A Comprehensive Survey on Deepfake Detection Techniques

Authors

  • Duha A. Sultan Dept. of Biology, Education College for Girls University of Mosul, Mosul, Iraq
  • Laheeb M. Ibrahim Dept. of Software Engineering, College of Computer Sciences and Mathematics, University of Mosul, Mosul, Iraq

Keywords:

Machine learning, Deep learning, Deepfake, GAN, Deepfake detection, Forgery detection, Convolutional Neural Network

Abstract

Improving machine learning and artificial intelligence makes it possible to swap someone else's face and voice in a high realism video which made distinguishing the difference between the real and fake videos difficult. Although this technology can be used in many useful fields like advertising, video gaming, and film industry, most of the time it is used for malicious purposes. Therefore, many studies have been done to understand how deepfake works and how to detect these fake videos or images. In this paper, an inclusive study is presented on the existing techniques used for creating and detecting fake materials and analyzing these techniques that are used by several researchers in addition to the great role of artificial intelligence and deep learning on improving them.

Downloads

Download data is not yet available.

References

SiweiLyu,"DEEPFAKE DETECTION:CURRENT CHALLENGES AND NEXT STEPS",2020 IEEE International Conference on Multimedia& Expo Workshops(ICMEW).

Bahar U. M., and Afsana S., " Deep Insight of DeepfakeTechnoloy: A Review", 2020, DUJASE Vol.5 (1&2)13-23.

Nobert Y., "DeepFake Technology: Complete Guide to Deepfakes, Politics and Social Media", July 6 2019, Computers & Technology (Book).

Goodfellow I., Pouget_Abadie J., Mirza M., Xu B., Warde_Farly D., Ozair S., CourvilleA., and Bengio Y., "Generative Adversarial Mets", 2014, In Advances in Neural Information Processing Systems, 2672-2680.

Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial Nets. arXiv:1411.1784. Retrieved from https://arxiv.org/abs/1411.1784.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

JeX D., Philipp K., and Trevor D. (2016). Adversarial Feature Learning. arXiv:1605.09782. Retrieved from https://arxiv.org/abs/1605.0978.

Augustus O. (2016) . Semi-supervised Learning with Generative Adversarial Networks. arXiv:1606.01583. Retrieved from https://arxiv.org/abs/1606.01583.

Arjovsky, M., Chintala, S., and Bottou, L. (2017, July).Wasserstein generative adversarial networks. In InternationalConference on Machine Learning (pp. 214-223).

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C. (2017). Improved training of Wasserstein GANs. In Advances in Neural Information Processing Systems(pp. 5767-5777).

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and Paul Smolley, S. (2017). Least squares generative adversarial networks. In Proceedings of the IEEE International Conferenceon Computer Vision (pp. 2794-2802).

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive growing of GANs for improved quality, stability, andvariation. arXiv preprint arXiv:1710.10196.

Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4401-4410).

Han Z., Ian G., Dimitris M., and Augustus O. (2018). Self-attention Generative Adversarial Networks. arXiv:1805.08318. Retrieved from https://arxiv.org/abs/1805.08318.

Andrew B., JeX D., and Karen S. (2018). Large Scale GAN Training for High Fidelity Natural Image Synthesis. arXiv:1809.11096. Retrieved from https://arxiv.org/abs/1809.11096.

Choi, Y., Choi, M., Kim, M., Ha, J. W., Kim, S., and Choo, J. (2018). StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 8789-8797).

He, Z., Zuo, W., Kan, M., Shan, S., and Chen, X. (2019). AttGAN: Facial attribute editing by only changing what you want. IEEE Transactions on Image Processing, 28(11), 5464-5478.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020). Analyzing and improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8110-8119).

Cho, W., Choi, S., Park, D. K., Shin, I., and Choo, J. (2019). Image-to-image translation via group-wise deep whitening-and-coloring transformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.10639-10647).

Animesh K. and Oliver W. (2020). MSG-GAN: Multi-scale gradients for generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7799–7808.

Guarnera L., Giudice O., and Battiato S, (2020). Deepfake detection by analyzing convolutional traces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 666-667.

Moon T.K. (1996). The expectation –maximization algorithm. IEEE Signal Processing Magazine, 13(6), pp.47-60.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2018). Large-scale celebfaces attributes (celeba) dataset. In Proceedings of the IEEE International Conference on Computer Vision (pp. 3730-3738).

Hsu, C. C., Zhuang, Y. X., and Lee, C. Y. (2020). Deep fake image detection based on pairwise learning. Applied Sciences,10(1), 370.

Chopra, S. (2005). Learning a similarity metric discriminatively, with application to face verification. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 539-546.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision andPattern Recognition (pp. 4700-4708).

Li L., Bao J., Zhang T., Yang H., Chen D., Wen F., and Guo B., (2020), Face X-ray for more general face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5001-5010).

Xuan, X., Peng, B., Dong, J., and Wang, W. (2019). On the generalization of GAN image forensics. arXiv preprint arXiv:1902.11153.

Zhao T., Xu X., Xu M., Ding H., Xiong Y. and Xia W., (2021),Learning self-consistency for deepfake detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision . pp. 15023-15033.

Rossler A., Cozzolino D., Verdoliva L., Riess C., Thies J., Niebner M., (2019). Faceforensics++:Learning to detect manipulated facial images. In proceedings of the IEEE/CVF International Conference on Computer Vision. Pp:1-11.

Dolhansky, B.; Bitton, J.; Pflaum, B.; Lu, J.; Howes, R.; Wang, M.; Canton Ferrer, C. (2020). The deepfake detection challenge dataset. arXiv 2020, arXiv:2006.07397.

Sitong L., Zhichao L., Siqi G. , Liang X., (2022). Block shuffling learning for deepfake detection.Computer Vision and Pattern Recognition. arXiv:2202.02819v1.

Li, Y.; Yang, X.; Sun, P.; Qi, H.; Lyu, S.C.D. (2020). A large-scale challenging dataset for DeepFake forensics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19; pp. 14–19.

Afchar, D., Nozick, V., Yamagishi, J., and Echizen, I. (2018). MesoNet: a compact facial video forgery detection network. In 2018 IEEE International Workshop on Information Forensics and Security (WIFS) pp. 1-7 . IEEE.

Viola P. and Jones M. (2021). Rapid object detection using a boosted cascade of simple features. In Computer Vision and Pattern Recognition. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I–I.IEEE.

Aya I., Marwa E., Mervat S. Z., and Kamal E., (2021). A new deep learning-based methodology for video deepfake detection using Xgboost. Sensors,21, 5413.

Chen T., Guestrin C. (2016), Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Pp. 785-794.

Joseph R., Santosh D., Ross G., and Ali F.(2016). You Only Look Once: Unified, Real-Time Object Detection. In proceedings of the IEEE Conference in Computer Vision and Pattern Recognition, pp 779-788.

Amerini I., Galteri L., Caldelli R., Del Bimbo A.(2019) Deepfake Video Detection through Optical Flow Based CNN Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

Tran V.N, Lee S.H, Le H.S, Kwon K.R. (2021) High Performance DeepFake Video Detection on CNN-Based with Attention Target-Specific Regions and Manual Distillation Extraction.. Applied Sciences. 11(16):7678. https://doi.org/10.3390/app11167678.

Goyal K., Agarwal K., Kumar R. (2017). Face detection and tracking: Using OpenCV. In Proceedings of the 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, Volume 1, pp. 474–478.

Zhang K., Zhang Z., Li Z., Qiao Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23, 1499–1503.

Baltrusaitis T., Zadeh A., Lim Y.C., Morency L.P.(2018). Openface 2.0: Facial behavior analysis toolkit. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 59–66.

Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–2 July 2016; pp. 2818–2826.

Howard A.G., Zhu M., Chen B., Kalenichenko D., Wang W., Weyand T., Adam H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861.

Matern F., Riess C., and Stamminger M. (2019, January). Exploiting visual artifacts to expose deepfakes and face manipulations. In 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW) (pp. 83-92). IEEE.

Deressa W.,and Solomon A., (2021). Deepfake Video Detection Using Convolutional Vision Transformer. Computer Vision and Pattern Recognition,

arXiv:2102.11126v3.

Guera D., and Delp E. J. (2018, November). Deepfake video detection using recurrent neural networks. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.

Hochreiter S. and Schmidhuber J. (1997). Long Short-term memory. Neural Computation, 9(8), pp: 1735-1780.

Laptev I., Marszalek M., Schmid C., and Rozenfeld B. (2008). Learning realistic human actions from movies. Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pages 1–8, June 2008. Anchorage, AK.

Abdul Jamsheed V., and Janet B. (2021). Deep fake video detection using recurrent neural networks. International Journal of Scientific Research in Computer Science and Engineering. Vol.9(2). Pp:22-26.

Priti Y., Ishani J., Jaiprakash M., Vibhash C. and Gargi Kh., (2021). International Conference on Emerging Technologies: AI, IoT, and CPS for Science Technology Applications, 06-07.

Saining X., Ross G., Piotr D., Zhuowen T., Kaiming H. (2017). Aggregated Residual Transformations for Deep Neural Networks. https://arxiv.org/abs/1611.05431v2.

Li, Y., Chang, M. C., and Lyu, S. (2018, December). Inictu oculi: Exposing AI created fake videos by detecting eyeblinking. In 2018 IEEE International Workshop on InformationForensics and Security (WIFS) (pp. 1-7). IEEE.

Donahue J., Anne Hendricks L., Guadarrama S., Rohrbach M., Venugopalan S., Saenko K., and Darrell T. (2015). Long-term recurrent convolutional networks for visual recognition and description. in CVPR, 2015, pp.2625–2634.

Simonyan K. and Zisserman A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Song F., Tan X., Liu X., and Chen S. (2014). Eyes closeness detection from still images with multi-scale histograms of principal oriented gradients. Pattern Recognition, vol. 47, no. 9, pp. 2825–2838.

.Shahroz T., Sangyup L., and Simon S. W. (2021). One Detector to rule them all:Towards a General Deepfake Attack Detection Framework. Computer Vision and Pattern Recognition. https://arxiv.org/abs/2105.00187v1.

Daichi Z., Chenyo L., Fanzhao L., Dan Z., and Shiming G. (2021). Proceeding of the Thirtieth International Joint Conference on Artifitial Intelligence (IJCAI).

Yipin Z. and Ser-Nam L., (2021). Joint Audio-Visual Deepfake Detection.IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14780-14789, doi: 10.1109/ICCV48922.2021.01453

Shruti A., Hany F., Ohad F.and Maneesh A., (2020). Detecting Deep-Fake Videos from Phoneme-Viseme Mismatches. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). DOI 10.1109/CVPRW50498.2020.00338.

Wang Y., and Dantcheva A. (2020). A video is worth more than 1000 lies. Comparing 3DCNN approaches for detecting deepfakes. FG 2020 - 15th IEEE International Conference on Automatic Face and Gesture Recognition, Nov 2020, Buenos Aires / Virtual, Argentina. hal-02862476.

Andreas R., Davide C., Luisa V., Christian R., Justus T., Matthias N. Faceforensics: A large-scale video dataset for forgery detection in human faces, CoRR abs/1803.09179.

Yuezun L., Ming-Ching C., Siwei L. (2018) In ictu oculi: Exposing AI created fake videos by detecting eye blinking, in: IEEE International Workshop on Information Forensics and Security (WIFS), IEEE, pp. 1-7.

Korshunov P., Sebastien M. Deepfakes: a new threat to face recognition? assessment and detection, arXiv preprint arXiv:1812.08685.

.Liming, L. Ren, W. Wayne, Q. Chen, L. Chen Change. (2020) Deeperforensics-1.0: A large-scale dataset for real-world face forgery detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2889-2898.

Generalpipeline. (a) Real Datasets (CELEBA) and Deepfake images, (b) Every images in (a) topographies extractedby EM algorithm; (c) classifiers (K-NN, SVM, LDA).

Downloads

Published

31.12.2022

How to Cite

Sultan, D. A. ., & Ibrahim, L. M. . (2022). A Comprehensive Survey on Deepfake Detection Techniques. International Journal of Intelligent Systems and Applications in Engineering, 10(3s), 189–202. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2430

Issue

Section

Research Article