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Abstract: Relational pathfinding-based systems learn concept descriptors by extending candidate concept descriptors by one literal at a 
time. As such learning systems usually deal with large search spaces, choosing literals to extend candidate concept descriptors becomes an 
essential issue. In this study we empirically analyze applicability of three bivariate statistical methods namely, frequency ratio, hazard 
index, and weight of evidence, as heuristics to choose literals to extend candidate concept descriptors. 10-fold experiments conducted on 
three benchmark datasets showed that frequency ratio, hazard index, and weight of evidence were able to reduce the space and hence 
provided speedups when compared to extending candidate concept descriptors by a randomly chosen literal. Moreover, the heuristic-based

settings provided improved predictive accuracy.
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1. Introduction 

Concept discovery is a multi-relational data mining problem 

concerned with inducing definitions of a relation, called target 

relation, in terms of related knowledge, called background 

knowledge [1]. Target relation may contain instances that truly 

belong to the target relation, called positive examples, and 

instances that do not belong to the target relation, called negative 

examples. Background knowledge may be directly or indirectly 

related to the target instances and can either be expressed 

extensionally or intentionally. Goal in concept discovery is to find 

complete (explaining all of the positive target instances) and 

consistent (explaining none of the negative target instances) 

concept descriptors that satisfy some user-defined metrics such as 

minimum support and confidence, maximum rule length and obey 

certain mode declarations. 

The problem has primarily been studied by Inductive Logic 

Programming (ILP) community. In ILP-based concept discovery 

systems relational data is represented within first order logic 

framework and logical operators are utilized for inductive 

inference [2]. Several ILP-based systems such as FOIL [3], 

ALEPH [4], and PROGOL [5] have been proposed with successful 

application in domains such as chemoinformatics [6], 

environmental sciences [7], and engineering [8].  

More recently, the problem has been investigated from graph 

mining perspective and two distinct research directions have been 

established. The first direction of research focuses on substructure 

discovery and assumes substructures that involve positive target 

instances and satisfy certain user defined metrics are concept 

descriptors [9, 10]. The second direction of research focuses on 

paths and assumes that frequently appearing paths of finite length 

that originate from positive target instances are concept descriptors 

[11,12].  

In their basic settings, both substructure- and pathfinding-based 

systems rely on hill climbing strategy to build concept descriptors. 

More specifically, substructure-based systems extend candidate 

concept descriptors by one edge and vertex at a time, and 

pathfinding-based concept discovery systems extend candidate 

concept descriptors by one edge at a time. In case of very large 

graphs, this basic setting becomes inefficient and mechanisms to 

speedup or guide search become essential. In literature various 

techniques including parallelization [13], declaratively specifying 

graph extraction tasks over database schemas [14], and 

introduction of mode declarations [15] have been proposed to 

speed-up graph based concept discovery systems or reduce the 

search space. 

In this study, we empirically evaluate performance of three 

bivariate statistical methods, namely frequency ratio (FR), hazard 

index (HI), and weight of evidence (WoE), as heuristics to guide 

search in relational pathfinding-based concept discovery systems. 

All three methods report measure of relatedness between an 

outcome of an event and an effect that triggers the event. These 

methods have extensively been used for natural hazard modelling, 

particularly in landslide susceptibility assessment [16,17]. 

In context of relational pathfinding-based concept discovery, these 

statistical methods can be utilized to select the edge, i.e. relation, 

to extend candidate concept descriptors. To analyze performance 

of these bivariate statistical methods as heuristics, a relational 

pathfinding-based concept discovery system is implemented and 

run in four different settings. In the first setting, relations to extend 

candidate concept descriptors are chosen at random and in the 

remaining three settings relations are chosen according to their 

frequency ratio, hazard index, and weight of evidence values. 

Experiments conducted on three datasets show that all three 

methods provided speed up without loss in coverage when 

compared to randomly choosing relations to extend concept 

descriptors. 

In this study, Neo4j graph database engine is used to store data and 
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all data retrieval operations are implemented as Cypher queries – 

Neo4j’s graph query language.  

Graph databases are database systems in which data schema and 

instances are modeled using graph structures or their extensions, 

i.e. hypernodes and hyperedges, and data manipulation operations 

are expressed as graph-oriented operations such as traversals [18]. 

Graph databases have recently become popular due to their flexible 

data representation and querying capabilities. Graph databases are 

of particular use when the concern is related to the relationship 

between the entities rather than the entities themselves [19]. As 

relational pathfinding-based concept discovery define concept 

descriptors by means of relations among entities, such database 

systems are ideal for data representation. 

The rest of this paper is organized as follows. In Section 2 we 

introduce the concept discovery problem and summarize related 

work. In Section 3 we introduce frequency ratio, hazard index, and 

weight of evidence methods and their integration into the relational 

pathfinding-based concept discovery problem. In Section 4 we 

present and discuss the experimental results. The last section 

concludes the paper. 

2. Concept Discovery 

Given a set of positive and negative target instances that belong to 

a target relation and related background knowledge, concept 

discovery aims to find complete and consistent definitions of the 

target relation in terms of the background knowledge and possibly 

the target relation itself. More formally, assuming that E is the set 

of positive and negative target instances, 𝐸 = 𝐸+ ∪ 𝐸−, B is 

background knowledge; concept discovery problem can be 

formulated as inducing a set of hypothesis such that the following 

four conditions hold. 

• Prior satisfiability: 𝐵 ∧ 𝐸− ⊭ □ 

• Posterior satisfiability: 𝐵 ∧ 𝐻 ∧ 𝐸− ⊭ □ 

• Prior Necessity: 𝐵 ⊭ 𝐸+ 

• Posterior sufficiency: 𝐵 ∧ 𝐻 ⊨ 𝐸+ 

The sufficiency criterion is related to completeness, e.g. H should 

model all of the positive target instances relative to B, and posterior 

satisfiability is related to consistency, e.g. H should not model any 

of the negative target instances relative to B. However, due to noisy 

nature of real life data, completeness and consistency are extended 

to, respectively, explaining as many positive target instances as 

possible and as few negative target instances as possible.  

Concept discovery systems can be classified into two groups: 

predictive systems and descriptive systems. Predictive concept 

discovery systems perform predictive induction to learn 

classification rules while descriptive systems perform descriptive 

induction to find regularities in data. Predictive systems input both 

positive and negative target instances and aim to induce complete 

and consistent hypothesis set while descriptive systems input only 

positive target instances and aim to induce maximally specific 

hypothesis set that explains all of the target instances. 

Algorithm 1 outlines generic concept discovery process. It inputs 

a set of target instances and background knowledge and builds an 

initial set of concept descriptors. While termination conditions are 

not met, these concept descriptors are refined, evaluated and those 

that do not qualify user-defined metrics are pruned. Target 

instances modeled by concept descriptors are removed from the 

target instance set, the Cover() method, and the process restarts 

with the remaining target instances. Termination conditions define 

restrictions on properties such as maximum rule length and 

maximum number of refinements; minimum number of target 

instances a concept descriptor should explain. 

function GenericConceptDiscovery 

Input: E, B: Target instances, 

background knowledge 

Output: solC: Concept descriptors 

While E <> {} 

   C = BuildInitialHypothesisSet() 

   While termination criteria not met 

      C = Refine(C) 

      EvaluateAndPrune(C, E, B) 

   End_while 

   E = E – Cover(C, T) 

   solC = solC + C 

End_while 

Algorithm 1: Generic Concept Discovery Process 

The concept discovery problem has initially been studied within 

ILP research where relation data is represented within first order 

logic framework and candidate concept descriptors are refined 

using logical operators such as absorption operator of inverse 

entailment and least general generalization. Although ILP-based 

concept discovery systems have been successfully applied to 

several problems they suffer from scalability and efficiency issues 

[20] and are vulnerable to local plateau problem [11]. 

Recently the problem has been addressed from graph mining 

perspective. Graphs provide flexible means to represent relational 

data and have well studied algorithms that can be utilized for 

concept discovery. Graph-based approaches for concept discovery 

can be classified into two: substructure-based and relational 

pathfinding-based. The former focuses on substructures and 

assumes that substructures that satisfy some user defined criteria 

and include structures that represent positive target instances are 

concept descriptors. The later focuses on paths and assumes that 

frequent paths that include graph elements that represent target 

instances are concept descriptors.  

Graph-based concept discovery systems generally follow hill-

climbing strategy to build concept descriptors. However in case of 

large graphs such a setting becomes computationally inefficient. 

To speedup the graph-based concept discovery, methods such as 

simultaneous covering [12] and introduction of mode declarations 

[15] have been proposed.  

More recently, studies that focus on mining graph databases have 

also been published. Such studies include crime analysis [21],  

searching semantically similar subgraphs [22], frequent itemset 

mining [23]. Applications of graph databases in concept discovery 

problem have been addressed in [24,25]. 

3. The Heuristics 

In this section we firstly explain bivariate statistics in general and 

later provide definitions of those used in this study. In this section 

we also explain how these statistics are incorporated into relational 

pathfinding-based concept discovery process. 

Bivariate statistics analyze empirical relationship between two 

variables, one of which is generally called independent variable 

and the other dependent variable. Bivariate statistics can be used 

to predict the value of the dependent variable if value of the 

independent variable is known.  Types of bivariate statistical 

analysis include scatter plots that provide visual idea of the pattern 

that the dependent and the independent variables follow, 

regression analysis that provide equations of the patterns the 

variables follow, and correlation coefficients where the 

coefficients indicate degree of the relatedness between the 

variables. 
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Frequency ratio, hazard index and weight of evidence are bivariate 

statistical methods that provide correlation information between an 

event and a factor that triggers that event. Value 0 indicates no 

relatedness between the variable and the event, while positive 

values indicate positive causal relatedness. 

Frequency ratio is formulated in (1), where i indicates value of a 

particular factor that effects the event, #Pi indicates the number of 

positive observation with value i, #P indicates total number of 

positive observations, #Oi indicates number of observations with 

value i, and #O indicates the total number of observations.  

𝐹𝑅𝑖 =
#𝑃𝑖 #P⁄

#𝑂𝑖 #𝑂⁄
                                                                               (1) 

Hazard index is defined in (2) where explanations of the 
parameters are the same of frequency ratio. 

HI =
#𝑃𝑖 #𝑂𝑖⁄

#P #𝑂⁄
                                                                                (2) 

Weight of evidence is a statistical method that uses log linear form 

of Bayesian probability model to estimate relative evidence. It is 

formulated in (3) where #Pi indicates presence of i value for a 

factor that triggers an event, #S and #S’ indicate, respectively, 

positive and negative outcomes of the event. Nominator and 

dominator indicate conditional probabilities. 

𝑊𝑖
+ = 𝑙𝑜𝑔𝑒

𝑃{#𝑃𝑖|#𝑆}

𝑃{#𝑃𝑖|#𝑆′}
                                                                   (3) 

In concept discovery there exists positive and negative target 

instances and their related background knowledge. To apply these 

statistical methods to the concept discovery problem, we assume 

that positive target instances correspond to positive outcomes of an 

event and negative target instances correspond to negative 

outcomes of an event. Relations in the background knowledge 

correspond to triggering factors of an event.  

Algorithm 2 outlines the generic concept discovery process 

enhanced with the heuristics. The modified version of the 

algorithm inputs target instances, background knowledge and the 

setting it will run in. The algorithm starts with generating initial set 

 

function HeuristicBased_ConceptDiscovery 

Input: E, B, S: Target instances,  

background knowledge, setting 

Output: solC: Concept descriptors 

While E <> {} 

   C = BuildInitialHypothesisSet() 

   While termination criteria not met 

      For_each bi in B 

        If (S == 0) 

          HV[i] = 0 

        If (S == 1) 

          HV[i] = CalculateFR(bi, E) 

        If (S == 2) 

          HV[i] = CalculateHI(bi, E) 

        If (S == 3) 

          HV[i] = CalculateWoE(bi, E) 

      End_for 

      C = Refine(C, max(HV)) 

      B = B - max(HV) 

      EvaluateAndPrune(C, E, B) 

   End_while 

   E = E – Cover(C, T) 

   solC = solC + C 

End_while 

Algorithm 2: Heuristic based concept discovery 

of candidate concept descriptors. For each background relation, 

based on the setting parameter, the algorithm calculates FR, HI, or 

WoE values and populates an array with these values. The 

algorithm chooses the relation with the maximum value, using 

max() method, and extends the current set of concept descriptors 

accordingly. The algorithm removes this relation from the 

background knowledge and performs the same actions until 

termination criteria are met. Once termination criteria are satisfied, 

target instances explained by the concept descriptors are removed 

from the target instance set and the process restarts. If the setting 

is 0 then the array is filled with 0s and max() method returns a 

random relation. 

4. Experimental Results 

In order to evaluate the performance of FR, HI, and WoE as 

heuristics to guide the search in relational pathfinding-based 

concept discovery a set of experiments are conducted on three 

benchmark datasets. In this section we firstly introduce the datasets 

used in the experiments and the experimental setting and next we 

discuss the performance of the proposed heuristics in terms of 

search space reduction, running time, and accuracy. 

4.1. Dataset Properties and Experimental Settings 

In Table 1 we list the properties of the datasets used in evaluation 

of the proposed heuristics. Eastbound is a dataset describing 

properties of trains that travel either east or west and the problem 

is to find definitions of the trains that travel east. Mesh dataset is 

about finite element methods of engineering and the problem is to 

find definitions of edges. The last dataset, namely Student Loan, 

describes properties of students who are overdue or punctual in 

their loan payments and the problem is to find definitions of 

punctual students. The minimum support and confidence as well 

as maximum rule length parameters are set according to [26]. In 

Table 1 we also list properties of the graphs that correspond to the 

datasets. In Table 1 and the subsequent tables EB corresponds to 

the Eastbound dataset, M corresponds to the Mesh dataset, and SL 

corresponds to the Student Loan dataset. 

 
Table 1. Dataset properties and experimental settings 

 EB M SL 

# Predicates 12 26 10 

# Target Instances 30 76 1000 

# Background Inst. 191 233 4288 
Min. Support 0.1 0.1 0.1 

Min. Confidence 0.1 0.7 0.7 

Max Rule Length 3 3 3 
# Vertices 49 107 1098 

# Edges 183 308 6593 

4.2. Analysis of Search Space Reduction and Running Time 

In context of concept discovery, search space corresponds to the 

total number of candidate concept descriptors generated and 

evaluated during the concept discovery process. 

In Table 2, we report the number of candidate concept descriptors 

generated in different settings. The #CD column indicates the 

number of relational paths generated and evaluated and the R 

column indicates the reduction of the search space, in percentage, 

with respect to the Random setting. The presented results are 

obtained by 10-fold experiments. As the results show for the 

Eastbound and Mesh datasets the proposed heuristics reduced the 

search space such that WoE performed the best. However, for the 

Student Loan dataset none of the heuristics provided any 
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improvement. This indeed is due to the fact that any randomly 

generated concept descriptor of length one or two can model 

enough number of positive target examples to satisfy the minimum 

support and limited number of negative target instances such that 

they do not violate the minimum confidence.  

 
Table 2. Search space reduction 

 Random FR HI WoE 

 #CD #CD R #CD R #CD R 
EB 70.7 57 19.37 57 19.37 56 20,79 

M 67.5 58 14.07 58 14.07 30 55.55 

SL 88.2 202 - 202 - 197 - 

 

In Table 3 we present the speedup results obtained. Speedup is 

measure to compare performance of different approaches in 

solving the same problem in terms of their running time. Speedup 

is calculated by dividing running of time of the original algorithm 

by the running time of the modified version of the algorithm. The 

RT columns indicate running time in seconds, and the S columns 

indicate speedups relative to the Random setting. A speedup value 

greater than 1 indicates improvement in running time. The reported 

running times in Table 3 are average of 10-fold experiments. As 

the experimental results show each heuristic provided 

improvement in running time. However there is no heuristic that 

provides the best speedup for all cases. 

 

Table 3. Speed up 

 Random FR HI WoE 

 RT RT S RT S RT S 

EB 22.01 9.81 2.24 9.88 2.22 10.58 2.08 

M 24.27 12.86 1.88 11.89 2.04 8.76 2.77 
SL 72.48 59.44 1.21 62.68 1.15 61.15 1.18 

 

Although for the Student Loan dataset, the Random setting 

generates less number of candidate concept descriptors it has a 

longer running time when compared to the other settings. This is 

due to the fact that average lengths of candidate concept 

descriptors generated by heuristic aided settings are shorter than 

those generated by the Random setting.  

In Table 4 we report we report the average length of the candidate 

concept descriptors. As the table indicates, heuristic based settings 

generate shorter candidate concept descriptors when compared to 

the random setting. 

 

Table 4. Average concept descriptor length 

 

 Random FR HI WoE 

EB 1.75 1.4 1.4 1.2 

M 1.73 1.6 1.6 1.3 

SL 1.32 1.13 1.13 1.13 

 

In order to statistically validate the running times of the four 

settings, we performed the Friedman and the Holm’s post hoc tests. 

The Friedman test is a non-parametric test that finds if there exists 

difference among treatments across multiple attempts [27] The 

Holm’s post-hoc test is used to find the differing groups if there 

are [27]. 

 

In Figure 1 we illustrate Holm’s Post Hoc analysis considering all 

four settings for the Eastbound dataset. Friedman test’s p-value for 

all settings is below 0.05 hence the methods statistically differ by 

means of running time. Holm’s test indicates that HI ve FR rank 

lower, i.e. have shorter running times, compared to the Random 

setting and WoE.  When compared in pairs, Friedman test returned 

p-value = 2.2e-16 for Random and WoE indicating that WoE based 

setting has statistically shorter running time. Friedman test’s p-

value for HI and FR settings was 0.5554 indicating that two 

methods do not statistically differ. 

 
 

 

 

 

 

 

 

 

 
 

Fig. 1. Holm's Post hoc test for the Eastbound dataset                     

(Friedman test p = 7.416e-14) 

Friedman test’s p-value considering the Mesh dataset for all the 

settings was < 2.2e-16, indicating that methods statistically differ. 

As Figure 2 depicts, HI and WoE have shorter running times 

compared to FI and the Random setting. When compared in pairs, 

FR is superior over the Random and WoE is superior over HI both 

with p-value = 2.2e-16. 

 

Fig. 2. Holm's Post hoc test for the Mesh dataset 

(Friedman test p-value = 7.416e-14) 

 

Figure 3 shows Holm’s Post Hoc test results for the Student Loan 

dataset considering all of the settings.  As the figure shows, WoE 

and FR statistically differ from HI and the Random setting and 

have shorter running times. When compared in pairs, the Random 

setting and HI do not differ statistically (Friedman’s test p-value = 

0.55); while FR and WoE statistically differ (Friedman’s test p-

value=2.2e-16) such that FR is superior over WoE. 

1 2 3 4

CD

Random

FR

HI

WoE

1 2 3 4
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Random
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Fig. 3. Holm’s Post Hoc test for the Student Loan dataset (Friedman test 

p-value = 0.0002176) 

 

4.3. Analysis of Predictive Accuracy 

In this section we discuss predictive accuracy results of the 

heuristics. For this purpose, we employ Receiver Operating 

Characteristics (ROC) curve analysis, which is a function of true 

positive rate (TPR) against false positive rate (FNR). In case of 

scoring classifiers, ROC analysis generates multiple points in the 

ROC space by considering all possible thresholds while it 

generates only one point and two line segments in case of binary 

crisp classifier [28]. 

TPR and FNR are formulated in (4) and (5), respectively, where 

TP indicates the number positive instances classified as positive 

and FN indicates the number of negative instances incorrectly 

classified as positive. 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                              (4) 

𝐹𝑁𝑅 =  
𝐹𝑁

FN+TP
                                                                             (5) 

 

Predictive accuracy of a classifier can be measured by the area 

under the ROC curve (AUC). An area of 1 indicates a perfect 

classifier while an area of 0.5 indicates worthless classifier.  

Figure 4 plots ROC curve and AUC values for the Eastbound 

dataset considering all four settings. As AUC values indicate, 

heuristic-based settings have better predictive accuracy compared 

to the random setting. As ROC curves for HI and FR overlap, only 

ROC curve of HI is visible on the plot.  

Fig. 4. ROC curve analysis for the Eastbound dataset 

 

 

In Figure 5, we plot ROC curve and AUC values for the Student 

Loan dataset. As the AUC values show, the heuristic-based settings 

are superior over the Random setting by means of predictive 

accuracy. 

Fig. 5. ROC curve analysis for the Student Loan dataset  

 

Mesh dataset belongs to descriptive learning task and rules define 

properties of different mesh values. Hence for this dataset we do 

not plot ROC curve but instead provide the number of explained 

target instances. All heuristic aided settings discovered concept 

descriptors that explain 28 of the target instances while concept 

descriptors discovered by the Random setting could explain 25 

target instances. 

5. Conclusion 

This study provides experimental analysis of three bivariate 

statistical methods as heuristics to guide search in relational 

pathfinding-based concept discovery systems. Bivariate statistics 

provide degree of association between variables and in this study 

they are utilized to report relatedness of target instance and 

background knowledge. The experimental results conducted on 

three datasets showed that the studied bivariate statistical methods 

can be used as heuristics to guide search in relational pathfinding-

based systems as they reduced the search space and provided 

speedup and increased predictive accuracy. The datasets used in 

this study included background knowledge that is directly related 

to target instances. As a future work we plan to utilize these 

bivariate statistical methods to provide relatedness information 

between target instances and their indirectly related background 

knowledge. 
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