, Ohio. 

[3] S. D. Sudhoff (2014). Power magnetic devices: a multi-

objective design approach. John Wiley&Sons Inc., New 

Jersey. 

[4] B. N. Cassimere, S. Sudhoff (2009). Population-based 

design of surface-mounted permanent-magnet synchronous 

machines. IEEE Transactions on Energy Conversion, Vol. 

24, No. 2, pp 338-346, doi:10.1109/TEC.2009.2016150. 

[5] Y. Duan, R. G. Harley, Y. G. Habetler (2009). Comparison 

of particle swarm optimization and genetic algorithm in the 

design of permanent magnet motors. IEEE 6th International 

Power Electronics and Motion Control Conference, pp 822-

825, doi:10.1109/IPEMC.2009.5157497. 

[6] G. Zhang, M. Dou, S. Wang (2009). Hybrid genetic 

algorithm with particle swarm optimization technique. 

International Conference on Computational Intelligence and 

Security, Vol. 1, pp 103-106, doi:10.1109/CIS.2009.236. 

[7] W. H. Ho, J. T. Tsai, J. H. Chou, J. B. Yue (2016). Intelligent 

hybrid taguchi-genetic algorithm for multi-criteria 

optimization of shaft alignment in marine vessel. IEEE 

Access, Vol. 4, pp 2304-2313, 

doi:10.1109/ACCESS.2016.2569537. 

[8] K. Pytel (2016). Hybrid fuzzy-genetic algorithm applied to 

clustering problem. Proceedings of the Federated 

Conference on Computer Science and Information Systems, 

pp. 137-140, INSPEC Accession Number:16428579. 

[9] A. Wang, Y. Wen, W. L. Soong, H. Li (2016). Application 

of a hybrid genetic algorithm for optimal design of interior 

permanent magnet synchronous machines. IEEE Conference 

on Electromagnetic Field Computation, pp 1-1, 

doi:10.1109/CEFC.2016.7816299. 

[10] J. T. Park, C. G. Lee, M. K. Kim, H. K. Jung (1997). 

Application of fuzzy decision to optimization of induction 

motor design. IEEE Transactions On Magnetics, Vol. 33, 

No. 2, pp 1939-1942, doi:10.1109/20.582672. 

[11] E. Koskimäki, J. Göös (1997). Electric machine 

dimensioning by global optimization. First International 

Conference on Knowledge-Based Intelligent Electronic 

Systems, doi:10.1109/KES.1997.616930. 

[12] B. Mirzaeian, M. Moallem, V. Tahani, C. Lucas (2002). 

Multiobjective optimization method based on a genetic 

algorithm for switched reluctance motor design. IEEE 

Transactions On Magnetics, Vol. 38, No. 3, pp 1524-1527, 

doi:10.1109/20.999126. 

[13] S. Owatchaiphong, N. H. Fuengwarodsakul (2009). Multi-

objective based optimization for switched reluctance 

machines using fuzzy and genetic algorithms. International 

Conference on Power Electronics and Drive Systems, 

doi:10.1109/PEDS.2009.5385926. 

[14] C. Choi, D. Lee, K. Park (2000). Fuzzy design of a switched 

reluctance motor based on the torque profile optimization. 

IEEE Transactions On Magnetics, Vol. 36, No. 5, pp 3548-

3550, doi:10.1109/20.908894. 

[15] J. Pyrhonen, T. Jokinen, V. Hrabovcová (2008). Design of 

rotating electrical machines. John Wiley & Sons Ltd. 

[16] F. Libert (2004). Design, optimization and comparison of 

permanent magnet motors for a low-speed direct-driven 

mixer. Technical Licentiate, School of Computer Science, 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 275–281  |  281 

Electrical Engineering and Engineering Physics, KTH, 

Sweden. 

[17] F. Libert, J. Soulard (2004). Design study of different direct-

driven permanent-magnet motors for a low speed 

application. Proc of the Nordic Workshop on Power and 

Indus Electro (NORPIE). 

[18] M. Mutluer, O. Bilgin (2016). An intelligent design 

optimization of a permanent magnet synchronous motor by 

artificial bee colony algorithm. Turkish Journal of Electrical 

Engineering & Computer Sciences, Vol. 24, pp 1826-1837, 

doi:10.3906/elk-1311-150. 

[19] M. Mutluer, O. Bilgin (2012) Comparison of stochastic 

optimization methods for design optimization of permanent 

magnet synchronous motor. Neural Computing and 

Applications, Vol. 21, No 8, pp 2049-2056, 

doi:10.1007/s00521-011-0627-1. 

[20] M. Çunkaş (2008). Intelligent design of induction motors by 

multiobjective fuzzy-genetic algorithm, Journal of 

Intelligent Manufacturing, 21 (4) 393-402. 

[21] A. Trebi-Ollennu, B. A. White (1997). Multiobjective fuzzy-

genetic algorithm optimization approach to nonlinear control 

system design. IEE Proceedings of Control Theory and 

Applications, 144 2. 

[22] Y. Minghua, X. Changwen (1994). Multiobjective fuzzy 

optimization of structures based on generalized fuzzy 

decision making. Computers and Structures, 53(2), 411–417, 

doi:10.1016/0045-7949(94)90213-5. 

[23] Z. Michalewicz (1996). Genetic algorithms + data structures 

= evolution programs - third, revised and extended edition. 

Springer-Verlag, Berlin, Heidelberg. 

[24] X. S. Yang (2010). Engineering optimization – an 

introduction with metaheuristic applications. John Wiley & 

Sons, Inc., Hoboken, New Jersey. 

[25] S. S. Rao (2009). Engineering optimization theory and 

practice – fourth edition. John Wiley & Sons, Inc., Hoboken, 

New Jersey. 

 




