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Abstract: On machined parts, major indication of surface quality is surface roughness and also surface quality is one of the most specified 

customer requirements. In the turning process, the importance of machining parameter choice is enhancing, as it controls the required 

surface quality. To obtain the better surface quality, the most essential control parameters are tool overhang and tool geometry in turning 

operations. The goal of this study was to develop an empirical multiple regression models for prediction of surface roughness (Ra) from 

the input variables in finishing turning of 42CrMo4 steel. The main input parameters of this model are tool overhang and tool geometry 

such as tool nose radius, approaching angle, and rake angle in negative direction. Regression analysis with linear, quadratic and 

exponential data transformation is applied so as to find the best suitable model. The best results according to comparison of models 

considering determination coefficient (R2) are achieved with quadratic regression model. In addition, tool nose radius was determined as 

the most effective parameter on turning by variance analysis (ANOVA). Cutting experiments and statistical analysis demonstrate that the 

model developed in this work produces smaller errors than those from some of the existing models and have a satisfactory goodness in all 

three models construction and verification. 
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1. INTRODUCTION

In many manufacturing applications, especially in the aerospace 

industry, the need for long tool-holder is unavoidable. Such tools 

are frequently required for the production of parts with deep holes. 

The determination of optimal tool-holder overhang and cutting tool 

geometry for specified surface roughness and accuracy of product 

are the key factors in the selection of machining process. To 

provide the quality of the process, machining processes are 

producing methods, usually in relatively short periods and at low 

cost. In recent years, considerable progress is made so as to 

investigate the effect of tool overhang and cutting tool geometry 

parameters on the resultant surface quality during single point 

diamond turning [1, 2]. 

In recent years, due to the need to improve the quality of parts, 

there has been a push toward decreasing the cutting tool holder 

deflection in turning. These deflections derive from the machine 

tool system and the machining process. The errors of the 

machining process generated in turning originate from a number 

of sources, however the tool system because of cutting force is one 

of the major problems for precision machining [3]. Because the 

tool holder is subject to bending depend on effect point of the 

tangential cutting force (F), cutting tool displaced (). This 

situation has negative effects on the surface quality as shown in 

Fig.1. 

Based on applications and theoretical approaches, it is known that 

cutting tools must be clamped as short as possible so as to achieve 

the desired surface quality of the work piece. For the internal 

turning method in particular, the cutting tool should be attached 

with the proper length, not with the shortest distance. This situation 

may also be the case for external turning processes, depending on 

the work piece geometry [4].  

L

F



Tool

workpiece

Holder

Roughness

Fig. 1. Deflection of cutting tool and tool-holder, δ due to the tangential 

force, F. 

Kumar et al. [5] displayed the problems because of tool overhang 

during boring operation. They performed particle damping based 

on experiments to decrease the vibrations because of the tool 

overhang and used different metal particles to fill the boring bar 

for the purpose of damping. The effects of particle based damping 

on surface roughness are explored. Kassab and Khoshnaw [6] have 

determined the surface roughness of the work piece by selecting 

tool overhangs at 25, 30, 35, and 40 mm at different cutting speeds, 

different depth of cuts, and different feed rates. They studied this 

during the turning of workpieces made of carbon steel materials to 

determine the relevance between the tool vibration and the surface 

roughness. The results showed that the feed rate had the greatest 

effect on surface roughness and that both surface roughness and 

vibration increased in parallel with the tool overhang. As the tool 

overhang shows an increase, so does the tendency of the system to 

vibrate. In all experiments, the surface roughness increased as the 

tool overhang increased. Batey and Hamidzadeh [7] fulfilled 

machining experiments by varying the tool feed rate, spindle speed 

and tool length to measure the vibration signature for various 

combinations. They transformed these signatures into the 
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frequency domain. A natural frequency of lathe components is also 

calculated. Based on this study, they developed a method so as to 

determine the source of vibration and for its control. According to 

their results, an increase in tool length should result in higher 

flexibility and lower natural frequencies. Kiyak et al. [4] studied 

the effects of cutting tool overhang on the surface quality and the 

cutting tool wear in external turning processes. They developed 

two analytical models to find the deflection of tool at different 

overhangs. The effects of tool overhang on surface roughness and 

tool wear were found to be significant. Sardar et al. [8] developed 

a finite element model to understand the dynamics of tool shank 

overhang. They performed finite element analyses in order to 

calculate the frequency at different tool overhang positions, 

followed by experimental measurement of frequencies at these tool 

overhang positions. It was concluded that higher tool overhang 

causes more vibration in the machining system. Amin et al. [9] 

have performed studies aiming to determine chip form instability 

in the turning process experimentally. They used a CNMG120408 

type insert and three workpiece materials (austenitic stainless steel 

and AISI 1020 and AISI 1040 carbon steels). To determine the 

impact of tool overhang, overhang lengths of 40, 50, and 60 mm 

were selected and no significant chip form instability was observed 

when the tool overhang length was 40 mm. This situation has been 

referred to as the rigidity of the tool. Haddadi et al. [10] examined 

the impact of worn tools and brand new tools on vibration 

frequency in the turning process experimentally. They examined 

the effects of rake angle and tool overhang under orthogonal and 

oblique cutting conditions. In experiments, they used a workpiece 

made of low carbon steel and high-speed steel tools. The tool 

overhangs were 20, 30, and 50 mm. In the experimental studies 

that they conducted using different depth of cuts, the effect of the 

tool overhang was found to be clearly dependent on the selected 

experimental parameters. Abouelatta and Mádl [11] established a 

relationship between the tool life, surface roughness and the tool 

vibrations. Tool overhang was selected as a variable parameter for 

experiments along with the cutting speed, tool feed rate, depth of 

cut, tool nose radius, approach angle, length and diameters of the 

work piece. They measured the acceleration in both radial and feed 

directions and the analysis of vibration was carried out by means 

of Fast Fourier Transforms. Based on their experimental data, 

suitable regression models were developed. Kassab and Khoshnaw 

[6] have determined the surface roughness of the workpiece by 

selecting tool overhangs at 25, 30, 35, and 40 mm at different 

cutting speeds, different depth of cuts, and different feed rates. 

They studied this during the turning of workpieces made of carbon 

steel materials to determine the relevance between the tool 

vibration and the surface roughness. The results showed that the 

feed rate had the greatest effect on surface roughness and that both 

surface roughness and vibration increased in parallel with the tool 

overhang. As the tool overhang enhances, so does the tendency of 

the system to vibrate. In all tests, the surface roughness increased 

as the tool overhang increased. 

Tool overhang effects on the quality of surface as a machining 

parameter, especially during the turning process, has not been 

reviewed in detail. However, few researchers have reported its 

importance as one of the cutting tool geometry. 

In this study, we investigate the effects of cutting tool overhang 

and tool geometry on the quality of surface in external turning 

processes. Three different regression models namely Linear, 

quadratic and exponential have been used for evaluating their 

ability to offer reasonable surface roughness prediction model and 

their results are compared. 

 

2. EXPERIMENTAL DESIGN and SETUP 

2.1. Experimental setup 

In the present investigation workpieces of 42CrMo4 steel, 40 mm 

in diameter and 0.250 m in length, were machined using a 2.2 kW 

Harrison M300 lathe. Under dry unlubricated cases, the 

workpieces were machined at cutting speeds of 150 m.min-1, a feed 

rate of 0.15 mm.rev-1, a depth of cut of 1.5 mm and with tool 

overhangs of 30, 40 and 50 mm. The cutting tools used here are 

proper for the machining of low carbon steel with ISO P25 quality, 

which is equal to LC215K code. The inserts were produced by 

Böhler Inc., with the ISO designation of CNMG 120404-BF, 

CNMG 120408-BF, CNMG 120412-BF (80° Rhombic inserts). 

The inserts were mounted rigidly on three different right hand style 

tool holders designated by ISO as PCLNR/L 2020 K12 AA9, 

PCLNR/L 2020 K12 AA6, and PCLNR/L 2020 K12 AA3 thus 

giving back rake angle of -9°, -6° and -3°, respectively. In all 

instances, the side rake angle is 6°. The experimental set up is 

shown schematically in Fig. 2. After the experiments, Mahr 

Perthometer M1 was used to measure the surface roughness and 

the mean roughness values obtained from three different points of 

machined surface were calculated. 

 

Negative back

rake angle

Approach

angle

Nose radius

Tool overhang

limits

COMPUTER

SURFACE

ROUGHNESS

PREDICTION

PROCESS

PARAMETERS

SURFACE

RUGHNESS

MEASUREMENT

OPERATOR

STATISTICAL

SOFTWARE

Fig. 2. Schematic diagram for the experimental setup 

2.2. Design of experiment 

In the past, various methods were used to quantify the impact of 

machining parameters on part finish quality. Although the 

processes that previous researchers have utilized are similar in 

nature, they all vary slightly in their execution. All of the relevant 

literature includes some kind of design of experiments which allow 

for a systematic approach to quantify the effects of a finite number 

of parameters [12]. Most famous statistical tools contain: Taguchi 

method, variance analysis, regression modelling and response 

surface methodology, etc. Many researchers [13-15] used these 

statistical tools to optimize parameters for different machining 

processes. In the current study, for machining experiments, 

maximum possible tool overhang length is divided into three 

different tool overhang positions as per machine tool-holder 
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logistics. As input parameters, the total four parameters, viz: tool 

overhang, tool nose radius, approach angle and rake angle are 

selected accordingly, while the surface roughness is regarded as 

the broad output parameter. Three different levels for each input 

parameter (tool overhang, tool nose radius, approach angle and 

rake angle) are selected for the machining experiments. The 

parameters and their levels are summarized in Table 1. 

 

Table 1. Process input parameters and their levels 

Symbol Factor Unit Level 1 Level 2 Level 3 

r Nose Radius mm 0.4 0.8 1.2 

κ Approach angle Degree (°) 60 75 90 

γ Rake Angle Degree (°) 9 6 3 

L Tool overhang mm 30 40 50 

 

With three tool overhang positions and three levels each of tool 

nose radius, approach angle and rake angle, 81 machining cuts in 

total are carried out. During each cut, the chip extraction and the 

environmental conditions are kept similar. The surface roughness 

was measured with a Mahr Perthometer M1, by using a trace length 

of 2.5 mm, a cut-off length of 0.8 mm. For the metrology of each 

machined surface, three linear scans (at 120° to each other) are 

taken and their average is considered as the representative surface 

roughness. Special attention is given to tool edge condition and 

sufficient, special attention is given.  

Variation of surface roughness-tool overhang is clear from Fig. 3. 

The optimum tool overhang for machining is shown in this figure. 

However, it is not giving any information about optimum tool 

geometry parameters in which the tool overhang value is required 

to be fixed high and very low. In such cases, the other tool 

geometry parameters need to be optimized in terms of  tool 

overhang. This study is intended to optimize the tool geometry 

parameters with respect to a fixed tool overhang position 

depending on surface roughness. Hence, instead of optimizing 

parameters for each tool overhang, it is decided to perform line 

wise optimization. The flow chart of experiment design is shown 

in Fig. 2. 

 

Fig. 3. Effect of tool overhang on surface roughness (Ra) at tool nose 

Radius 0.4 mm, approach angle 60° and rake angle -3°. 

The descriptive statistics of input parameters and output 

parameters (surface roughness) using in experiments and 

calculated roughness values with regression analysis can be seen 

in Table 2. In a data set, a smaller standard deviation indicates less 

variability in ratings. Ratings with the smallest standard deviation 

from the mean identified the most reliable of the three sensory 

method treatments among linear quadratic, and exponential. 

 

Table 2. Descriptive statistics of measurements 

 Radius App. Angle Rake Angle Overhang Ra Linear Quadratic Exponential 

Mean 0.8 75 -6 40 6.4828 6.4828 6.4828 6.4686 

SE Mean 0.0365 1.3693 0.2739 0.9129 0.2712 0.2577 0.2655 0.2820 

Median 0.8 75 -6 40 6.563 6.4828 6.4338 6.0276 

Std. Dev. 0.3286 12.3238 2.4648 8.2158 2.4410 2.3193 2.3891 2.5380 

Variance 0.108 151.875 6.075 67.5 5.9586 5.3793 5.7078 6.4417 

Range 0.8 30 6 20 10.315 10.6893 9.5718 11.6874 

Max. 0.4 60 -9 30 2.025 1.1382 1.9967 2.2782 

Min. 1.2 90 -3 50 12.34 11.8274 11.5685 13.9656 

Sum 64.8 6075 -486 3240 525.107 525.107 525.107 523.9528 

         

2.3. Methodology 

To study the behaviours involved in the process, modelling is 

defined as a scientific way. Regression method is one of the most 

widely used statistical techniques. Multiple regression analysis is 

a multivariate statistical technique used to examine the relationship 

between a single dependent variable and a set of independent 

variables. The objective of the multiple regression analysis is to 

use independent variables whose values are known to predict the 

single dependent variable. On the basis of the obtained analysis 

results of the effects of process parameters on the dependent 

variable and the interaction among the independent variables, 

regression analysis was next carried out to estimate Ra. In turning, 

there are many factors which affect the surface roughness like tool 

variables, workpiece variables, and cutting conditions. Tool 

variables include tool material, nose radius, rake angle, cutting 

edge geometry, tool vibration, tool point angle, etc., while 

workpiece variables comprise material, hardness, and other 

mechanical properties. Furthermore, cutting conditions include 

cutting speed, feed rate, and depth of cut. Since the turning process 

contains many parameters, it is complex and hard to select the 

appropriate cutting conditions and tool geometry to achieve the 

required surface quality [16]. Therefore, some scientific 

approaches are needed to represent the process. It seems clearly 

that the proper model selection for the surface roughness is 

essential for the machining of materials. Modelling of machining 

processes is important to provide the basis mathematical model for 

the formulation of the objective function. A model developed for 

machining process is the relationship between two variables which 

are decision variable and response variable in terms of 

mathematical equations. Therefore, the minimization of the Ra 

must be formulated in the standard mathematical model [17]. 

In order to accurately model the surface roughness in turning, one 

needs to first understand why current models fail. 
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Fig. 4. Roughness profile characteristics. 

 

The surface roughness average Ra is generally described on the 

basis of the ISO 4287 norm, which is the arithmetical mean of the 

deviations of the roughness profile from the central line (lm) along 

the measurement (see Fig. 4). Average roughness (Ra) of the 

surface is calculated from the following equation [18]. 

0

1
( , )aR Z x y dxdy

S
   (1) 

where Z(X, Y) is the elevation for a given point, and S0 is the 

projected area of the given area. A basic theoretical model for 

surface roughness, that is, the difference between the actual surface 

area and the geometrical surface area, was also calculated from the 

following model: 
2

32 e

f
Ra

r
  (2) 

where f is feed rate and re is the tool nose radius. According to this 

model, one needs only a decrease the feed rate or an increase the 

tool nose radius to develop desired surface roughness. However, 

there are several problems with this model. Firstly, it does not take 

into account any imperfections in the process, such as tool 

vibration or chip adhesion. Secondly, there are practical limitations 

to this model, since certain tools (such as CBN) require specific 

geometries to improve tool life [12, 19]. Many researchers have 

studied the impact of cutting factors on surface roughness using 

regression analysis. However, the effects of insert edge geometry 

are not included in those models. There are three main effects 

leading to the degradation of surface roughness: tool nose Radius, 

approach angle and rake angle. 

In planning and conducting the experiment, DoE 3k full factorial 

were used. Selected factors of experiment have changed in 3 levels 

of value. This method allows investigating the wider interval of 

parameters and the predicted mathematical model is more reliable 

[20]. The next step was to estimate the model. 

3. RESULTS and DISCUSSION 

3.1. Development of Regression Model 

In this section, linear, quadric and exponential regression equations 

are introduced for Ra values and model factor effects are provided. 

Optimum regression model was detected according to coefficient 

of determination (R2), is a number that indicates how well data fit 

a statistical model. Ra is dependent variables while r, κ, γ and L are 

independent variables in regression models. Linear, quadratic and 

exponential regression modelling and analysis of variance 

(ANOVA) for Ra values are developed using Statistica software. 

The correlation coefficients (R) value of modelled independent 

variable Ra is given in Tables 3, respectively. 

In the next step, Ra estimation procedures were performed by 

creating mathematical (linear, quadratic and exponential) 

equations. When Table 3 is examined, it can be seen that the 

highest correlation of R=0.9787 was obtained for Ra. Moreover, 

Ra was estimated through the second degree interaction regression 

equation which includes all input parameters and the determination 

coefficient of R2=0.9579 was statistically significant and consistent 

(Fig. 5b). 

By transferring the coefficients value of independent variables 

(Tables 1) into Table 4, the regression model and the determination 

coefficient (R2) for Ra values can be written in the Table 4. 

 

 

 

 

 

 

 

 
Table 3. Regression coefficients values for Ra 

 
Independent 

variable 

Ra 

coefficient 

Standart 

error 
Significant R 

F
o

r 
li

n
ea

r 

re
g

re
ss

io
n

 

m
o

d
el

 Constant -10.324 0.749 0.000 

0.9501 

r 5.185 0.266 0.000 

 0.082 0.007 0.000 

 -0.277 0.035 0.000 

L 0.120 0.011 0.000 
F

o
r 

q
u

ad
ra

ti
c 

re
g

re
ss

io
n

 m
o
d

el
 Constant -12.086 14.387 0.404 

0.9787 

r 27.166 16.070 0.096 

 0.074 0.203 0.717 

 -2.428 2.143 0.262 

L 0.459 0.356 0.202 

r2 -4.629 0.845 0.000 

2 0.001 0.001 0.080 

2 -0.007 0.015 0.636 

L2 -0.001 0.001 0.565 

r.  -0.330 0.211 0.122 

r.  3.234 2.471 0.195 

. 0.039 0.028 0.174 

r.L -0.515 0.392 0.194 

.L -0.006 0.004 0.159 

.L 0.076 0.052 0.150 

r. . -0.058 0.033 0.078 

r. .L 0.010 0.005 0.048 

r. .L -0.099 0.061 0.108 

..L -0.001 0.001 0.061 

r. ..L 0.002 0.001 0.034 

F
o

r 
ex

p
o
n

en
ti

al
 

re
g

re
ss

io
n

 

m
o

d
el

 Constant -5.391 0.420 0.000 

0.9498 

r 0.673 0.029 0.000 

 0.959 0.080 0.000 

 0.266 0.029 0.000 

L 0.768 0.064 0.000 
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Table 4. Linear, quadratic and Exponential effects of manually taken Ra 

prediction equations. 

 Prediction equation R2(%) 

Linear 
regression 

model 

10.324 5.186 0.082 0.277 0.12Ra r L     

 
90.27 

Quadratic 

regression 
model 

2 2 2 2

12.086 27.166 0.074 2.428 0.459

4.63 0.001 0.007 0.001

0.33 3.234 0.039 0.515 0.006 0.076

0.058 0.01 0.099 0.001 0.002

Ra r L

r L

r r rL L L

r r L r L L r L

 

 

    

    

     

   

     

    

 

95.79 

Exponential 

regression 

model 

0.673 0.959 0.266 0.7690.005Ra r L   90.21 

 

Equations in Table 4 are used to calculate the predicted Ra values. 

The line pattern data of Ra values of the experimental data vs. 

predicted Ra values of regression model are compared in Fig. 5. 

 

 

 
a) Comparison of the linear regression predictions and experimental alues 

for Ra 

b) Comparison of the quadratic regression predictions and experimental 

values for Ra. 

c) Comparison of the exponential regression predictions 

and experimental values for Ra 

 

In this study, experimental measured and obtained Ra values were 

evaluated by using regression models that developed Statistica 

software. When the Ra values are examined together, quadratic 

equation gives closer results to experimental values than the other 

regression models. This means that quadratic equation estimates 

the surface roughness better when compared to other regression 

models. By using the all values, the correlation coefficients result 

in 0.9787, 0.9501 and 0.9498 for experiment- quadratic, linear and 

exponential models, respectively. As the correlation coefficients 

get closer to 1, estimation accuracy increases. In the case presented 

in this study, the correlation coefficients obtained are very close to 

1, which indicates a perfect match between regression models 

estimation values and experimental measurement values (Fig. 6). 

 

 

 

 
Fig. 6. The relationship between manual measurements and 

the values of regression for Ra 

3.2. ANOVA Analysis 

For machining process ANOVA can be useful on the one hand to 

determine the influence of given input parameters from a series of 

experimental results by design of experiments and on the other 

hand it can be used to interpret experimental data. The ANOVA 

tables consist of sum of squares and degrees of freedom (DoF). 

The mean-square is the ratio of sum of squares to degrees of 

freedom and F ratio is the ratio of mean square to the mean square 

of experimental error. In robust design F ratio can be used for 

qualitative understanding of the relative factor effects. A large 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2018, 6(4), 282–288  |  287 

value of F means that the effect of a given factor is large compared 

to the error variance so, the larger value of F, the more important 

the given factor influencing the process response. 

Table 5 gives the result of the ANOVA with the surface roughness 

Ra. This was performed for significance level of =0.05, i.e. for a 

confidence level of 95%. A low P-value shows a statistical 

significance for the source on the corresponding response [16]. The 

last column of the tables shows the percentage of contribution 

(PC%) of each parameter on the total variation. The greater the 

percentage contribution, the greater the influence a parameter has 

on the result. 

 

 

 

 
Table 5. Analysis of variance for all regression models 

  DoF Seq SS AdjMS F-value PC% 

F
o

r 
li

n
ea

r 
m

o
d

el
 Intercept 1 115.88 115.88 190.04 24.31 

r 1 232.31 232.31 380.99 48.73 

 1 82.58 82.58 135.44 17.32 

 1 37.22 37.22 61.04 7.81 

L 1 78.23 78.23 128.30 16.41 

Error 76 46.34 0.61   

Total 80 476.68    

F
o

r 
q
u

ad
ra

ti
c 

m
o

d
el

 Intercept 1 0.23 0.23 0.71 0.05 

r 1 0.94 0.94 2.86 0.20 

 1 0.04 0.04 0.13 0.01 

 1 0.42 0.42 1.28 0.09 

L 1 0.55 0.55 1.66 0.11 

r2 1 9.88 9.88 30.03 2.07 

2 1 1.04 1.04 3.16 0.22 

2 1 0.07 0.07 0.23 0.02 

L2 1 0.11 0.11 0.33 0.02 

r.  1 0.81 0.81 2.45 0.17 

r.  1 0.56 0.56 1.71 0.12 

. 1 0.62 0.62 1.89 0.13 

r.L 1 0.57 0.57 1.73 0.12 

.L 1 0.67 0.67 2.04 0.14 

.L 1 0.70 0.70 2.12 0.15 

r. . 1 1.06 1.06 3.21 0.22 

r. .L 1 1.34 1.34 4.08 0.28 

r. .L 1 0.87 0.87 2.66 0.18 

..L 1 1.20 1.20 3.65 0.25 

r. ..L 1 1.54 1.54 4.68 0.32 

Error 61 20.06 0.33   

Total 80 476.68    

F
o

r 
ex

p
o
n

en
ti

al
 m

o
d
el

 Intercept 1 2.36 2.36 164.52 16.92 

r 1 7.55 7.55 526.01 54.08 

 1 2.05 2.05 142.56 14.66 

 1 1.18 1.18 82.31 8.46 

L 1 2.09 2.09 145.71 14.98 

Error 76 1.09 0.01   

Total 80 13.96    

 

From the analysis in Table 5, the most significance factor for F-

value is the linear and quadratic effect of tool nose radius with 

380.99, 30.03, 526.01 F ratio for linear, quadratic and exponential 

regression models, respectively. Also there isn’t a strong relation 

between independent variables and dependent variable because of 

low determination coefficient value of linear and exponential 

regression models comparing with quadratic model determination 

coefficient value. This is a good agreement with the previous 

researcher’s works [21, 22]. Here are the cutting parameters which 

mainly control the final result and especially the roughness of the 

machined surface. This is the technical result that is usually 

searched. 

3.3. Graphical Analysis 

The response surface is plotted (Fig. 7a–f) so as to search the effect 

of process variables on the end of surface. The response surface 

plots represent the regression equations which are used to describe 

the relationship between the response and experimental levels of 

each parameter. From Fig. 7a, c, e, the surface roughness Ra has 

an increasing trend with the increase of radius, overhang and 

approach angle. From Fig. 7b, d, f it is seen that, Ra decreases with 

the decreases of depth of nose radius. It can be noted that from Fig. 

7, tool nose radius has the most effect on surface roughness and its 

variation is very high when compared to other parameters. The best 

surface roughness was achieved at the lowest radius, approach 

angle and overhang and highest rake angle combination as 

expected. This is an established fact that more vibrations are 

resulted from high value of tool overhang and nose radius. 

Similarly, with the increasing approach angle, the cutting force 

increases as well. Thus, at this time vibration is born. 

 

  

 
 

  

Fig. 7. 3D Response surface plots for Ra vs. input factors 

4. CONCLUSION 

In this study, the behaviour of tool overhang and cutting tool 

geometry in single turning point and its influence on the quality of 
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surface through a series of its interaction with the other machining 

parameters (viz: tool nose radius, approach angle and rake angle) 

are investigated. A series of machining operations are performed 

in the sequential combinations of tool overhang, tool nose radius, 

approach angle and rake angle. The surface quality is analysed in 

terms of linear, quadratic and exponential regression analysis and 

ANOVA. The regression analyses are used to predict the surface 

roughness by means of  suitable modelling operations. The 

followings are the conclusions based on the study above:  

 In single point turning, the tool overhang influences the quality 

of surface significantly. Extreme values of tool overhang result 

in poor surface quality. From the experiments carried out on 

the machining parameters, it was observed that the surface 

roughness of work piece increases as the tool overhang 

increases. The optimum range of tool overhang is 30 mm. 

Using the same tool overhang, the surface roughness of the 

work piece shows an increase as the tool nose radius and 

approach angle increases. In the measurements performed after 

the experiments were complete, it was seen that the cutting tool 

deflection values increased together with the tool overhang. 

 Also, strong interaction among all input process parameters is 

observed and validated. Thus, the selection of the other 

machining parameters are affected by the tool overhang as well 

considerably. 

 Rake angle parameter adversely affects surface finish. 

 Equations which were derived by multi-regression modelling 

techniques can be used for surface roughness modelling of 

turning process that can’t be computed by theoretically. 

 Surface roughness value can be predicted with an acceptable 

accuracy with the usage of linear, quadratic and exponential 

regression models. The result of comparison between these 

models and coefficient of correlations (R2) for predicted 

surface roughness shows that prediction performance of the 

quadratic model is slightly better than the others. 

 In the future, real time monitoring, optimization, model 

referenced adaptive control of the process can be studied while 

different parameters would be added. 
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