Realtime Facemask Detection using Deep Learning Framework TensorFlow-Keras

Authors

Keywords:

Facemask; TensorFlow; Keras; Detection System; Image Processing

Abstract

The spread of the Covid-19 virus can be reduced by implementing health protocols such as using masks properly. But there are still many people who ignore or even are reluctant to use masks when in public places. To increase public awareness and order in using masks, a system for detecting the use of masks is needed using image processing technology. The purpose of this research is to design and build a mask detection system using the deep learning framework TensorFlow. This mask detection system is to help monitor people using masks in implementing health protocols. The existence of this system is expected to help supervise people to comply with health protocols so that the transmission of the Covid-19 virus can be prevented. The proposed system test scenario uses face mask objects of various types of models and different colors. The test is applied to the condition of the object using a mask correctly or incorrectly. The conditions observed during the test included the proximity of the object to the camera, the lighting of the room, the number of people that could be detected, and the results of the decisions made by the mask detection system. The test results show that the mask detection system can function properly. The system developed has an accuracy rate of 93.2% for object detection capabilities with the use of the wrong mask. When detecting objects using masks correctly has an accuracy of 96.25%.

Downloads

Download data is not yet available.

References

S. L. Tripathi, N. Mendiratta, D. Ghai, S. Avasthi, and K. Dhir, “Coronavirus: Diagnosis, detection, and analysis,” in Biomedical Engineering Applications for People with Disabilities and the Elderly in the COVID-19 Pandemic, V. E. Balas and O. Geman, Eds. Academic Press, 2022, pp. 109–117.

J. Cui, F. Li, and Z. L. Shi, “Origin and evolution of pathogenic coronaviruses,” Nat. Rev. Microbiol., vol. 17, no. 3, pp. 181–192, Mar. 2019, doi: 10.1038/S41579-018-0118-9.

W. Team, “Coronavirus disease (COVID-19): How is it transmitted?,” 2020. https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted (accessed Mar. 30, 2022).

“Virus Corona (COVID-19),” Google Berita, 2022. https://news.google.com/covid19/map?hl=id&mid=%2Fm%2F03ryn&gl=ID&ceid=ID%3Aid (accessed Apr. 01, 2022).

G. Agache and V. Elena, “Impact of the COVID-19 pandemic on psychomotric components in chess games for children aged 8–10,” in Biomedical Engineering Applications for People with Disabilities and the Elderly in the COVID-19 Pandemic and Beyond, V. E. Balas and G. Oana, Eds. Academic Press, 2022, pp. 267–312.

E. Vizitiu and M. Constantinescu, “Impact of physical activities on overweight people during the COVID-19 pandemic,” in Biomedical Engineering Applications for People with Disabilities and the Elderly in the COVID-19 Pandemic and Beyond, V. E. Balas and G. Oana, Eds. Academic Press, 2022, pp. 313–324.

S.-C. Silişteanu, “Impact of the COVID-19 pandemic on the physical and mental health of the elderly,” in Biomedical Engineering Applications for People with Disabilities and the Elderly in the COVID-19 Pandemic and Beyond, V. E. Balas and O. Geman, Eds. Academic Press, 2022, pp. 335–345.

M. A. Shereen, S. Khan, A. Kazmi, N. Bashir, and R. Siddique, “COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses,” J. Adv. Res., vol. 24, pp. 91–98, Jul. 2020, doi: 10.1016/J.JARE.2020.03.005.

C. Deniz and G. Gökmen, “A New Robotic Application for COVID-19 Specimen Collection Process,” J. Robot. Control, vol. 3, no. 1, pp. 73–77, 2022, doi: 10.18196/jrc.v3i1.11659.

WHO, “Anjuran mengenai penggunaan masker dalam konteks COVID-19,” 2020. https://www.who.int/docs/default-source/searo/indonesia/covid19/anjuran-mengenai-penggunaan-masker-dalam-konteks-covid-19.pdf (accessed Jun. 07, 2022).

D. M. Harfina, Z. Zaini, and W. J. Wulung, “Disinfectant spraying system with quadcopter type unmanned aerial vehicle technology as an effort to break the chain of the covid-19 virus,” J. Robot. Control, vol. 2, no. 6, pp. 502–507, 2021, doi: 10.18196/jrc.26129.

M. Abdullah-Al-Noman, A. N. Eva, T. B. Yeahyea, and R. Khan, “Computer Vision-based Robotic Arm for Object Color, Shape, and Size Detection,” J. Robot. Control, vol. 3, no. 2, pp. 180–186, 2022, doi: 10.18196/jrc.v3i2.13906.

W. Rahmaniar and A. Hernawan, “Real-time human detection using deep learning on embedded platforms: A review,” J. Robot. Control, vol. 2, no. 6, pp. 462-468Y, 2021, doi: 10.18196/jrc.26123.

S. C. Hsu, Y. W. Wang, and C. L. Huang, “Human object identification for human-robot interaction by using fast R-CNN,” Proc. - 2nd IEEE Int. Conf. Robot. Comput. IRC 2018, vol. 2018-Janua, pp. 201–204, 2018, doi: 10.1109/IRC.2018.00043.

P. S. Abdul Lateef Haroon and D. R. Premachand, “Effective human activity recognition approach using machine learning,” J. Robot. Control, vol. 2, no. 5, pp. 395–399, 2021, doi: 10.18196/jrc.25113.

D. Kim, H. Kim, J. Shin, Y. Mok, and J. Paik, “Real-time multiple pedestrian tracking based on object identification,” IEEE Int. Conf. Consum. Electron. - Berlin, ICCE-Berlin, vol. 2019-Septe, pp. 363–365, 2019, doi: 10.1109/ICCE-Berlin47944.2019.8966205.

A. K. Sharadhi, V. Gururaj, S. P. Shankar, M. S. Supriya, and N. S. Chogule, “Face mask recogniser using image processing and computer vision approach,” Glob. Transitions Proc., vol. 3, no. 1, pp. 67–73, Jun. 2022, doi: 10.1016/J.GLTP.2022.04.016.

Q. Chen and L. Sang, “Face-mask recognition for fraud prevention using Gaussian mixture model,” J. Vis. Commun. Image Represent., vol. 55, pp. 795–801, Aug. 2018, doi: 10.1016/J.JVCIR.2018.08.016.

P. Gupta, V. Sharma, and S. Varma, “A novel algorithm for mask detection and recognizing actions of human,” Expert Syst. Appl., vol. 198, p. 116823, Jul. 2022, doi: 10.1016/J.ESWA.2022.116823.

S. Gupta, S. V. N. Sreenivasu, K. Chouhan, A. Shrivastava, B. Sahu, and R. Manohar Potdar, “Novel Face Mask Detection Technique using Machine Learning to control COVID’19 pandemic,” Mater. Today Proc., Aug. 2021, doi: 10.1016/J.MATPR.2021.07.368.

M. M. Mohamed et al., “Face mask recognition from audio: The MASC database and an overview on the mask challenge,” Pattern Recognit., vol. 122, p. 108361, Feb. 2022, doi: 10.1016/J.PATCOG.2021.108361.

B. Pranav Vijay Chakilam, Revanth, V. Muppirala, A. Anilet Bala, and V. Maik, “Design of Low-Cost Object Identification Module for Culinary Applications,” J. Phys. Conf. Ser., vol. 1964, no. 6, p. 062088, 2021, doi: 10.1088/1742-6596/1964/6/062088.

S. Sethi, M. Kathuria, and T. Kaushik, “Face mask detection using deep learning: An approach to reduce risk of Coronavirus spread,” J. Biomed. Inform., vol. 120, p. 103848, Aug. 2021, doi: 10.1016/j.jbi.2021.103848.

G. Kaur et al., “Face mask recognition system using CNN model,” Neurosci. Informatics, vol. 2, no. 3, p. 100035, Sep. 2022, doi: 10.1016/J.NEURI.2021.100035.

R. Vaishya, M. Javaid, I. H. Khan, and A. Haleem, “Artificial Intelligence (AI) applications for COVID-19 pandemic,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 4, pp. 337–339, Jul. 2020, doi: 10.1016/j.dsx.2020.04.012.

J. Meng, Z. Tan, Y. Yu, P. Wang, and S. Liu, “TL-med: A Two-stage transfer learning recognition model for medical images of COVID-19,” Biocybern. Biomed. Eng., vol. 42, no. 3, pp. 842–855, Jul. 2022, doi: 10.1016/J.BBE.2022.04.005.

Q. Ye et al., “Robust weakly supervised learning for COVID-19 recognition using multi-center CT images,” Appl. Soft Comput., vol. 116, p. 108291, Feb. 2022, doi: 10.1016/J.ASOC.2021.108291.

X. Fan, X. Feng, Y. Dong, and H. Hou, “COVID-19 CT image recognition algorithm based on transformer and CNN,” Displays, vol. 72, p. 102150, Apr. 2022, doi: 10.1016/J.DISPLA.2022.102150.

A. Altan and S. Karasu, “Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique,” Chaos, Solitons & Fractals, vol. 140, p. 110071, Nov. 2020, doi: 10.1016/J.CHAOS.2020.110071.

H. Zhang et al., “DCML: Deep contrastive mutual learning for COVID-19 recognition,” Biomed. Signal Process. Control, vol. 77, p. 103770, Aug. 2022, doi: 10.1016/J.BSPC.2022.103770.

H. Li, N. Zeng, P. Wu, and K. Clawson, “Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision,” Expert Syst. Appl., vol. 207, p. 118029, Nov. 2022, doi: 10.1016/J.ESWA.2022.118029.

Z. Li, W. Wang, Y. Sun, S. Wang, S. Deng, and Y. Lin, “Applying image recognition to frost built-up detection in air source heat pumps,” Energy, vol. 233, p. 121004, Oct. 2021, doi: 10.1016/J.ENERGY.2021.121004.

J. Hu, Z. Ren, J. He, Y. Wang, Y. Wu, and P. He, “Design of an intelligent vibration screening system for armyworm pupae based on image recognition,” Comput. Electron. Agric., vol. 187, p. 106189, Aug. 2021, doi: 10.1016/J.COMPAG.2021.106189.

J. A. Taquía Gutiérreza, “Stimulation of Numerical Skills in Children with Visual Impairments Using Image Recognition,” Procedia Comput. Sci., vol. 198, pp. 179–184, Jan. 2022, doi: 10.1016/J.PROCS.2021.12.226.

T. L. Mien, V. Van An, N. Thi, and T. Huong, “Research and Development of the Pupil Identification and Warning System using AI-IoT,” J. Robot. Control, vol. 3, no. 4, pp. 528–534, 2022, doi: 10.18196/jrc.v3i4.14978.

Y. Wang, H. Liu, M. Guo, X. Shen, B. Han, and Y. Zhou, “Image recognition model based on deep learning for remaining oil recognition from visualization experiment,” Fuel, vol. 291, p. 120216, May 2021, doi: 10.1016/J.FUEL.2021.120216.

Y. Wang, Y. Wang, C. Chen, R. Jiang, and W. Huang, “Development of variational quantum deep neural networks for image recognition,” Neurocomputing, vol. 501, pp. 566–582, Aug. 2022, doi: 10.1016/J.NEUCOM.2022.06.010.

C. Li, H. Q. Lan, Y. N. Sun, and J. Q. Wang, “Detection algorithm of defects on polyethylene gas pipe using image recognition,” Int. J. Press. Vessel. Pip., vol. 191, p. 104381, Jun. 2021, doi: 10.1016/J.IJPVP.2021.104381.

Y. Yuan, L. Chen, H. Wu, and L. Li, “Advanced agricultural disease image recognition technologies: A review,” Inf. Process. Agric., vol. 9, no. 1, pp. 48–59, Mar. 2022, doi: 10.1016/J.INPA.2021.01.003.

Y. Shu, Y. G. Chen, and C. Xiong, “Application of image recognition technology based on embedded technology in environmental pollution detection,” Microprocess. Microsyst., vol. 75, p. 103061, Jun. 2020, doi: 10.1016/J.MICPRO.2020.103061.

Y. Wei, S. Xu, B. Kang, and S. Hoque, “Generating training images with different angles by GAN for improving grocery product image recognition,” Neurocomputing, vol. 488, pp. 694–705, Jun. 2022, doi: 10.1016/J.NEUCOM.2021.11.080.

Q. Wu, “Identification of microbial pollution sources in high-humidity buildings based on deep learning and image particle recognition,” Microprocess. Microsyst., vol. 80, Feb. 2021, doi: 10.1016/j.micpro.2020.103570.

H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based image recognition for autonomous driving,” IATSS Res., vol. 43, no. 4, pp. 244–252, Dec. 2019, doi: 10.1016/J.IATSSR.2019.11.008.

T. Yabe, K. Tsubouchi, Y. Sekimoto, and S. V. Ukkusuri, “Early warning of COVID-19 hotspots using human mobility and web search query data,” Comput. Environ. Urban Syst., vol. 92, p. 101747, Mar. 2022, doi: 10.1016/j.compenvurbsys.2021.101747.

J. Chai, H. Zeng, A. Li, and E. W. T. Ngai, “Deep learning in computer vision: A critical review of emerging techniques and application scenarios,” Mach. Learn. with Appl., vol. 6, p. 100134, Dec. 2021, doi: 10.1016/j.mlwa.2021.100134.

E. Mbunge, S. Simelane, S. G. Fashoto, B. Akinnuwesi, and A. S. Metfula, “Application of deep learning and machine learning models to detect COVID-19 face masks - A review,” Sustain. Oper. Comput., vol. 2, pp. 235–245, 2021, doi: 10.1016/j.susoc.2021.08.001.

A. Kumar, A. Kalia, and A. Kalia, “ETL-YOLO v4: A face mask detection algorithm in era of COVID-19 pandemic,” Optik (Stuttg)., vol. 259, p. 169051, Jun. 2022, doi: 10.1016/J.IJLEO.2022.169051.

N. Ullah, A. Javed, M. Ali Ghazanfar, A. Alsufyani, and S. Bourouis, “A novel DeepMaskNet model for face mask detection and masked facial recognition,” J. King Saud Univ. - Comput. Inf. Sci., Jan. 2022, doi: 10.1016/J.JKSUCI.2021.12.017.

P. Wu, H. Li, N. Zeng, and F. Li, “FMD-Yolo: An efficient face mask detection method for COVID-19 prevention and control in public,” Image Vis. Comput., vol. 117, p. 104341, Jan. 2022, doi: 10.1016/J.IMAVIS.2021.104341.

N. Ottakath et al., “ViDMASK dataset for face mask detection with social distance measurement,” Displays, vol. 73, p. 102235, Jul. 2022, doi: 10.1016/J.DISPLA.2022.102235.

S. Sinha, U. Srivastava, V. Dhiman, P. S. Akhilan, and S. Mishra, “Performance assessment of deep learning procedures: Sequential and ResNet on malaria dataset,” J. Robot. Control, vol. 2, no. 1, pp. 12–18, 2021, doi: 10.18196/jrc.2145.

A. Michele, V. Colin, and D. D. Santika, “MobileNet Convolutional Neural Networks and Support Vector Machines for Palmprint Recognition,” Procedia Comput. Sci., vol. 157, pp. 110–117, Jan. 2019, doi: 10.1016/J.PROCS.2019.08.147.

I. Shafi, A. Mazahir, A. Fatima, and I. Ashraf, “Internal defects detection and classification in hollow cylindrical surfaces using single shot detection and MobileNet,” Measurement, vol. 202, p. 111836, Oct. 2022, doi: 10.1016/J.MEASUREMENT.2022.111836.

Y. Nan, J. Ju, Q. Hua, H. Zhang, and B. Wang, “A-MobileNet: An approach of facial expression recognition,” Alexandria Eng. J., vol. 61, no. 6, pp. 4435–4444, Jun. 2022, doi: 10.1016/J.AEJ.2021.09.066.

U. Kulkarni, S. M. Meena, S. V. Gurlahosur, and G. Bhogar, “Quantization Friendly MobileNet (QF-MobileNet) Architecture for Vision Based Applications on Embedded Platforms,” Neural Networks, vol. 136, pp. 28–39, Apr. 2021, doi: 10.1016/J.NEUNET.2020.12.022.

S. Ashwinkumar, S. Rajagopal, V. Manimaran, and B. Jegajothi, “Automated plant leaf disease detection and classification using optimal MobileNet based convolutional neural networks,” Mater. Today Proc., vol. 51, pp. 480–487, Jan. 2022, doi: 10.1016/J.MATPR.2021.05.584.

S. Sen and K. Sawant, “Face mask detection for covid_19 pandemic using pytorch in deep learning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1070, no. 1, p. 012061, 2021, doi: 10.1088/1757-899x/1070/1/012061.

L. Zhang, J. Wang, B. Li, Y. Liu, H. Zhang, and Q. Duan, “A MobileNetV2-SENet-based method for identifying fish school feeding behavior,” Aquac. Eng., vol. 99, p. 102288, Nov. 2022, doi: 10.1016/J.AQUAENG.2022.102288.

D. Sutaji and O. Yıldız, “LEMOXINET: Lite ensemble MobileNetV2 and Xception models to predict plant disease,” Ecol. Inform., vol. 70, p. 101698, Sep. 2022, doi: 10.1016/J.ECOINF.2022.101698.

J. Zhang, J. Jing, P. Lu, and S. Song, “Improved MobileNetV2-SSDLite for automatic fabric defect detection system based on cloud-edge computing,” Measurement, vol. 201, p. 111665, Sep. 2022, doi: 10.1016/J.MEASUREMENT.2022.111665.

L. Parisi, R. Ma, N. RaviChandran, and M. Lanzillotta, “hyper-sinh: An accurate and reliable function from shallow to deep learning in TensorFlow and Keras,” Mach. Learn. with Appl., vol. 6, p. 100112, Dec. 2021, doi: 10.1016/J.MLWA.2021.100112.

R. Galliera and N. Suri, “Object Detection at the Edge: Off-the-shelf Deep Learning Capable Devices and Accelerators,” Procedia Comput. Sci., vol. 205, pp. 239–248, Jan. 2022, doi: 10.1016/J.PROCS.2022.09.025.

A. C. Paola et al., “Machine Learning approach applied to Human Activity Recognition – An application to the VanKasteren dataset,” Procedia Comput. Sci., vol. 191, pp. 367–372, Jan. 2021, doi: 10.1016/J.PROCS.2021.07.070.

The flowchart of reserach

Downloads

Published

16.12.2022

How to Cite

Erwan Eko Prasetiyo, Muhammad Luqman Bukhori, Gaguk Marausna, Iswanto Suwarno, & Hendriana Helda Pratama. (2022). Realtime Facemask Detection using Deep Learning Framework TensorFlow-Keras. International Journal of Intelligent Systems and Applications in Engineering, 10(4), 610–617. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2331

Issue

Section

Research Article