Compact MIMO Antenna Design with Enhanced Isolation and Bandwidth

Authors

Keywords:

envelope correlation coefficient (ECC), Inverted L antenna (ILA), impedance bandwidth, multiple input multiple output (MIMO), ultra wideband(UWB)

Abstract

This article regards to a compact shaped MIMO antenna array using planar structure for a range of ultra wideband (UWB) frequencies. This configuration comprised of four element system covered within the area of 0.16λo2o being highest operating wavelength). The proposed MIMO antenna structure aimed to achieve adequate bandwidth and acceptable isolation level which consisting of inverted L-shaped elements with partial interconnected ground plane. Final design provides to achieve an impedance bandwidth (S11< -10dB) that covers entire UWB frequency range (3.1-10.6 GHz). A satisfactory isolation among interelements about 19 dB is achieved to the maximum range of UWB. Besides this, envelope correlation coefficient (ECC<0.1) is also attained. The results obtained from the simulation is carried out using Ansoft HFSS (High Frequency Structure Simulator) provides sufficient bandwidth and isolation levels covering almost entire of UWB frequencies.

Downloads

Download data is not yet available.

References

M.S.Sharawi, “Printed Multi-Band MIMO Antenna systems and Their Performance Metrics,” IEEE Antennas and Propagation Magazine, vol. 55, pp. 218-232, 2013.

Elfergani, I., Iqbal, A., Zebiri, C., Basir, A., Rodriguez, J.et al., “Low-profile and closely spaced fourelement mimo antenna for wireless body area networks,” Electronics, vol. 9, no. 2, pp. 1–16, 2020.

S.Soltani and R.D.Murch,” a Compact Planar Printed MIMO Antenna Design,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 3, pp. 1140-1149, 2015.

Ding K, Gao C, Qu D-X, et al. Compact broadband MIMO antenna with parasitic strip. IEEE Antenna Wirel Propag Lett. 2017;16: 2349-2353.

Sarkar D, Srivastava KV. A compact four element MIMO/- Diversity antenna with enhanced bandwidth IEEE Antennas Wirel Propag Lett. 2017;16:2469-2472.

Wang H, Liu L-S Zhang Z-J et al. A wideband compact WLAN/WiMAX MIMO antenna based on dipole with V-shaped ground branch. IEEE Trans Antennas Propag. 2015;63:2290-2295.

Anitha R, Vinesh PV, Prakash KC, Mohanan P, Vasudevan K.A compact quad-element slotted ground wideband antenna for MIMO applications. IEEE Trans Antennas Propag. 2016;64:4550-4553.

Lechtreck LW. Effects of coupling accumulation in antenna arrays. IEEE Trans Antennas Propag. 1968;16:31-37.

See CH, Abd-Alhammed RA,Abidin ZZ,et al. Wideband printed MIMO/diversity monopole antenna for Wifi/WiMAX applications. IEEE Trans Antennas Propag. 2012;60:2028-2035.

Zhang S, Pedersen GF. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wirel Propag Lett. 2016;15:166-169.

SoltaniS, Lotfi P, Murch RD. A dual-band multiport MIMO slot antenna for WLAN applications. IEEE Antennas Wirel Propag Lett. 2017;16:529-532.

Lee JY, Kim SH, Jang J-H. Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures. IEEE Trans Antennas Propag. 2015;63:4194-4198.

Zhu J-F, Li S-F, Liao S-W, et al. Wideband low-profile highly isolated MIMO antenna with artidical magnetic conductor. IEEE Antennas Wirel Propag Lett. 2018;17:458-462.

Debdeep Sarkar, Kumar Vaibhav Srivastava, A compact Four-element MIMO/Diversity Antennas with Enhanced Bandwidth. IEEE Antennas Wirel Propag Lett. Vol.16, 2017, pp 2469-2472.

Anusha, D. J. ., R. . Anandan, and P. V. . Krishna. “Modified Context Aware Middleware Architecture for Precision Agriculture”. International Journal on Recent and Innovation Trends in Computing and Communication, vol. 10, no. 7, July 2022, pp. 112-20, doi:10.17762/ijritcc.v10i7.5635.

B.Venkateshwar Rao, Sunita Panda, Jasjit Suri, “Design and characterization of Microstrip Patch antennas using octagonal EBG periodic structures” Helix, The Scientific Explorer” E-ISSN 2319-5592; P-ISSN 2277-3495, 2021.Vol-11, Issue-6, pp 1-8.

Nie N-S, Yang X-S, Wang B-Z. A compact four-element multiple-input-multiple-output antenna with enhanced gain and bandwidth. Micro Opt Technol Lett. 2019;1-7.

Premalatha, B., Prasad, M.V.S. & Murthy, M.B.R. Multi-Band Notched Antennas for UWB Applications. Radioelectron.Commun.Syst. 62, 609–618 (2019).

K. S. Vishvaksenan, K. Mithra, R. Kalaiarasan, and K. S. Raj, “Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2146–2149, 2017.

I. Nadeem and D. Y. Choi, “Study on Mutual Coupling Reduction Technique for MIMO Antennas,” IEEE Access, vol. 7, pp. 563–586, 2019.

H. J. Chen et al., “A novel cross-shape DGS applied to design ultra-wide stopband low-pass filters,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 5, pp. 252–254, 2006.

S. M. S. Hassan and M. N. Mollah, “Identical performance from distinct conventional electromagnetic bandgap structures,” IET Microwaves, Antennas and Propagation, vol. 10, no. 12, pp. 1251–1258, 2016.

B. Mohamadzade and M. Afsahi, “Mutual coupling reduction and gain enhancement in patch array antenna using a planar compact electromagnetic bandgap structure,” IET Microwaves, Antennas and Propagation, vol. 11, no. 12, pp. 1719–1725, 2017.

Ghazaly, N. M. . (2022). Data Catalogue Approaches, Implementation and Adoption: A Study of Purpose of Data Catalogue. International Journal on Future Revolution in Computer Science &Amp; Communication Engineering, 8(1), 01–04. https://doi.org/10.17762/ijfrcsce.v8i1.2063

M. J. Al-Hasan, T. A. Denidni, and A. R. Sebak, “Millimeter-wave compact EBG structure for mutual coupling reduction applications,” IEEE Transaction on Antennas and Propagation, vol. 63, no. 2, pp. 823–828, 2015.

Premalatha, B., Prasad, M.V.S., Murthy, M.B.R. Investigations on compact UWB monopole antenna ,International Conference on Electronics, Communication and Aerospace Technology, ICECA 2017, 2017, 2017-January, pp. 102–106.

Hermina, J. ., Karpagam, N. S. ., Deepika, P. ., Jeslet, D. S. ., & Komarasamy, D. (2022). A Novel Approach to Detect Social Distancing Among People in College Campus. International Journal of Intelligent Systems and Applications in Engineering, 10(2), 153–158. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/1823

M.S.Sharawi, “Current Misuses and Future Prospects for Printed Multiple-Input-Multiple-Output Antenna Systems,” IEEE Antennas and Propagation Magazine, vol.59, no.2, pp. 162-170, 2017.

J. D. Park, M. Rahman, and H. N. Chen, “Isolation Enhancement of Wide-Band MIMO Array Antennas Utilizing Resistive Loading,” IEEE Access, vol. 7, pp. 81020–81026, 2019.

M. S. Khan, S. A. Naqvi, A. Iftikhar, S. M. Asif, A. Fida, and R. M. Shubair, “A WLAN band-notched compact four elements UWB MIMO antenna,” International Journal of RF and Microwave Computer-aided Engineering, vol. 30, no. 9, pp. 1–10, 2020.

André Sanches Fonseca Sobrinho. (2020). An Embedded Systems Remote Course. Journal of Online Engineering Education, 11(2), 01–07. Retrieved from http://onlineengineeringeducation.com/index.php/joee/article/view/39

Structure of individual antenna system with different ground planes

Downloads

Published

16.12.2022

How to Cite

Rao, B. ., & Panda, S. . (2022). Compact MIMO Antenna Design with Enhanced Isolation and Bandwidth. International Journal of Intelligent Systems and Applications in Engineering, 10(4), 120–123. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2205

Issue

Section

Research Article