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Abstract: This study explores an economic production quantity (EPQ) model designed with the assumptions of discrete delivery orders 

and storage capacity constraints for a multi-item production inventory system. The main purpose of this study is to determine the optimal 

order quantity, the optimal number of deliveries and the optimal delivery quantity. First, the developed model as part of this study is 

analyzed using Genetic Algorithm (GA). Numerical analysis results are compared with those of previous studies and it was found that it is 

possible to have better results with an increasing number of iteration. The same model is then analyzed using Particle Swarm Optimization 

(PSO) algorithm. A comparison of the optimization methods showed that PSO gives better results over the GA under the same number of 

iterations and using the same population. The effects of important model parameters such as number of iterations, population, crossover, 

mutation rate on the optimal solution are analyzed. The results showed that PSO performs better than the GA with respect to the total cost 

and the total runtime as the solution of the problem in question. 
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1. Introduction 

Developed by Harris in 1913 [1], Economic Order Quantity (EOQ) 

model is the oldest model used in inventory management and 

production planning. This was followed by the classical Economic 

Production Quantity (EPQ) model developed by Taft in 1918 [2]. 

This inventory model was suggested for a single product, which is 

manufactured in a single-stage manufacturing system. Today, 

these inventory control models are used in several industries due 

to the ease-of-use and effectiveness they offer. Moreover, the main 

purpose of these models is to define overlapping costs which may 

include inventory holding cost and order cost, and to determine the 

optimal lot size which minimizes the total cost. However, these 

models are known to have a number of weaknesses as they are built 

on several assumptions. In this respect, both inventory models have 

been studied by many researchers under real-life conditions and 

mathematical models have been developed. Moreover, it is further 

suggested that the purchase of a high-speed machine with a high 

production capacity for multiple products is a rather common 

choice of the industry when compared to the purchase of a machine 

specialized only in a single product, as the former is the 

economical option. The purpose of these models is to determine 

the batch sizes and production sequence of the products which 

minimize the total cost.  

Eilon [3] developed a multi-item inventory model in order to find 

the solution for the basic production problem of defining the 

quantity of each product or the lot size to be produced and its 

impact on the manufacturing cycle time.  Rogers [4] suggested a 

computational approach for the purpose of finding the 

manufacturing program adding up to the minimal cost for multiple 

products manufactured in a single manufacturing system (or 

machine). Then, Bomberger [5] brought a dynamic programming 

solution to the problem of multi-item manufacturing planning in a 

single manufacturing plant or a single machine using the 

assumption of a single type of product being manufactured at one 

moment in time, taking into consideration the setup cost and a 

setup time associated with producing each item over an infinite 

planning horizon. Madigan [6] suggested an alternative approach 

to the planning programs developed in other studies based on 

multi-item single-machine or single-system inventory problem 

under the assumption of long-term planning. Doll and Whybark [7] 

used an iterative procedure in order to find the optimal cycle time 

in a multi-item single-machine inventory problem for a single-item 

environment. Silver [8] proposed a simple method for determining 

the common cycle time and the order quantities in a multi-item 

single machine inventory model in which several items are 

packaged in different containers from the same batch supply. It was 

shown that this method gave nearly the optimal results when 

compared to other complex solutions; and optimal solutions were 

obtained for the case of two-item production in a custom lot. 

Elmaghraby [9] offered a review of the studies in which several 

models are developed with additional assumptions applied in the 

context of single-machine (or single-facility) multi-item 

production planning problem, and presented solutions to this 

problem using analytical methods and analyzed the feasibility of 

this environment using the model. Gupta and Kyparisis [10] 

studied the production planning for single-machine setting and 

provided recommendations for future research.  

Gallego and Moon [11] analyzed the effect of reduced setup cost 

and setup time on the total cost in a multi-product single machine 

inventory problem. Arcade [12] suggested a number of solutions 

to the multi-item inventory problem with the purpose of producing 

several items in a single-machine or single-facility setting. Khouja 

et al. [13] applied a Genetic Algorithm (GA) to the solution 

suggested by Bomberger [5] for the inventory problem and they 

showed in their numerical analysis that GA offers better results 

when compared to dynamic programming approach. Moon et al. 
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[14] suggested a hybrid genetic algorithm for the solution of the 

problem of single-machine (or single facility) multi-item 

production planning based on time-varying lot sizes. Kim et al. 

[15] developed a heuristic algorithm to define the optimal lot size, 

common production cycle time, number of deliveries and delivery 

quantity resulting in the minimal total cost in a multi-item single-

machine (or single production system) inventory environment. 

Tang and Teunter [16] suggested a multi-item single-machine 

inventory problem for the performance of both manufacturing and 

reworking activities on a single production line.  

Teunter et al. [17] used a number of heuristics methods to solve the 

same optimization problem. Both studies were based on a common 

cycle time policy with the assumption of single lot production in 

each cycle. Taleizadeh et al. [18] developed a multi-item EPQ 

model based on the assumptions of common cycle time and 

backordering in which the production defective-rate followed 

either a uniform or a normal probability distribution. Nevertheless, 

they assumed that the defective items are taken out of the inventory 

as scrap products at the end of screening process. Taleizadeh et al. 

[19] suggested an EPQ model for a multi-item inventory system 

based on the criteria of partial backordering and service level. They 

assumed that the defective items are discarded as scrap products at 

the end of the production rather than reworking. Taleizadeh et al. 

[19] developed a production inventory model which included 

defective products, such products are reworked or repaired, and 

among such reworked or repaired products were scrap products 

and the model allowed for partial backordering. The main purpose 

of this problem is to determine the optimal cycle time, the optimal 

production quantity, and the maximum level of backordering 

which results in the minimum total cost. Zanoni et al. [20] 

suggested an easy-to-use algorithm to solve the same problem, 

having relaxed the constraint of common cycle time and a single 

reworking lot for each item in each cycle. Taleizadeh et al. [21] 

developed an EPQ model with reworking in a single-stage 

production inventory system. Taleizadeh et al. [22], on the other 

hand, developed a production model using the assumptions of 

common cycle time, backordering, reworking or repair and the 

existence of scrap products in a defective multi-item production 

inventory system. The authors analyzed the changes in the results 

of the optimal solutions where defective-rate follows either a 

uniform or a normal probability distribution.  

Other related papers including Chang et al. [23], Pal et al. [24], 

Mahata and Mahata [25], Nobil et al. [26] and Pasandideh et al. 

[27] considered some optimization methods for solving different 

inventory problems. Taleizadeh et al. [28] developed a multi-item 

single machine production inventory model with the assumptions 

of restricted common cycle time and remanufacturing, 

backordering and machine failure. The authors analyzed two 

conditions where the failure in the production process emerges 

during the backordering elimination and after backordering is 

eliminated. Đorđević et al. [29] considered a deterministic multi-

product EOQ inventory problem with the storage space 

constraints. They modelled the problem as a combinatorial 

optimization problem, and developed two heuristic methods to 

solve this problem approximately. Mokhtari [30] suggested a 

production inventory model for defective items in which all 

defective items are reworked to make them as-good-as-perfect. Ant 

Colony Optimization (ACO) and the GA were used to determine 

the optimal production and order lot sizes which minimize total 

cost.  

In recent years, many efficient methods for determining the 

optimal solution to the multi-item multi constraints lot-sizing 

problem exist in the inventory literature. Pasandideh and Niaki 

[31] explored the assumptions of warehouse space limitation, 

discrete delivery policy, and equal delivery quantities in a multi-

item inventory problem. This problem is formulated as a nonlinear 

integer programming model and a GA method is suggested in order 

to solve this model. Numerical examples were given in order to 

define the optimal number of deliveries and the product quantity in 

each delivery of five different items to show the feasibility of the 

suggested algorithm and to assess its performance. The authors, 

having assigned 8, 0.85, and 0.25 for the parameters of population 

size (𝑁), crossover rate (𝑃𝑐) and mutation rate (𝑃𝑀), presented the 

solution values obtained after ten iterations. A closer look into the 

solution values obtained using the same algorithm with increased 

number of iterations showed that the total cost is around $5800 

after the 10th iteration. In other words, this study does not present 

any clear information on the optimal solution results obtained for 

the number of deliveries and the quantities delivered using the 

developed algorithm. It can be seen in the diagram included to the 

paper that increased number of iterations results in reduced cost 

and the resulting cost was approximately $5500. Nobil et al. [32] 

modified the model which has some shortcomings in the paper of 

Pasandideh and Niaki [31]. They have solved the problem in a 

shorter period of time with the heuristic algorithm they developed 

because the problem has less constraints and decision variables. 

The numerical results have shown that better optimal values can be 

achieved. 

This paper investigates the work of Pasandideh and Niaki [31] in a 

lot sizing decision problem, and provides the new solutions to the 

numerical example. The optimal number of deliveries and optimal 

delivery quantities are re-determined by using the GA for the same 

values of the parameters of 𝑁, 𝑃𝑐 and 𝑃𝑀. From the optimal results, 

it was observed that the total cost approaches to a smaller optimal 

value with an increasing number of iteration. The effects of 

important parameters of the model on the results of the optimal 

solution are analyzed using sensitivity analysis. Then, the problem 

is solved using the Particle Swarm Optimization (PSO) algorithm; 

optimal number of deliveries and optimal delivery quantity are 

obtained; and the effects of important parameters on the optimal 

solution results are also analyzed. Finally, the optimization 

methods are compared based on the results of the optimal solution, 

and to do this, the same values are assigned to the relevant 

parameters of both methods. 

The rest of the paper is organized as follows. The next section 

describes the production inventory model developed by 

Pasandideh and Niaki [31]. Section 3 presents the solution method 

for the problem. Section 4 offers a numerical solution of the model 

using the PSO and GA methods, and a comparison of these 

methods along with managerial insight is given. Section 5 

concludes the paper. 

2. The model of Pasandideh and Niaki 

The following assumptions are considered in the development of 
a mathematical model for the inventory problem where buyer and 
supplier interact: 

• The production rate is known and constant. 

• The demand of each item is known and constant. 

• Supplier delivers the orders in multiple shipments. 

• Buyer covers the costs arising from each shipment. 

• Number of shipments and the delivery quantity of each 

shipment are defined by the buyer. 

• The delivery quantity of each shipment is equal. 

• Buyer has a limited warehouse space. 

• Setup cost and holding cost are known. 

• Backordering and delayed payments are allowed. 
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For 𝑖 = 1,… , 𝑛, the following parameters are used to develop the 

model: 

𝑛  the number of items 

𝑄𝑖  the order quantity for item 𝑖 

𝑃𝑖  the production rate for item 𝑖 

𝐷𝑖  the demand rate for item 𝑖 

𝑇𝑖  the cycle time for item 𝑖 

𝑇𝑃𝑖 the production time in each cycle of item 𝑖 

𝑇𝑑𝑖 the production downtime in each cycle of item 𝑖 

𝑡𝑖  ith time between two consecutive shipments of the 

product  

𝑘𝑖  ith delivery quantity of each shipment of the product 

𝑚𝑖 ith number of shipments in each cycle of the product 

𝑈𝑖  ith max. number of shipments in each cycle of the product 

𝐿𝑖  ith min. number of shipments in each cycle of the product 

𝑓𝑖  ith the space occupied by each unit of the product 

𝑓  available warehouse space for all products 

𝑏𝑖  ith cost of each shipment of the product 

𝐴𝑖  ith setup cost associated with each cycle of the product 

ℎ𝑖  ith holding cost associated with each unit of the product 

𝑐𝑖   ith reserve cost associated with each unit of the product 

Fig. 1 presents the inventory problem in a diagram. Order quantity, 
𝑄𝑖, of each product will be delivered with a number of 𝑘𝑖 shipments 
with the same delivery quantity of 𝑚𝑖.  

𝑄𝑖 = 𝑚𝑖𝑘𝑖; 𝑖 = 1,… , 𝑛. (1) 

 
Fig. 1 The behavior of inventory level over time 

In Fig. 1, cycle time, 𝑇𝑖, is the function of the delivery time of the 
orders, 𝑇𝑑𝑖, and the production time, 𝑇𝑃𝑖. 

𝑇𝑖 = 𝑇𝑑𝑖 + 𝑇𝑃𝑖 =
𝑄𝑖

𝐷𝑖
; 𝑖 = 1,… , 𝑛. 

(2) 

Delivery time of the orders, 𝑇𝑑𝑖, involve the time between two 
consecutive shipments, 𝑡𝑖, and it is calculated as follows: 

𝑡𝑖 =
𝑘𝑖

𝑃𝑖
; 𝑖 = 1,… , 𝑛. (3) 

Total cost is the sum of setup cost, reserve cost, shipment cost and 

holding cost. Using the abovementioned assumptions, Pasandideh 
and Niaki [31] derived the total cost in unit time, 𝑇𝐶𝑈, as follows: 

𝑇𝐶𝑈 = ∑ [
𝐴𝑖𝐷𝑖

𝑄𝑖
+ 𝑐𝑖𝐷𝑖 +

𝑏𝑖𝐷𝑖

𝑘𝑖
+

ℎ𝑖

2
(𝑄𝑖 − (𝑄𝑖 − 𝑘𝑖)

𝐷𝑖

𝑃𝑖
)]𝑛

𝑖=1   (4) 

2.1. The constraint 

The purpose of this problem is to find integer values for batch 
quantity, shipment capacity and the number of shipments which 
will result in the minimal total cost function as given in Equation 
(4). This problem involves two constraints.  

a) The warehouse space necessary for product storage is limited.  

b) The number of deliveries must be in the range between 
permitted minimum and maximum values. 

Here, the problem can be formulated as follows, using the total cost 
function available in Equation (4) and the constraints defined 
above: 

𝑇𝐶𝑈 =∑[
𝐴𝑖𝐷𝑖
𝑄𝑖

+ 𝑐𝑖𝐷𝑖 +
𝑏𝑖𝐷𝑖
𝑘𝑖

+
ℎ𝑖
2
(𝑄𝑖 − (𝑄𝑖 − 𝑘𝑖)

𝐷𝑖
𝑃𝑖
)]

𝑛

𝑖=1

 (5) 

s.t.: 

 ∑ 𝑓𝑖
𝑛
𝑖=1 𝑄𝑖 ≤ 𝑓, 

(6) 

𝐿𝑖 ≤ 𝑚𝑖 ≤ 𝑈𝑖;  (7) 

𝑄𝑖 = 𝑚𝑖𝑘𝑖; 𝑖 = 1,… , 𝑛. (8) 

𝑚𝑖 , 𝑘𝑖 , 𝑄𝑖: integer. (9) 

As it can be seen from Equation (5), the problem cannot be solved 

analytically. For this reason, the inventory control problem is a NP-

hard problem.  

3. Solution method 

3.1. Genetic Algorithm 

Genetic Algorithm (GA) is an optimization method which was 

developed by Holland [33] inspired by Darwin's theory of natural 

selection. Based on the natural selection process of life, the GA 

performs a query.  In the GA, members of the living population are 

expressed in terms of their chromosomal structure. It can be 

expressed using chromosomal structures such as binary encoding, 

permutation encoding, value encoding, etc.  Chromosomal 

structure, in this study, was represented using binary coding. Each 

member of the population, i.e. each chromosome, consists of 

variables which are to be optimized. This study aimed to optimize 

five values of m and k, each. Thus, the chromosome structure is 

built in a way to express five m and another five k values (Fig. 

2).Definition of initial population 

Initial population of the GA is created randomly. First, the user 
defines the necessary number of members of population. Then, 
chromosomes are randomly formed in a binary structure to express 
all the variables. 

3.1.1. Crossover  

In the GA, crossover is the process of creating better individuals, 
having selected the individuals from a pool of good individuals. 
Crossover can be performed from one point or two points. This 
study used one-point crossover process. The new individuals 
created as a result of random one-point crossover of the two 
chromosome samples are shown in Fig. 3a and Fig. 3b. 

 

 
Fig. 2 Chromosome structure 
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(a) 

 

(b) 

 
 

Fig. 3 Crossover sample (a) Parents before crossover (b) Children after crossover 

 

 
Fig. 4 Mutation of a randomly selected bit 

 
3.1.2. Mutation 

Mutation is used to prevent GA from converging on local minima. 
Mutation of the chromosomes with binary encoding is conducted 
with the reversal of a randomly selected bit. In other words, the 
value of ‘1’ is assigned to a randomly selected bit if it was 
originally ‘0’ and vice versa otherwise. Fig. 4 shows an example 
of the mutation process. 

3.1.3. Selection  

One of the most important steps of the GA is selection. In this step, 

members of the former generation are selected to be transferred to 

the next generation as a new generation is created. As the diversity 

of the population will suffer when only the good candidates are 

transferred, good candidates must be transferred to the new 

generation with a specific probability. It is necessary to keep the 

probability of transferring good candidates high. Nevertheless, it 

must be ensured that bad candidates are also transferred, but with 

a lower probability. The methods which are tournament selection, 

roulette wheel selection, random selection, etc. are used for this 

purpose.  Tournament selection was the method used in this study. 

The tournament selection method involves a random selection of s 

candidates for a tournament against each other. Then, the best 

candidates from these matches are transferred to the next 

generation. This process continues until the number of individuals 

as defined by the user is achieved in the new generation. 

3.2. Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a method developed by 

Kennedy and Eberhart in 1995 based on the hunting behavior of 

swarms of birds and fish [34]. In the PSO algorithm, first the 

number of particles in the swarm is calculated and the initial 

population is created randomly. The best values and location 

information of each particle and the swarm as a whole are 

recorded. Each particle in the search space updates its location to 

the global best of the swarm. Particles calculate their location and 

velocity according to Equations 10 and 11. 

𝑥̅𝑛+1
𝑖 = 𝑥̅𝑛

𝑖 + 𝑣̅𝑛+1
𝑖  (10) 

𝑣̅𝑛+1
𝑖 = 𝜔𝑣̅𝑛

𝑖 + 𝑐1𝑟1(𝑝̅𝑛
𝑖 − 𝑥̅𝑛

𝑖 ) + 𝑐2𝑟2(𝑝̅𝑛
𝑔
− 𝑥̅𝑛

𝑖 ) (11) 

Where, 𝑖 is the 𝑖th particle in the swarm, 𝜔 is the inertia weight 
parameter, 𝑛 is the number of iterations, 𝑟1 and 𝑟2 are random 

number in the range of [0,1]. 𝑥̅ is the location factor, 𝑣̅ is the 
velocity factor, 𝑝̅𝑖 is the best location found by the 𝑖th particle,  𝑝̅𝑔 
is the best location found by the swarm. The flowchart of PSO 
algorithm is shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Flowchart of the PSO 

4. Numerical Example and Sensitivity Analysis 

The numerical example was taken from the study proposed by 

Pasandideh and Niaki [31]. Table 1 shows the parameters 

necessary for the 5-item production inventory problem. In this 

example, it is assumed that 𝐿𝑖 and 𝑈𝑖 are the same for all of the five 

products where 𝐿𝑖 = 5 and 𝑈𝑖 = 35, and 𝑓 = 7900. 
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The multi-item inventory control problem was solved using the GA 

and PSO metaheuristic optimization methods. As it was the case in 

Pasandideh and Niaki [31], the values assigned for 𝑁, 𝑃𝑐 and 𝑃𝑀 

parameters were 8, 0.85 and 0.25 respectively, and the solution 

results obtained at the 10th iteration are given in Table 2. 

Table 1. General data for the example 

Product 𝐷𝑖   𝑃𝑖 𝑐𝑖 𝐴𝑖 𝑏𝑖 ℎ𝑖 𝑓𝑖 

1 21   66 19 30 6 4 5 

2 18   57 23 88 2 9 8 

3 27   71 37 71 9 7 4 

4 16   29 14 63 4 9 3 

5 19   99 24 44 5 4 9 

Table 2. The results for GA method after 10 iterations 

𝑃𝑀 𝑃𝑐 𝑛 𝑁 𝑚1 𝑚2 𝑚3 𝑚4 

0.25 0.85 10 8 6 28 23 12 

𝑚5 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑓 Time(ms) 

6 89 9 5 6 12 4725.04680 334.78 

 

It was found from the comparison of the values assigned to the 

parameters in question for the GA method against those of the 

literature reports that selection of higher values such as 0.25 

instead of 0.05 for mutation rate makes it harder for the GA method 

to function. The reason behind this is the fact that mutation is used 

to prevent the GA from converging on local minima. When 

assigned a greater value, mutation rate will lead to an inconsistency 

in the population which in return will make it harder to reach at a 

global minimum. Thus, mutation rate must be selected from the 

range between 0.01 and 0.05 when working with GA. A closer look 

into the Fig. 6 included in study published by Pasandideh and Niaki 

[31] showed that better results are obtained with increasing number 

of iterations. Therefore, optimal solution result is given in Table 3 

as it was obtained after 30 iterations. Moreover, the total cost 

function which was obtained after 150 iterations where all the other 

parameters were kept constant is also given in Table 3. Figs. 6-7 

illustrate these changes graphically, respectively. 

Tablo 3. The results for the GA method after 30 and 150 iterations 

𝑛 𝑃𝑀 𝑃𝑐 𝑁 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

30 

0.25 0.85 8 6 6 15 9 13 

 𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑓 Time(ms) 

 13 4 16 2 11 3723.11041 17.05 

150 
0.25 0.85 8 5 5 20 6 5 

 50 6 2 4 6 3499.14225 48.13 

 

For the case where the number of iterations and population were 

the same, i.e. 𝑛 = 30,𝑁 = 8, optimal delivery quantities and 

number of deliveries and optimal total cost were obtained using the 

PSO method. And results are shown in Table 4. When compared 

to the results obtained using the GA method, Table 4 shows that 

14.8823% decrease in the total cost is achieved. Although there 

were no statistically significant differences, it was found that PSO 

method gave better results when the solution results obtained using 

both methods were compared. In order to obtain better results using 

the GA method, one will be required to invest more time to the 

process as the number of iterations or population is needed to be 

increased. This finding will be further discussed in the next section 

using the sensitivity analysis. 

Table 4. The results for PSO method 

𝑛 𝑁 𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 

30 8 7 5 5 5 5 

𝑘2 𝑘3 𝑘4 𝑘5 𝑓 Time(ms)  

5 5 11 9 5 3169.02515  

The next section explores the effects of parameters of the model 

on the optimal solution results using sensitivity analysis. 

4.1. Sensitivity Analysis 

Sensitivity analyses are used in this section to show that the 

problem in question is feasible and to present the effect of the 

parameters on the optimal solution results. The problem was 

solved using the GA and PSO optimization methods and the cost 

function given in Section 3. First, the problem was solved using 

the GA method for the conditions where the population was 30 and 

the number of iterations was increased to 600 and 1000 with the 

increase in the number of iterations and the results for the optimal 

solution are given in Table 5. These results were then compared 

based on the value of the total cost function and the time required 

for computation. Table 5 shows that the total cost adds up to 

3129,20509 when the number of iterations was 600 and that this 

result was computed in 179.48 milliseconds. Moreover, the GA 

method was repeatedly used up to the 1000th iteration and it was 

found that the total cost was not altered. 

 

 

 

 

 

 

 

 

Fig. 6 Change in total cost values through 30 iterations 
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Fig. 7 Change in total cost values through 150 iterations 

Table 5. The sensitivity analysis of the GA method with different iteration numbers 

  𝑃𝑀 𝑃𝑐 𝑛 𝑁 m1 m2 m3 m4 m5 k1 k2 k3 k4 k5 f Time (ms) 

GA 

0.25 0.85 30 8 6 6 15 9 13 13 4 16 2 11 3723.11041 17.05 

0.25 0.85 600 8 5 6 6 5 5 5 4 5 5 5 3129.20509 179.48 

0.25 0.85 1000 8 5 5 6 5 5 5 5 5 5 6 3128.98973 286.76 

Table 6. The sensitivity analysis of the GA method with different iteration and population numbers 

  𝑃𝑀 𝑃𝑐 𝑛 𝑁 m1 m2 m3 m4 m5 k1 k2 k3 k4 k5 f Time (ms) 

GA 

0.25 0.85 50 10 7 5 6 5 5 4 12 5 12 11 3292.05049 10.06 

0.25 0.85 50 30 5 12 7 23 5 9 2 5 1 4 3189.88359 17.04 

0.25 0.85 50 50 5 6 5 5 5 7 4 9 6 6 3128.11361 28.07 

0.25 0.85 100 10 5 6 9 5 5 13 3 5 6 5 3177.88217 14.04 

0.25 0.85 100 30 5 5 6 6 5 5 6 5 4 12 3163.36340 33.09 

0.25 0.85 100 50 5 5 5 6 5 12 5 7 4 12 3171.58219 47.13 

 

Table 7. The sensitivity analysis of the GA method with different parameter values 

  𝑃𝑀 𝑃𝑐 𝑛 𝑁 m1 m2 m3 m4 m5 k1 k2 k3 k4 k5 f Time (ms) 

GA 

0.01 0.75 100 50 5 12 5 5 14 5 6 7 9 2 3278.61051 51.14 

0.05 0.75 100 50 5 8 7 5 5 12 3 5 5 5 3155.28235 49.12 

0.01 0.66 100 50 11 13 5 8 5 5 2 19 3 8 3252.65524 49.13 

0.05 0.66 100 50 5 5 5 5 5 5 6 25 6 6 3282.99321 49.17 

0.01 0.85 100 50 5 11 20 8 11 6 2 2 3 2 3239.17239 52.17 

0.05 0.85 100 50 5 6 7 12 5 5 4 5 2 6 3142.06072 51.16 

0.01 0.66 500 100 5 20 5 6 5 6 2 8 4 6 3148.86843 433.17 

0.05 0.75 500 100 5 6 6 5 5 12 4 5 5 5 3151.98691 445.18 

0.1 0.75 500 100 5 12 6 5 5 5 2 5 5 5 3135.36298 434.17 

0.1 0.66 500 100 5 5 6 11 5 5 6 5 2 5 3145.51906 432.15 

 

 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(3), 124–132  130 

 

Fig. 8 shows that optimal solution was yet to be achieved when the 

number of iterations was 600. Accordingly, Fig. 9 shows the best 

result achieved with the GA methods when the number of 

iterations was 1000. Now, the effects of changes in the parameters 

of inventory problem on the results of the optimal solution will be 

discussed. Tables 6 and 7 show the values obtained as a result of 

the changes in the parameters when using the GA method. Table 6 

shows that the total cost is decreased when the number of iterations 

is increased under the assumption of mutation and crossover rates 

and population were constant. However, it was found that the total 

cost is increased when the population was 50. Table 6 further 

shows that the total cost is decreased when the population is 

increased under the assumption of mutation and crossover rates 

and the number of iterations were constant. However, it was 

observed that the total cost is increased when the number of 

iterations was 100 and when population was increased from 30 to 

50. This is a direct result of the failure to assign suitable values to 

the parameters in the GA method. Table 7 shows the literature 

findings reported for the parameters used for the GA method. A 

closer look into the parameters associated with optimal values of 

total cost in Table 7, it can be concluded that a rather great mutation 

rate (0.1) needs to be used for the GA method.  Such a parameter 

value does not capture the logic of the GA method. In other words, 

in order to be able to solve this problem using the GA method, one 

needs to assign illogical values to the parameters from the GA 

method point of view. Thus, it will be safe to say that GA method 

is not suitable for the solution of the inventory problem. 

 

 
Fig. 8 Change in total cost values through 600 iterations 

 

 
Fig. 9 Change in total cost values through 1000 iterations 
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Table 8. The sensitivity analysis of the PSO method with different parameter values 

  𝑛 𝑁 m1 m2 m3 m4 m5 k1 k2 k3 k4 k5 f Time (ms) 

PSO 

50 10 5 5 5 5 5 6 5 6 5 8 3127.27956 10.03 

50 30 5 6 5 5 5 6 4 7 5 6 3118.47704 12.03 

50 50 5 5 5 5 5 6 5 7 5 6 3118.53704 14.04 

100 10 5 5 5 5 5 6 5 7 5 6 3118.53704 7.02 

100 30 5 6 5 5 5 6 4 7 5 6 3118.47704 15.04 

100 50 5 5 5 5 5 6 5 7 5 6 3118.53704 28.07 

 

 

Fig. 10 The comparison between the GA and the PSO methods 

 

 

Table 8 shows the effects of different number of iterations and 

population on the optimal solution for the solution of optimization 

problem using the PSO method. Table 8 shows that increasing the 

number of iterations and population has an almost insignificant 

effect on the total cost. A brief reading of the results showed that 

PSO method was able to solve the problem with the use of 

minimum parameter values and that the optimal result did not 

differ even when these values were increased. When the results are 

analysed, it was observed that PSO method is much more 

convenient in the solution of this problem when compared to the 

GA method. It was rather easy for the PSO method to obtain 

values, which cannot be obtained using the GA method, and this 

was shown with results. Furthermore, it can be safe to say that PSO 

method is much more advantageous in terms of runtime when 

compared to the GA method. Fig. 10 shows the total cost function 

values obtained from both the GA and the PSO methods as the 

number of iterations is increased. 

 

Conclusions 

 
The classical EPQ model is developed in a way to minimize the 

total cost under the assumptions of single-item production, infinite 

warehouse area, and each order is received in a single delivery. 

With the advancements in today’s technology, production 

processes are also developed which made it possible for multi-item 

production in addition to single-item production. With the 

widespread application of multi-item production systems, new 

problems emerged with regards to the delivery of the orders. The 

number of shipments needed for the delivery of orders and the 

amount of products included in a single delivery affect the total 

cost. Thus, delivery of the order is as important as the 

manufacturing process and the delivery process has become an 

important aspect of the operations of a manufacturing plant which 

require careful planning. The production inventory model where 

each order is received in a single delivery and each shipment 

included the same amount of products was optimized using the GA 

and PSO methods under limited warehouse space. The purpose of 

this study was to define the optimal number of deliveries and the 

product quantity shipped in each delivery, i.e. the optimal order 

quantity, in order to minimize the total cost.  

The solution of this problem was presented with a numerical 

example and the effects of important model parameters used in the 

optimization methods such as population, number of iterations, 

crossover and mutation rates were explored using sensitivity 

analyses. The results of the numerical analysis, when compared to 

the study which offered an approximate solution for the same 

problem with up to 30 iterations, showed that increasing the 

number of iterations allowed for an almost optimal solution of the 

problem. Using the sensitivity analysis, it was found that better 

results were obtained with the assignment of suitable values to the 

parameters of the GA method, that the total cost function was 

improved, i.e. that it was reduced. 

Nevertheless, the same problem was solved using PSO and the 

results of optimal solution were explored using sensitivity 

analyses. A comparison of the results of optimal solutions showed 

that PSO method is able to offer better results in a shorter period 

of time when compared to the GA method. It was observed with 
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the sensitivity analyses that PSO method allows for the solution of 

the problem with reduced number of iterations and reduced 

population. From the results, it was concluded that PSO method is 

much more convenient for the solution of the problem explored in 

this study when compared to the GA method. Moreover, the same 

results were obtained with less computation as in Nobil et al. [32].  
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