

International Journal of

Intelligent Systems and Applications in Engineering

ISSN:2147-67992147-6799 www.ijisae.org Review Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(2), 104–110 | 104

Impact of Virtualization Technologies in the Development and

Management of Cloud Applications

A.S.Gowri*1, Dr.P.Shanthi Bala2

Submitted: 16.11.2018 Accepted : 19.04.2019 DOI: 10.1039/b000000x

Abstract: Today most of the consumer services ranging from education to banking, hospital management to ticket booking are made online.

The online services are hosted in cloud and they are mostly time-critical applications. The cloud-based applications depend on datacenter

(DC) resources for computation, communication, and storage. The resource utilization in the cloud needs to cope with the dynamic

workload and stochastic request spikes. Virtualization is the key technology for effective resource utilization in the cloud data center. The

type of virtualization technology (VT) that is adapted for the delivery of cloud application ensures the quality of service. The goal of this

paper is to compare and contrast the performance measures of various virtualization technologies for heterogeneous workloads. The paper

presents the impact of VT in the development of application in the cloud. Each virtualization technology outperforms the other in some or

other performance metrics. In spite of the differences, certain virtualization technology dominates depending upon the application

requirements in the software development sector.

Keywords: Virtual machines, Docker Containers, Hypervisor, Kubernetes, Lightweight VMs, Microservices, Unikernel.

1. Introduction

Cloud computing provides value added computing environment in

terms of resources like servers, networks, storage, and software.

Right from the start-up companies to the veteran software

developer, depend on the cloud resources to develop and deploy

applications on a large scale. The applications that are hosted in the

cloud to cater its service on pay per usage are referred to as cloud

services. Facebook,salesforce.com, YouTube, and Twitter are

some of the services managed in the cloud [1].

The cloud guarantees the provision of resources for the

applications that are hosted in its DC [3]. The huge demand for

cloud resources drives the Cloud Service Providers (CSP) to

choose the right technology [2]. Virtualization is the key solution

that can yield efficient resource utilization with minimal cost and

reduced energy consumption.

Google search engine supports search operation in different

locations around the world. The search activity rises and falls in

each data centre according to the time of the day and events

affecting various part of the world. Miles Ward1, Global Head of

Google Cloud revealed that containerization is one of the secrets to

the speed and smooth operation of the Google search engine. He

expressed that Google Search operation, launches nearly 7,000

containers every second, which amounts to about two billion per

week. The significance of container usage in such a large scale

motivates the study of VT in comparison with its counterpart.

The remaining section of the paper is organized as follows.

Section2 gives background details about the various virtualization

technologies. Section 3 discusses the related works conducted in

virtualization, Section 4 describes the performance of the VT in

cloud application environment and Section 5 conclude with future

perspectives.

2. Background Details

With the emergence of big data, there is a demand for the huge

storage and compute facility [7]. Cloud DC is the ultimate solution

for the compute/storage infrastructure at a large scale [1]. The

consumers can avoid capital expenditure2 (Capex) and operational

expenditure (Opex) by leasing the compute/storage servers from

clouds. Capex refers to the initial investment cost spent on setting

up the compute facility like cost of hardware, software, company

space, staffs etc. Opex refers to the cost to be spent on maintenance

in the long run. The CSPs leverage the VT for server consolidation

and efficient resource utilization to improve their revenue/server

ratio [2] [8].

Virtualization is the process that emulates Virtual machines/

Virtual containers on a physical host machine. A number of Virtual

machines/Virtual containers are invoked in a host machine to

achieve server consolidation [1]. Server consolidation exploits the

host to its fullest and leads to fewer machines usage. Usage of

fewer machines (resources) in turn, reduces the cost and energy

consumption of the data-centre. Hence choosing the right VT

profits the CSPs as more computing power can be extracted at the

cost of less number of machines.

The different kinds of VT that are implemented in DCs can be

categorized as hardware-based virtualization and OS based

virtualization [1][2]. Virtual machines(VM), Virtual Containers

(VCs), Containers within VM, Lightweight VMs and Unikernels

[2] are the various types of VT. These virtualization technologies

come with their own deployment and orchestration frameworks.

OpenStack, Vcenter [4] serves an example for virtual machine

orchestration framework whereas Docker Swarm and Google’s

kubernetes are the orchestration frameworks for Virtual Containers

[8].The following section discusses virtualized and containerized

resources along with their variants.
1https://www.informationweek.com
2https://www.2ndwatch.com/cloud-computing-shift-from-capex-to-opex

1 Research Scholar, Pondicherry University, Puducherry, India.

 ORCID ID: 0000-0002-4193-4358
2 Assistant Professor, Pondicherry University, Puducherry, India,

 ORCID ID: 0000-0003-0576-4424

* Corresponding Author Email: sivakgowri@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(2), 104–110 | 105

2.1. Hypervisor-Based Virtualization

Hypervisor-based virtualization is also referred to as Hardware

Virtualization or Bare Metal Virtualization. A virtual machine is a

representation of a real machine that is emulated by a hypervisor[3].

More than one VM can be instantiated in a physical machine. Each

VM owns its own guest operating system along with its respective

drivers, binaries, libraries to build and run the application. Just like

a physical host, more than one application can be executed in a VM.

In short, each VM behaves as though it is a separate physical host

with no awareness about the existence of other VMs.

A Hypervisor or a Virtual Machine Monitor (VMM), is a software

(SW) that creates and run multiple VMs per host [4]. The VMM

virtualizes the host server and sits in between the hardware and the

Virtual Machine. The hypervisor can be distinguished as Type1 and

Type2 hypervisor as shown in Fig.1(a),(b) respectively [2,5,11]. In

Type1, the hypervisor is mounted on the bare metal (Hardware

infrastructure – CPU, RAM, Disk, NIC) over which the VMs are

emulated. KVM, VMware ESXi, Xen are the examples for Type1

Hypervisor.

In Type2, the hypervisor is mounted over the host OS of the physical

machine. The VMs that are emulated over the hypervisor reserves

its own share of physical resources. Oracles' virtual box is an

example of Type 2 hypervisor. In either type, each VM emulated in

a host run its own guest OS. One or more applications can be run on

each VM with their respective library files and dependencies.

 Fig.1.(a) Type1- Bare Metal Hypervisor

 Fig.1.(b) Type 2-Host OS Hypervisor

2.2. OS Based Virtualization

The OS-based virtualization also called container virtualization is

shown in Fig.2 (a), (b) [11]. It involves virtualizing the OS kernel

rather than the physical hardware. The OS-based virtualization

encapsulates the OS and their dependencies into containers which

are collectively managed by the underlying OS kernel [4]. The

virtual container (VC) permits multiple isolated user-space instances

to run on a single physical host. System containers and Application

containers are the two types of virtual containers [2] [11]. Linux

Containers (LXC) is an example of a system container. They run all

types of system processes like initializing, directory commands etc.

Whereas the application containers run applications only [5].

Docker engine otherwise called a container engine is an example of

application containers and its execution process is called

Dockerization [11].

The Open source platform docker engine automates the process of

deploying, shipping and running distributed applications within

container [5] ie. The docker container packs up the application code,

system runtime tools, libraries and drivers into a single image (code

portability) that can be installed and executed on any server [6]. To

be crisp, in container virtualization, the container engine decides

how much resources (CPU, memory, disk, NW) are to be allocated

to the containers [8]. Cloud services deployed using containers takes

less execution time when compared to VMs as it takes time to boot

the Guest OS along with its dependencies. But VMs provide the

highest degree of isolation to its applications that lack with

containers.

Fig.2. (a) Containers in Linux based machines

Fig.2.(b) Containers in Non-Linux based machines.

2.3. Containers Within VM

The container within VM technology is shown in Fig.3 (a) [5].As

the VCs are inside VM, the technology serves a double purpose.

First, minimal execution time is achieved through VC. Second,

through the VMs, isolation, and security is guaranteed to the

application deployed in the VC. Amazon Web Services (AWS)

Elastic Container Services (AWS ECS) and Google Container

Platform (GCP) container engine run containers within VM

instances.

Nesting containers within VMs havetheir own significance too [4].

It costs less for the DCs to reuse the already existing VM technology.

Also, the gaps in each of the technology can be overcome by the

other thus leading to better performance. Hence, Amazon and

Google have adopted the container within VM technology for good

reasons. The technology is considered as the reason for Google’s

popularity. Container within VM is a boon for the public clouds that

need to run an application concerning security with less cost.

2.4. Light Weight VMs

The key idea behind Lightweight VMs lies in “Speed of the

Containers and Security of the VM” [4]. Instead of nesting

containers within VM, the lightweight approach employs low

overhead hardware virtualization [6]. The VM runs a customized

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(2), 104–110 | 106

kernel which possesses quick boot up time and low memory size

consumption, hence called as lightweight VMs as in Fig.3 (b) [4].

Vector Linux, clear Linux, TinyCore and VMware’s Bonneville are

the examples of the Lightweight VMs.

Lightweight VM addresses two issues of conventional VMs viz.,

host transparency and Footprint [4]. Footprint refers to the memory

consumption to instantiate the VM. The VM footprint is minimized

by discarding redundant functionality of the hypervisor. The

lightweight VM boots up in one second rather than ten seconds of

traditional VM. While it takes 0.3 seconds for lightweight VM than

0.8 seconds of Containers [4]. Regarding host transparency,

lightweight VMs directly access files (library, executable etc.,) on

the host's file system without getting transferred to virtual disk as in

the case of traditional VMs.

2.5. Unikernel

A unikernel is an executable image that can execute natively on a

hypervisor, without the need for a separate operating system. The

image contains application code and all the operating system

functions required by that application. It is a single user, single

process applications (no threads, fork or multiuser) embedding the

full application stack [5]. When deployed on the top of the

hypervisor, they benefit from being light, ultra compact and results

in better performance [2]. Unikernels are sealed against

modification once deployed in a cloud platform [18].

It is motivated by the fact that what it would be like, if all the

software layers in the applications were compiled within the same

framework. In Unikernels as in Fig.4 (a), (b) [18], the application

images are built with only those OS components that they actually

require. Unikernels are the single process applications that assure

high performance, fast boot and small attack surface (secure).

Unikernels best suit for applications like video streaming-delivered

through cloud [19] where latency is of primary importance.

Fig.4. (a) Unikernel Configuration

Fig.4. (b) Unikernel

3. Related Works

The rapid growth in DCs urges the need for server consolidation to

optimize resource utilization [1]. Virtualization is the key to achieve

server consolidation where the resources of the underlying physical

host are multiplexed to emulate different VMs [4]. Hence more

applications are packed per physical host reducing the number of

physical machine usage in the cloud. This section discusses the

various works done in virtualization technology.

Mardan et al. compared containers and VMs for handling disk I/O

in DBMS. When compared with LXC, KVM outperforms without

compromising isolation. The file system journaling in containers

lead to poor performance in LXC [1]. The performance of bare

metal, VM and VC are evaluated in OpenStack. Though bare metal

outperforms VM which in turn proved better than VC, the goal to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(2), 104–110 | 107

achieve server consolidation is lost from VC to bare metal [2][20].

Li et al. proved that the performance overhead depends more on

the job to the job rather than feature by feature. Though VC is

lightweight, it produced large performance overhead for certain

jobs[3]. Containers and VMs are compared in a large scale data-

centre environment along the dimensions of performance and SW

development. Unlike VMs that have a strict limit on resources, VCs

allows soft limits [4] [13] [14].

The performance difference in terms of throughput, response time

and CPU utilization is evaluated between containers and VMs.

Under certain scenarios, the Amazon AWS container performs

worse than Amazon EC2 VMs [5][6][8]. Tosatto and Baresi et al.

introduced micro cloud-a container-based solution that used

TOSCA (Topology and Orchestration Specification for Cloud

Applications) library for automatically adapting resource

allocation[7][17]. Benchmark technique is introduced for the

selection of cloud resources. The benchmark for containers called

Doclite is used to evaluate the performance of containers and found

to be 90% accurate than heavyweight VM benchmarks [9].

Docker had lower overhead than VM to execute NoSQL Cassandra

[10]. As far as distributed systems are considered, for OS

environments and servers like ngnixandRedis, docker swarm node

consumes fewer resources and operational overheads than VMs

[11]. Dhuraibi et al. introduced the vertical elasticity of Docker

containers using autonomic computing. As the vertical elasticity is

limited to the capacity of the host machine, live migration of

container was experimented and proved as cost-effective resource

utilization [12].

Docker is a Linux based container management system. The author

elaborates the docker architecture and suggested how it can be

adopted in windows environment [15]. A prototype for container-

based cloud gaming system is built and its performance is

benchmarked against KVM. The GPU takes advantage of

containers than that of KVM. Though Docker proved as the best,

its limitations on Windows, isolation, and security are yet to be

overcome [16].

The architecture of Unikernel and its performance in the content

delivery network is discussed. Madhavapeddy and Kuenzer et al.

explained the advantage of using unikernel over containers in terms

of security, isolation, speed and memory consumption [18][19].

The comparison among the various VT is listed in Table.1. It

consolidates the pros and cons of each technology with a gist about

their individual capabilities. Each technology outweighs the other

in some criteria which concludes the significance of using the right

technology to a suitable application.

4. Performance Measures

Although various cloud simulation tools are used nowadays, the

evaluation and comparison of performance metrics under real-

world scenarios can give a true picture of choosing appropriate

technology for cloud services. This section studies the various

performance evaluation methodologies, performance metrics, the

workloads and benchmarks that are available for testing cloud

services for different types of jobs.

In general, jobs can be classified as CPU intensive, memory

intensive, disk intensive, network intensive, I/O intensive or

transaction- intensive. The scientific applications are CPU

intensive in which precision and performance are considered as

utmost priority, hence termed as High Performance Computing

(HPC) applications. Whereas, Commercial applications that solve

business problems are disk and I/O intensive in which latency is of

primary concern, hence termed as High Throughput computing

(HTC).

4.1. Evaluation Methodologies

To understand the instantiation and execution of virtual resources

in a real production site, it requires tools that simulate the real cloud

environment. This section introduces the existing methodology

tools that are used to evaluate performance measures.

The DoKnowMe (Domain Knowledge-driven methodology) is an

abstract evaluation methodology with respect to the “class” in the

object-oriented analysis and design [3]. By combining domain-

specific facts DoKnowMe can be made more customized. For

generating HTTP web service request to a target server and

measuring its response time & throughput JMeter is used [5].

OpenNebula, OpenStack are the development and management

tools for VMs and Docker Swarm for containers.

4.2. Workloads and Benchmarks

Iperf is a communication metric evaluating benchmark that

consumes less resource and produces precise data throughput like

STREAM which measures memory data throughput[3]. Bonnie++

measures storage transaction speed when the data is byte oriented

and measures storage throughput if it is block sized data. The

SpecJBB quantifies the CPU and Memory intensive jobs whereas

the YSCB is a workload generator for data-intensive jobs to

measure load, insert, read and update operations[4].

RUBiS is a renowned auction site of eBay that supports multi-tier

web applications. PXZ benchmark is specifically designed for CPU

measure, whereas Nuttcp and Netperf [2] are used to test network

throughput and latency. SysBench and Linux binary copy (dd) [2]

utility are powerful for Disk I/O evaluation. Blake2, 7-zip,

OpenSSL (Open Secured Socket layer) are the benchmarks that are

used to test the security level of the virtualization technologies[14].

4.3. Performance Analysis

The earlier works discussed the usage of the newest technologies

in the development of cloud service. The current survey is a

preliminary work to investigate the QoS measures of VM based

and Container based technologies. The new technologies that

Table1. Pros and Cons of Virtualization Technology

Technologies Advantages Disadvantages

Virtual Machines Isolation, Security at system level [14] Increased cost and time for instantiation, migration.

Virtual Containers
Lightweight, smaller footprint, less cost and time to instantiate.

Isolation at the application level

Less secure, low networking bandwidth and scalability,

performance interference.[4]

Containers inside

VMs

Increased Isolation, security at both system and application level.
Minimal Migration time and latency.

Increased time to instantiate and boot

Light Weight VMs Highly kernel dependent, less boot time [20]. Single purpose applications alone served better [18].

Unikernels
High Isolation, security, smallest footprint, portability and

interoperability, less power consumption.[18]
Single user, Single application bound.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(2), 104–110 | 108

currently evolves can be classified as the variants of the two

existing technologies VMs and Containers. Hence a brief

comparative study of the two basic technologies can conclude to

choose the right infrastructure for resource allocation in the cloud

data center.

4.3.1. Deployment

Deployment refers to the launching of applications which is

developed with management and orchestration frameworks. The

memory occupied by the compute resources plays a vital role in

deciding the launching time required [15]. As every VM has got its

own guest OS, it consumes more time and memory to emulate than

VCs. Kubernetes, the container framework comes with a

monitoring tool that monitors the failed replicas and replaces them

automatically, which is a property yet to be achieved in other

technologies [15].

4.3.2. Degree of Interference

Isolation is the property measured by the degree of interference

among applications/machines. In CPU intensive applications, the

interference is alleviated by VMs because of the separate scheduler

in the Guest OS. The shared OS kernel cause interruption leading

to a denial of service attacks [4]. VM gives complete system

isolation whereas the container is restricted to application isolation

[3][15]. On the other hand, the containers inside VM achieve both

the isolation of VM and speed of the container. For memory

intensive applications, the containers and hosted VMs reacts more

or less the same [4].

4.3.3. Auto Scaling and Elasticity

During resource provisioning, VMs are invoked or released

through horizontal scaling (replication). With the advent of

autonomic resource provisioning, a precise number of resources

are planned to avoid over-commitment of resources [12]. The

MAPE-K control loop is followed to automate the scaling process.

For container based resources, though kubernetes and Docker

swarm provides auto horizontal scaling, vertical elasticity is

achieved by live container migration when there is a shortage of

resources in the underlying host machine [12].

4.3.4. Soft & Hard limits

When application requires additional resources beyond their

allocated limit, soft limit permits the applications to access the

under-utilized resources of the host machine [4]. This enables

better resource utilization in containers. But with VMs, soft limit

is hard to achieve as the number of resources required are fixed

during guest OS boot up which is referred as hard limits[4]. In the

containers within VM technology, neighbor containers are adopted

thus enabling elasticity of resources through soft limits [4].

4.4. Performance Metrics

The performance quality of the cloud service is the criteria for the

selection of CSPs. The information to know how the cloud service

responds throughout the service period helps to estimate the vendor

selection. Hence the CSP opt for the best technology that can yield

profit and customers. Generally, the following metrics are

evaluated to choose the right virtualization technology.

4.4.1. Network and Security Performance

As far as network operations are concerned, containers suffer

poorly with high packet rates. Lack of isolation at the system level

in containers leads to poor security [14]. Hence nesting containers

inside VMs are the solution to achieve high security in containers.

Also, the neighbor containers within the same VM can be trusted

[4]. Thus the security issues in the container based machines can

be resolved.

4.4.2. Disk I/O Performance

Google Cloud SQL and Microsoft SQL Azure provide DBMS as a

cloud service. In VC, the file system is shared and its journal

batchesall the updates from multiple containers and commits as one

transaction [1]. Hence each container waits for its update to get

executed. This slows down the I/O operation and the shared file

system causes interference between containers leading to isolation

problem. On the other side, VM maintains its own journal of the

separate file system which is the reason for its better performance.

As such, VMs exhibits 86% of the increase in throughput, without

compromising isolation, makes it better to host DBMS

applications. The fact gets reversed when it comes to running

distributed databases like Cassandra (NoSQL) in big data[10].

While running Cassandra in VM, the resource and the operational

overheads of the virtualization layer affects the performance of

application too. But, Dockerized Cassandra packs the application

and their dependencies into Lightweight container thus consuming

fewer resources and least overhead costs.

4.4.3. Migration Time and Cost

As VCs do not possess any Guest OS, they are Lightweight. This

reduces memory size, cost and less time to migrate VCs [4] [8].

The lightweight VMs have a comparative benefit over their

predecessors. The ultimate Unikernels that are still in its infancy

for cloud services are the most economical and time-saving [18].

4.4.4. Latency & Throughput

For CPU intensive workloads like SpecJBB 2005 (supports 3-tier

web application stack) containers are better. The YSCB benchmark

for disk intensive applications (load/read/update operations) shows

higher latency in VM, while unikernal applications outshine all

other technologies [4]. Container and its extended technologies

perform better than VM with respect to throughput.

4.4.5. CPU and Memory Performance

For High-Performance Computing (HPC) and High Throughput

Computing (HTC) workloads, the container technology outshines

the Virtual Machine [13]. Whereas, the memory intensive

workloads are concerned VMs and container variants stands almost

parallel with the better side on the VM [2]. But surprisingly, in

deploying web service applications, VMs outperforms container

variants by its performance metrics. The reason for this

performance degradation is that the containers being embedded

within VMs and not directly on bare metal.

As far as the distributed systems are concerned, Docker containers

consume minimal memory, storage, CPU utility, boot time and

power [11]. Hence containerization shows better performance and

less operational overheads [6]. This is because of the large size of

the OS image in the VMs that takes more time and memory to

deploy. But this issue can be resolved by replacing traditional VMs

with Lightweight Virtual Machines using smaller images like

TinyCore, Lubuntu and Vector Linux [11].

In Unikernals [18], only the relevant runtime functionalities

required to execute the application is embedded. Unikernels

drastically minimizes the software size and makes it ultimate fast

to deploy and execute. Hence Unikernel best suits for the upcoming

era of micro-services [5] with its significance for interoperability

and portability features.

A Brief comparison among the variants of VT under different

parameter is discussed in Table.2. The individual data given under

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(2), 104–110 | 109

each column varies depending upon the specifications like type of

application, configuration of the underlying host machine, OS type

and the type of hypervisor installed etc. The table infers the

significance of using the suitable technology to an appropriate

application.

Table2. Virtualization Technology specifications for various parameters

 Virtualization

 Technologies

 Parameters

VMs

VCs

Containers

within VMs
Light weight VMs Unikernels

Time to Instantiate1 in

Xen Hypervisor (in

milliseconds)

6500
1711

Docker
200 431 31

*Image Size1 (in MBs) 913 61 53 3.7 2

*Throughput1 (in MBs)

 Transmission, Receive
23,24 45,43 52,44 29,25 50,33

Platform Dependency Windows specific Linux specific
Platform

Independent

 Platform

Independent

Platform

Independent

Number of VMs invoked per

host
Dozen In 100s In 100s Few 100s In 1000s and more

Efficient Resource Utilization Poor utilization Better utilization Better utilization Better utilization Best utilization

Isolation Level Achieved System level Application level
System &

application level

System & application

level

System &

application level

Application Portability Hypervisor Dependent OS dependent OS dependent Kernel specific Kernel Specific

Security Level
Highest security come

with cost
Poor security Medium security High security High security

Profit at CSP point of view
Incurs more cost, not

Profitable
Profit oriented Nominal profit High profit

More profit

oriented

Orchestration frameworks Open Nebula Docker Swarm Open Stack Kubernetes Unik, Jitsu2

Application Suitability
Security and Isolation

intensive applications

Disk I/O Intensive

applications

CPU, Intensive

applications

Memory Intensive

applications
Micro services

Consumer choice for VT

selection
Incurs more cost Incurs Less cost Incurs Less cost Incurs Less cost Cost saving

Examples Xen, KVM Docker vSphere3 Tinyx, Clear Linux
ClickOS,

IncludeOS4

* All tests are run on an x86--‐ 64 server with an Intel Xeon E5--1630 v33.7GHz CPU (4 cores) and 32GB RAM. An Image is a virtual

disk which has the operating system, application libraries, application code and configuration, etc. The image size depends on the application

code and its required libraries. The number of machines that can be invoked on a physical host depends on the resource capacity of the

underlying host machine.
1https://datatracker.ietf.org/meeting/96/materials/slides-96-nfvrg-3
2https://github.com/cetic/Unikernels
3https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/whitepaper/vmw-wp-container-on-vms-a4-final-web.pdf
4https://www.duo.uio.no/bitstream/handle/10852/63618/1/thomasoddsund.pdf

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2019, 7(2), 104–110 | 110

5. Conclusion and Future Perspectives

The performance methodologies, metrics, benchmarks and job

types that are brought into focus from the survey of several works

helps researchers to choose the right type of resource for cloud

resource provisioning. The current study shows that the ultimate

purpose of the virtualization technology is to provide a cost-

effective solution to the CSPs and quality of service to the end users

with less price. Although the IT industry that works behind this

goal, adopts the newest technologies, each technology differs

depending upon the job types and the application requests.

From the earlier literature works, it is clear that neither of the

virtualization technologies nor its variants can standalone

dominant for all types of cloud services. The technology to be

chosen varies depending upon whether it is web service, data

analytics, video streaming, scientific or commercial applications.

Selection of the right virtualization technology favors efficient

resource utilization in the cloud. It is evident that corporate giants

like Google, Microsoft, Amazon, and others employ either an

individual technology or the combination of virtualization

technologies depending upon the performance requirements of the

cloud applications. Hopefully, this review may help the researchers

to narrow down to the right technology for their future work in

efficient resource utilization.

6. References

[1] A. A. A. Mardan and K. Kono, “Containers or Hypervisors: Which Is

Better for Database Consolidation?,” in 2016 IEEE International

Conference on Cloud Computing Technology and Science

(CloudCom), Luxembourg, Luxembourg, 2016, pp. 564–571.

[2] C. G. Kominos, N. Seyvet, and K. Vandikas, “Bare-metal, virtual

machines and containers in OpenStack,” in 2017 20th Conference on

Innovations in Clouds, Internet and Networks (ICIN), Paris, 2017, pp.

36–43.

[3] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance Overhead

Comparison between Hypervisor and Container Based Virtualization,”

in 2017 IEEE 31st International Conference on Advanced Information

Networking and Applications (AINA), Taipei, Taiwan, 2017, pp. 955–

962.

[4] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers

and Virtual Machines at Scale: A Comparative Study,” in Proceedings

of the 17th International Middleware Conference on - Middleware ’16,

Trento, Italy, 2016, pp. 1–13.

[5] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-

Hammadi, “Performance comparison between container-based and

VM-based services,” in 2017 20th Conference on Innovations in

Clouds, Internet and Networks (ICIN), Paris, 2017, pp. 185–190.

[6] K. Kumar and M. Kurhekar, “Economically Efficient Virtualization

over Cloud Using Docker Containers,” in 2016 IEEE International

Conference on Cloud Computing in Emerging Markets (CCEM),

Bangalore, India, 2016, pp. 95–100.

[7] A. Tosatto, P. Ruiu, and A. Attanasio, “Container-Based Orchestration

in Cloud: State of the Art and Challenges,” in 2015 Ninth International

Conference on Complex, Intelligent, and Software Intensive Systems,

Santa Catarina, Brazil, 2015, pp. 70–75.

[8] A. M. Joy, “Performance comparison between Linux containers and

virtual machines,” in 2015 International Conference on Advances in

Computer Engineering and Applications, Ghaziabad, India, 2015, pp.

342–346.

[9] B. Varghese, L. T. Subba, L. Thai, and A. Barker, “Container-Based

Cloud Virtual Machine Benchmarking,” in 2016 IEEE International

Conference on Cloud Engineering (IC2E), Berlin, Germany, 2016, pp.

192–201.

[10] S. S. Emiliano Casalicchio and Lars Lundberg, “Performance

Evaluation of container and virtual machine running cassandra

workload.,” IEEE.

[11] N. Naik, “Migrating from Virtualization to Dockerization in the Cloud:

Simulation and Evaluation of Distributed Systems,” in 2016 IEEE 10th

International Symposium on the Maintenance and Evolution of

Service-Oriented and Cloud-Based Environments (MESOCA),

Raleigh, NC, USA, 2016, pp. 1–8.

[12] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic

Vertical Elasticity of Docker Containers with ELASTICDOCKER,” in

2017 IEEE 10th International Conference on Cloud Computing

(CLOUD), Honolulu, CA, USA, 2017, pp. 472–479.

[13] P. R. Desai, “A Survey of Performance Comparison between Virtual

Machines and Containers,” Int. J. Comput. Sci. Eng., vol. 4, p. 6, 2016.

[14] R. K. Barik, R. K. Lenka, K. R. Rao, and D. Ghose, “Performance

analysis of virtual machines and containers in cloud computing,” in

2016 International Conference on Computing, Communication and

Automation (ICCCA), Greater Noida, India, 2016, pp. 1204–1210.

[15] S. Singh and N. Singh, “Containers & Docker: Emerging roles & future

of Cloud technology,” in 2016 2nd International Conference on

Applied and Theoretical Computing and Communication Technology

(iCATccT), Bangalore, India, 2016, pp. 804–807.

[16] T. Kamarainen, Y. Shan, M. Siekkinen, and A. Yla-Jaaski, “Virtual

machines vs. containers in cloud gaming systems,” in 2015

International Workshop on Network and Systems Support for Games

(NetGames), Zagreb, Croatia, 2015, pp. 1–6.

[17] L. Baresi, S. Guinea, G. Quattrocchi, and D. A. Tamburri,

“MicroCloud: A Container-Based Solution for Efficient Resource

Management in the Cloud,” in 2016 IEEE International Conference on

Smart Cloud (SmartCloud), New York, NY, USA, 2016, pp. 218–223.

[18] Anil Madhavapeddy, Richard Mortier1, Charalampos Rotsos, David

Scott2, Balraj Singh, Thomas Gazagnaire3, Steven Smith, Steven

Hand and Jon Crowcroft, “Unikernels: Library Operating Systems for

the Cloud” in ASPLOS’13, March 16–20, 2013, Houston, Texas, USA.

Copyright 2013 ACM 978-1-4503-1870-9/13/03.

[19] Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri

Volchkov, Florian Schmidt, Kenichi Yasukata, Michio Honda, Felipe

Huici “Unikernels Everywhere: The Case for Elastic CDNs” in VEE

’17 April 08-09, 2017, Xi’an, China 2017 Copyright held by the

owner/author(s). ACM ISBN 978-1-4503-4948-2/17/04.

[20] H.A.Duran-Limon, M.Siller, G.S.Blair, A.Lopez, J.F.Lombera-Landa,

“Using lightweight virtual machines to achieve resource adaptation in

middleware” in IET Softw., 2011, Vol. 5, Iss. 2, pp. 229–237.

