Comparative Performance Analysis of Lung Cancer Detection using Naïve Bayes, Support Vector Machine, K-Nearest Neighbor and Decision Tree



Comparative, Decision tree, K-nearest neighbor, Lung cancer, Naïve Bayes, Support vector machine


This study aims to determine the best classification technique for lung cancer detection. Four different machine learning algorithms are implemented, which are Naïve Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbor Classifier (KNN), and Decision Tree (DT). The classification was carried out on 140 CT Scan data from the Lung Image Database Consortium image collection (LIDC-IDRI) dataset. Furthermore, the preposition started with a variety of filtering methods, The segmentation used was Otsu thresholding, which was textured with extraction using 11 features. The best results were obtained using DT, Low pass filter, and GLCM segmentation angle of 450 with performance results of 99.00% accuracy, 100.00% sensitivity, and 98.04% specificity for training data, as well as 96.25% accuracy, 95.12% sensitivity and 97.44 % specificity for test data.


Download data is not yet available.


Nasser, I. M., & Abu-Naser, S. S. Lung Cancer Detection Using Artificial Neural Network. International Journal of Engineering and Information Systems (IJEAIS), 3(3), 17-23, 2019.

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 68(6), 394-424, 2018, doi: 10.3322/caac.21492

Moreno, S., Bonfante, M., Zurek, E., & Juan, H. S. Study of Medical Image Processing Techniques A lied to Lung Cancer. Proceedings of the 14th Iberian Conference on Information Systems and Technologies (CISTI), 1-6, 2019, doi: 10.23919/cisti.2019.8760888

Pawar, V. J., Kharat, K. D., Pardeshi, S. R., & Pathak, P. D. Lung Cancer Detection System Using Image Processing and Machine Learning Techniques. International Journal of Advanced Trends in Computer Science and Engineering, 9(4), 5956-5963, 2020, doi: 10.30534/ijatcse/2020/260942020

Listyalina, L. Peningkatan Kualitas Citra Foto Rontgen Sebagai Media Deteksi Kanker Paru. Respati Jurnal Ilmiah Teknologi Informasi, 12(4). 110-118, 2017, doi: 10.35842/jtir.v12i34.1

Gao, J., Wang, B., Wang, Z., Wang, Y., & Kong, F. A Wavelet Transform-Based Image Segmentation Method. Optik, 208, 164123, 2020, doi: 10.1016/j.ijleo.2019.164123

Hollings, N., & Shaw, P. Diagnostic imaging of lung cancer. European Respiratory Journal, 19(4), 722–742, 2002, doi: 10.1183/09031936.02.00280002

Trisnawati, L., & Hakim, L. Segmentasi Citra Ct Scan Lung Menggunakan Deteksi Tepi Sobel Dan Metode Distance Regularized Level Set Evolution (DRLSE). Explore IT: Jurnal Keilmuan dan Aplikasi Teknik Informatika, 10(1), 1-13, 2018, doi: 10.35891/explorit.v10i1.1670

Demir, Ö., & Çamurcu, A.Y. Computer-aided detection of lung nodules using outer surface features. Bio-Medical Materials and Engineering, 26(1), S1213–S1222, 2015, doi: 10.3233/BME-151418

Bogoni, L., Ko, J. P., Alpert, J., Anand, V., Fantauzzi, J., Florin, C. H., Koo, C.W., Mason, D., Rom, W., Shiau, M., Salganicoff, M., & Naidich, D, P. Impact of a computer-aided detection (CAD) system integrated into a picture archiving and communication system (PACS) on reader sensitivity and efficiency for the detection of lung nodules in thoracic CT exams. Journal of Digital Imaging, 25, 771–781, 2012, doi: 10.1007/s10278-012-9496-0

Al Mohammad, B., Brennan, P. C., & Mello-Thoms, C. A review of lung cancer screening and the role of computer-aided detection. Clinical Radiology, 72(6), 433–442, 2017, doi: 10.1016/j.crad.2017.01.002

Magdy, E., Zayed, N., & Fakhr, M. Automatic classification of normal and cancer lung CT images using multiscale AM-FM features. Journal of Biomedical Imaging, 11, 2015, doi: 10.1155/2015/230830

Bhattacharya, S., Maddikunta, P. K. R., Pham, Q. V., Gadekallu, T. R., Chowdhary, C. L., Alazab, M., & Piran, M. J. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. Sustainable Cities and Society, 65, 102589, 2-18, 2021, doi: 10.1016/j.scs.2020.102589

Wayne Niblack. An introduction to digital image processing. Strandberg Publishing Company, DNK, 1985,

Lee, H., Matin, T., Gleeson, F., & Grau, V. Medical image computing and computer assisted intervention 2017., in Miccai 10433, 108–115, 2017.

Dou, Q., Chen, H., Yu L., Qin, J., & Heng, P. A. Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection. IEEE Transactions on Biomedical Engineering, 64(7), 1558-1567, 2017, doi: 10.1109/tbme.2016.2613502

Nasrullah, N., Sang, J., Alam, M. S., Mateen, M., Cai, B., & Hu, H. Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors, 19(17), 3722, 2019, doi: 10.3390/s19173722

Kulkarni, A., & Panditrao, A. Classification of lung cancer stages on CT scan images using image processing. Proceedings of the 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies, 1384-1388, 2014, doi: 10.1109/icaccct.2014.7019327

Aggarwal, T., Furqan, A., & Kalra, K. Feature extraction and LDA based classification of lung nodules in chest CT scan images. Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1189-1193, 2015, doi: 10.1109/icacci.2015.7275773

Punithavathy, K., Ramya, M. M., & Poobal, S. Analysis of statistical texture features for automatic lung cancer detection in PET/CT images. Proceedings of the 2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE), 1-5, 2015, doi: 10.1109/race.2015.7097244

Farahani, F. V., Ahmadi, A., & Zarandi, M. F. Lung nodule diagnosis from CT images based on ensemble learning. Proceedings of the 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 1-7, 2015, doi: 10.1109/cibcb.2015.7300281

Taher, F., Werghi, N., & Al-Ahmad, H. Computer aided diagnosis system for early lung cancer detection. Algorithms, 8(4), 1088-1110, 2015, doi: 10.3390/a8041088

Riti, Y.F., Nugroho, H.A., Wibirama, S., Windarta, B. & Choridah, L. Feature extraction for lesion margin characteristic classification from CT Scan lungs image. Proceedings of the 1st International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 54-58, 2016, doi: 10.1109/icitisee.2016.7803047

Hasnely, H., Nugroho, H.A., Wibirama, S., Windarta, B. & Choridah, L. Texture feature extraction for the lung lesion density classification on computed tomography scan image. Communications in Science and Technology, 1(1), 2016, doi: 10.21924/cst.1.1.2016.14

El-Regaily, S. A., Salem, M. A. M., Aziz, M. H. A., & Roushdy, M. I. Lung nodule segmentation and detection in computed tomography. Proceedings of the Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), 72-78, 2017, doi: 10.1109/intelcis.2017.8260029

Kalaivani, S., Chatterjee, P., Juyal, S., & Gupta, R. Lung cancer detection using digital image processing and artificial neural networks. Proceedings of the International conference of Electronics, Communication and Aerospace Technology (ICECA), 2, 100-103, 2017, doi: 10.1109/iceca.2017.8212773

Lavanya, M., and Kannan, P. M. Lung lesion detection in CT scan images using the fuzzy local information cluster means (FLICM) automatic segmentation algorithm and back propagation network classification. Asian Pacific Journal of Cancer prevention, 18(12), 3395-3399, 2017, doi: 10.22034/fapjcp.2017.18.12.3395

Bao, J., Walliander, M., Kovacs, F., Hemmes, A., Sarhadi, V., Lundin, J., Hovarth P., & Verschuren, E. Spa-RQ: an image analysis tool to visualise and quantify spatial phenotypes a lied to nonsmall cell lung cancer. science report, 9. 17613, 2019, doi: 10.1038/s41598-019-54038-9

Bruntha, P. M., Pandian, S. I. A., Anitha, J., Mohan, P., & Dhanasekar, S. Local Ternary Co-occurrence Patterns based Lung Nodules Detection. Proceedings of the 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS),489-492,2020, doi: 10.1109/icaccs48705.2020.9074411

Karthiga, B., & Rekha, M. Feature extraction and I-NB classification of CT images for early lung cancer detection. Materials Today: Proceedings, 33(7), 3334-3341, 2020, doi: 10.1016/j.matpr.2020.04.896

Narayanan L. A., & Jeeva, J. B. (2015). A Computer Aided Diagnosis for detection and classification of lung nodules. Proceedings of the 2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO), 1-5. doi: 10.1109/isco.2015.7282242

Perumal, S., & Velmurugan, T. Lung cancer detection and classification on CT scan images using enhanced artificial bee colony optimization. International Journal of Engineering & Technology, 7(2.26), 74-79, 2018,

Listyalina, L., Utari, E. L., & Puspaningtyas, D. E. Penentuan Penyakit Paru Dengan Menggunakan Jaringan Saraf Tiruan. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 11(1), 233-240, 2020, doi: 10.24176/simet.v11i1.3667

Firdaus, Q., Sigit, R., Harsono, T., & Anwar, A. Lung Cancer Detection Based On CT-Scan Images with Detection Features Using Gray Level Co-Occurrence Matrix (GLCM) and Support Vector Machine (SVM) Methods. Proceedings of the 2020 International Electronics Symposium (IES), 643-648, 2020, doi: 10.1109/IES50839.2020.9231663

Bhatt, S. D., & Soni, H. B. Image Retrieval using Bag-of-Features for Lung Cancer Classification. Proceedings of the 6th International Conference on Inventive Computation Technologies (ICICT), 531-536, 2021, doi: 10.1109/icict50816.2021.9358499

Yunianto, M., Soeparmi, S., Cari, C., Anwar, F., Septianingsih, D. N., Ardyanto, T. D., Pradana, R. F. Klasifikasi Kanker Paru Paru menggunakan Naïve Bayes dengan Variasi Filter dan Ekstraksi Ciri GLCM. Indonesian Journal of Applied Physics, 11(2), 256 -268, 2021, doi: 10.13057/ijap.v11i2.53213

Wu, X., Kumar, V., Quinlan, R. J., Ghosh, J., Yang, Q., Motoda, H., McLachlan G.J., Ng. A., Liu. B., Yu, P. S., Zhou, Z., Steinbach, M., Hand, D. J., & Steinberg, D. Top 10 algorithms in data mining. Knowledge and information systems, 14(1), 1-37, 2008, doi: 10.1007/s10115-007-0114-2

NBIA Data Retriever

D Slicer 4.11

Malik, B., Singh, J. P., Singh, V. B. P., & Naresh, P. Lung Cancer Detection at Initial Stage by Using Image Processing and Classification Techniques. International Research Journal of Engineering and Technology (IRJET), 3(11), 781-786, 2016.

Kalaivani, S., Chatterjee, P., Juyal, S. and Gupta, R. Lung cancer detection using digital image processing and artificial neural networks. Proceedings of the 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), 100-103, 2017, doi: 10.1109/iceca.2017.8212773

Yadav, A. K., Roy, R., Rajkumar., Vaishali., & Somwanshi, D. Thresholding and Morphological Based Segmentation Techniques for Medical Images. Proceedings of the 2016 International Conference on Recent Advances and Innovations in Engineering (ICRAIE), 1-5, 2016, doi: 10.1109/icraie.2016.7939573

Kumar, A., & Raheja, S. Edge detection using guided image filtering and enhanced ant Colony optimization. Procedia Computer Science, 173(1), 8-17, 2020, doi: 10.1016/j.procs.2020.06.003

Wu, J., Tong, T., Chen, Y., Kang, X., & Sun, W. An adversarial learning framework with cross-domain loss for median filtered image restoration and anti-forensics. Computers & Security, 112(1), 1-16, 2021, doi: 10.1016/j.cose.2021.102497

Khorsheed O, K, Produce Low-Pass and High-Pass Image Filter In Java. International Journal of Advances in Engineering & Technology, 7(3), 712-722, 2014.

Makandar, A. and Halalli, B. Image enhancement techniques using highpass and lowpass filters. International Journal of Computer Applications, 109(14), 21-27, 2015, doi: 10.5120/19256-0999

Sevani, A., Modi, H., Patel, S. & Patel, H. Implementation of image processing techniques for identifying different stages of lung cancer. International Journal of Applied Engineering Research, 13(8), 6493-6499, 2018.

Listiyani, E. Implementasi Adaptive Median Filter Sebagai Reduksi Noise Pada Citra Digital, Thesis (Undergraduate), 2013, .

Pratap, G.P., & Chauhan, R.P. Detection of Lung cancer cells using image processing techniques. Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1-6, 2016, doi: 10.1109/icpeices.2016.7853347

Hussain, A. & Khunteta, A. Semantic Segmentation of Brain Tumor from MRI Images and SVM Classification using GLCM Features. Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), 38-43, 2020, doi: 10.1109/icirca48905.2020.9183385

Singh, S., Sharma, A., Mittal, M., Monika. Performance Evaluation of High Pass, Low Pass and Median filter on Webcam Pictures. Proceedings 4th International Conference on “Computing for Sustainable Global Development, 6025-6029. 2017.

Ganesh, P. S., Kumar, T. S., Kumar, M., & Kumar, M.S.R. Brain Tumor Detection and Classification Using Image Processing Techniques. Brain Tumor Detection and Classification Using Image Processing Techniques, 4(3). 32-38, 2021, DOI:10.48175/ijarsct-V4-I3-005

Katherine, K., Rulaningtyas, R. & Ain, K. CT scan image segmentation based on hounsfield unit values using Otsu thresholding method. Journal of Physics: Conference Series. 1816(1), 012080). 1-7, 2021, doi:10.1088/1742-6596/1816/1/012080

Arifin, T. Analisa Perbandingan Metode Segmentasi Citra Pada Citra Mammogram. Jurnal Informatika, 3(2). 156-163, 2016, doi: 10.31294/ji.v3i2.1169

Radi, R, M., & Purnomo, M. H. Combination of first and second order statistical features of bulk grain image for quality grade estimation of green coffee bean. ARPN Journal of Engineering and Applied Sciences, 10(18), 8165-8174, 2015.

Jiao, Y., Ijurra, O. M., Zhang, L., Shen, D., & Wang, Q. Curadiomics: A GPU-based radiomics feature extraction toolkit. Lecture Notes in Computer Science, vol 11991. Springer, Cham., 44-52, 2020, doi: 10.1007/978-3-030-40124-5_5

Zotin, A., Hamad, Y., Simonov, K., & Kurako, M. Lung Boundary Detection for Chest X-Ray Images Classification Based on GLCM and Probabilistic Neural Networks. Procedia Computer Science, 159, 1439-1448, 2019. doi: 10.1016/j.procs.2019.09.314

Ankita, R., Kumari, C. U., Mehdi, M. J., Tejashwini, N., & Pavani, T. Lung Cancer Image-Feature Extraction and Classification using GLCM and SVM Classifier. International Journal of Innovative Technology and Exploring Engineering, 8(11), 2211-2215, 2019, doi: 10.35940/ijitee.K2044.0981119

Haralick, R. M., Shanmugam, K., & Dinstein, I. H. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, (6), 610-621, 1973, doi: 10.1109/TSMC.1973.4309314.

Zaw, H. T., Maneerat, N., & Win, K. Y. Brain Tumor Detection Based on Naïve Bayes Classification. Proceeedings of the 5th International Conference on Engineering, Applied Sciences and Technology (ICEAST), 1-4, 2019, doi: 10.1109/ICEAST.2019.8802562

Karthick, G., & Harikumar, R. Comparative Performance Analysis of Naive bayes and SVM classifier for Oral X-ray images. Proceeding 4th International Conference on Electronics and Communication Systems (ICECS), 88-92, 2017, doi: 10.1109/ECS.2017.8067843

Vapnik, V., & Lerner, A. Pattern recognition using generalized portrait method, Automation and remote control, 24, 774-780, 1963.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. A Training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on Computational learning theory. 144-152, 1992, doi: 10.1145/130385.130401

Cortes. C., & Vapnik, V. Support-vector networks, Mach Learn 20, 273–297, 1995, doi: 10.1007/BF00994018

Li. W., Dai. D., Tan, M., Xu, D., & Gool L. V. Fast Algorithms for Linear and Kernel SVM+. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2258-2266, 2016, doi: 10.1109/CVPR.2016.248

Amancio, D. R., Comin, C. H., Casanova, D., Travieso G., Bruno, O. M., Rodrigues, F, A., & Costa L, F. A systematic comparison of supervised classifiers, PLoS One, 9(4): e94137, 2014, doi: 10.1371/journal.pone.0094137

Günaydin, Ö., Günay, M., & Şengel, Ö. Comparison of lung cancer detection algorithms. Proceeding of 2019 Scientific Meeting on Electrical-Electronics and Biomedical Engineering and Computer Science, EBBT 2019, 2019, doi: 10.1109/ebbt.2019.8741826

Larose, D.T. & Larose, C. D. Discovering Knowledge in Data: An Introduction to Data Mining. John Willey & Sons, Inc. USA, 2005.

Radhika, P. R., Nair, R. A. S., & Veena, G. A Comparative Study of Lung Cancer Detection using Machine Learning Algorithms. Proceedings of 2019 3rd IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–4, 2019, doi: 10.1109/icecct.2019.8869001

Wijaya, R. S. D., Adiwijaya., Suksmono, A. B., & Mengko, T. L. Segmentasi Citra Kanker Serviks Menggunakan Markov Random Field dan Algoritma K-Means. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 139-147, 2021, doi: 10.29207/resti.v5i1.2816

Hussain, A., & Khunteta, A. Semantic Segmentation of Brain Tumor from MRI Images and SVM Classification using GLCM Features. Proceeding of the Second International Conference on Inventive Research in Computing Applications (ICIRCA), 38-43, 2020, doi: 10.1109/ICIRCA48905.2020.9183385

Khairunnisa., & Sianturi, C. F. Perbaikan Kualitas Citra Menggunakan Metode High Pass Filter dan Sharpening. Jurnal Multimedia dan Teknologi Informasi (Jatilima), 2(2), 57-65, 2020.

Pratama, A. R., Juwita, A. R., & Al Mudzakir, T. Klasifikasi Daging Sapi Berdasarkan Ciri Warna Dengan Metode Otsu dan Euclidean Distance. Techno Xplore: Jurnal Ilmu Komputer dan Teknologi Informasi, 5(1). 26-32, 2020, doi: 10.36805/technoxplore.v5i1.1011

Kanagaraj, G., & Kumar, P. S. Pulmonary Tumor Detection by Virtue of GLCM. Journal of Scientific an Industrial Research (JSIR), 79(02), 132-134, 2020.

Sofian, J., & Laluma, R. H. Klasifikasi Hasil Citra Mri Otak untuk Memprediksi Jenis Tumor Otak dengan Metode Image Threshold dan GLCM Menggunakan Algoritma K-NN (Nearest Neighbor) Classifier Berbasis Web. Infotronik: Jurnal Teknologi Informasi dan Elektronika, 4(2), 51-56, 2019, doi: 10.32897/infotronik.2019.4.2.258

Shaukat, F., Raja, G., Ashraf, R., Khalid, S., Ahmad, M., & Ali, A. Artificial Neural Network Based Classification of Lung Nodules in CT Images Using Intensity, Shape and Texture Features. Journal of Ambient Intelligence and Humanized Computing, 10(10), 4135-4149, 2019, doi: 10.1007/s12652-019-01173-w

Block diagram of the proposed system




How to Cite

. M. . Yunianto, S. . Suparmi, C. . Cari, and T. . Dwi Ardyanto, “Comparative Performance Analysis of Lung Cancer Detection using Naïve Bayes, Support Vector Machine, K-Nearest Neighbor and Decision Tree ”, Int J Intell Syst Appl Eng, vol. 11, no. 2, pp. 425–436, Feb. 2023.



Research Article