State-Of-The-Art Techniques for Classification of Breast Cancer Using Machine Learning and Deep Learning Methods: A Review

Authors

  • Pratheep Kumar P. Computer Science and Engineering, Noorul Islam Centre for Higher Education, Kumaracoil – 629 180, Kanyakumari District, Tamilnadu, India Kumaracoil – 629 18 https://orcid.org/0000-0001-7466-0181
  • V. Mary Amala Bai Information Technology, Noorul Islam Centre for Higher Education, Kumaracoil – 629 180, Kanyakumari District, Tamilnadu, India
  • Ram Prasad Krishnamoorthy Department of Computer Science and Engineering, Shiv Nadar University Chennai, India

Keywords:

Artificial Intelligence (AI), Breast Cancer, Classification, Deep Learning (DL), Machine Learning (ML), Mammogram

Abstract

Breast cancer is among the most challenging illnesses for medical workers to diagnose. Breast cancer is none other than the formation of cancer cells in the area of breasts, and it can occur mostly in women rather than in men. So, diagnosing this disease at the earliest stage possible is the main aim of healthcare workers. Machine Learning (ML) and Deep Learning (DL) methodologies made significant advancements in Computer Vision and adapted to the healthcare domain. When DL methodologies adapted for diagnosing breast cancer, two main challenges affect the performance. One is with the non-availability of the large dataset for training the models; other is with the datasets having an imbalanced distribution of the classes. As a result, this study provides a review of several DL and ML-based classifiers presented by various academics over the last decade to tackle these problems, while also emphasizing the significance of the classification process of breast mammographic images. The key accomplishments expressed in the diagnostic measures and their success indicators of qualitative and quantitative measurements are reviewed. 

Downloads

Download data is not yet available.

References

American Cancer Society. How Common Is Breast Cancer? https://www.cancer.org/cancer/breast-cancer/about/howcommon-is-breast-cancer.html (2018).

Oeffinger, K. C. et al. Breast Cancer Screening for Women at Average Risk: 2015 Guideline Update From the American Cancer Society. JAMA 314, 1599–1614 (2015).

Lehman, C. D. et al. National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium. Radiol. 283, 49–58 (2016).

Murillo-Ortiz, B., Hernández-Ramírez, A., Rivera-Villanueva, T., Suárez-García, D., Murguía-Pérez, M., Martínez-Garza, S., ... & López-Partida, X. M. (2020). Monofrequency electrical impedance mammography (EIM) diagnostic system in breast cancer screening. BMC cancer, 20(1), 1-10.

Fenton, J. J. et al. Influence of Computer-Aided Detection on Performance of Screening Mammography. New Engl. J. Medicine 356, 1399–1409 (2007).

Das, B. K., Biswal, B. M., & Bhavaraju, M. (2006). Role of scintimammography in the diagnosis of breast cancer. The Malaysian journal of medical sciences: MJMS, 13(1), 52.

Lehman, C. D. et al. Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection. JAMA Intern. Medicine 175, 1828–1837 (2015).

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nat. 521, 436–444 (2015).

Aboutalib, S. S. et al. Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening. Clin. Cancer Res. (2018).

Kim, E.-K. et al. Applying Data-driven Imaging Biomarker in Mammography for Breast Cancer Screening: Preliminary Study. Sci. Reports 8, 2762 (2018).

Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K. & Zwiggelaar, R. Deep learning in mammography and breast histology, an overview and future trends. Med. Image Analysis 47, 45–67 (2018).

Burt, J. R. et al. Deep learning beyond cats and dogs: Recent advances in diagnosing breast cancer with deep neural networks. The Br. J. Radiol. 20170545 (2018).

Kooi, T. et al. Large scale deep learning for computer aided detection of mammographic lesions. Med. Image Analysis 35, 303–312 (2017).

Agarwal, R., Diaz, O., Lladó, X., Yap, M. H. & Martí, R. Automatic mass detection in mammograms using deep convolutional neural networks. J. Med. Imaging 6, 031409 (2019).

Rodriguez-Ruiz, A. et al. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. JNCI: J. Natl. Cancer Inst (2019).

Arevalo, J., González, F. A., Ramos-Pollán, R., Oliveira, J. L. & Guevara Lopez, M. A. Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016).

Rodríguez-Ruiz, A. et al. Detection of Breast Cancer with Mammography: Effect of an Artificial Intelligence Support System. Radiol. 290, 305–314 (2018).

Dhungel, N., Carneiro, G. & Bradley, A. P. The Automated Learning of Deep Features for Breast Mass Classification from Mammograms. In 19th International Conference, Athens, Greece, October 17–21, 2016, Proceedings, Part II, 106–114 (Springer International Publishing, Cham, 2016).

Jamieson, A. R., Drukker, K. & Giger, M. L. Breast image feature learning with adaptive deconvolutional networks. Proc. SPIE 8315, (6–13 (2012).

Ourselin, S., Joskowicz, L., Sabuncu, M. R., Unal, G. & Wells, W. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016:

Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR’ 14, 580–587 (IEEE Computer Society, Washington, DC, USA, 2014).

Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, 1440–1448 (2015).

Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems, 91–99 (2015).

Arevalo, J., González, F. A., Ramos-Pollán, R., Oliveira, J. L. & Lopez, M. A. G. Convolutional neural networks for mammography mass lesion classification. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 797–800,

Dai, J., Li, Y., He, K. & Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. arXiv:1605.06409 [cs], 1605.06409 (2016).

Dhungel, N., Carneiro, G. & Bradley, A. P. Automated Mass Detection in Mammograms Using Cascaded Deep Learning and Random Forests. In 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), 1–8, https://doi.org/10.1109/DICTA.2015.7371234 (2015).

Ertosun, M. G. & Rubin, D. L. Probabilistic visual search for masses within mammography images using deep learning. In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1310–1315, https://doi.org/10.1109/BIBM.2015.7359868 (2015).

Akselrod-Ballin, A. et al. A Region-Based Convolutional Network for Tumor Detection and Classification in Breast Mammography. In Carneiro, G. et al. (eds) Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings, 197–205 (Springer International Publishing, Cham, 2016).

Ribli, D., Horváth, A., Unger, Z., Pollner, P. & Csabai, I. Detecting and classifying lesions in mammograms with Deep Learning. arXiv:1707.08401 [cs], 1707.08401 (2017).

Moreira, I. C. et al. INbreast: Toward a Full-field Digital Mammographic Database. Acad. Radiol. 19, 236–248 (2012).

Yamini Ranchod (2020) https://www.mayoclinic.org/diseases-conditions/breast-cancer/symptoms-causes/syc-20352470)

Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006).

Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115, 211–252 (2015).

Oquab, M., Bottou, L., Laptev, I. & Sivic, J. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1717–1724 (2014).

WHO, 2020, https://www.who.int/news-room/fact-sheets/detail/breast-cancer)

Harshita Pandey (2020) https://medium.com/analytics-vidhya/introduction-to-artificial-intelligence-machine-learning-deep-learning-and-data-science-5aa5051e9792

Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R., & Sieh, W. (2019). Deep learning to improve breast cancer detection on screening mammography. Scientific reports, 9(1), 1-12.

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Marley (2020) https://www.aidoc.com/blog/artificial-intelligence-medical-dia

Norman (2018) Norman A. Your future doctor may not be human. this is the rise of AI in medicine. 2018. https://futurism.com/ai-medicine-doctor. [January 2018]. https://futurism.com/ai-medicine-doctor

Patel et al. (2009) Patel VL, Shortliffe EH, Stefanelli M, Szolovits P, Berthold MR, Bellazzi R, Abu-Hanna A. The coming of age of artificial intelligence in medicine. Artificial Intelligence in Medicine. 2009;46(1):5–17. doi: 10.1016/j.artmed.2008.07.017.

King Jr (2018) King Jr B. Artificial intelligence and radiology: what will the future hold? Journal of the American College of Radiology. 2018;15(3 Part B):501–503.

Recht & Bryan (2017) Recht M, Bryan RN. Artificial intelligence: threat or boon to radiologists? Journal of American College of Radiologists. 2017;14(11):1476–1480.

Kruskal et al. (2017) Kruskal JB, Berkowitz S, Geis JR, Kim W, Nagy P, Dreyer K. Big data and machine learning-strategies for driving this bus: a summary of the 2016 intersociety summer conference. Journal of American College of Radiologists. 2017;14(6):811–817. doi: 10.1016/j.jacr.2017.02.019.

Greenspan, Van Ginneken & Summers (2016) Greenspan H, Van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Transactions on Medical Imaging. 2016;35(5):1153–1159. doi: 10.1109/TMI.2016.2553401.

Ahuja, A. S. (2019). The impact of artificial intelligence in medicine on the future role of the physician. PeerJ, 7, e7702.

Kerlikowske K, Grady D, Rubin SM, Sandrock C, Ernster VL. Efficacy of screening mammography. A meta-analysis. JAMA. 1995;273:149–154.

Nyström L, Andersson I, Bjurstam N, Frisell J, Nordenskjöld B, Rutqvist LE. Long-term effects of mammography screening: updated overview of the Swedish randomised trials. Lancet. 2002;359:909–919.

Kopans DB. Beyond randomized controlled trials: organized mammographic screening substantially reduces breast carcinoma mortality. Cancer. 2002;94:580–581; author reply 581-583

Kopans DB. Sonography should not be used for breast cancer screening until its efficacy has been proven scientifically. AJR Am J Roentgenol. 2004;182:489–491

Tabar L, Yen MF, Vitak B, Chen HH, Smith RA, Duffy SW. Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening. Lancet. 2003;361:1405–1410.

Malur S, Wurdinger S, Moritz A, Michels W, Schneider A. Comparison of written reports of mammography, sonography and magnetic resonance mammography for preoperative evaluation of breast lesions, with special emphasis on magnetic resonance mammography. Breast Cancer Res. 2001;3:55–60

Kelly KM, Dean J, Comulada WS, Lee SJ. Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol. 2010;20:734–742.

Carsten Riis C, Lernevall A, Sorensen FB, Nygaard H. 3D Ultrasound-based evaluation of lesions in the uncompressed breast. In: Ueno E, Shiina T, Kubota M, Sawai K, editors. Research and Development in Breast Ultrasound. Tokyo: Springer; 2005. pp. 151–155

Carsten Riis C. TechniScan. Svara™ Warm Bath Ultrasound (WBU™) Imaging System. Available from: http://www.techniscanmedicalsystems.com/index.php?p=Home

Kook SH, Park HW, Lee YR, Lee YU, Pae WK, Park YL. Evaluation of solid breast lesions with power Doppler sonography. J Clin Ultrasound. 1999;27:231–237.

Scaperrotta G, Ferranti C, Costa C, Mariani L, Marchesini M, Suman L, Folini C, Bergonzi S. Role of sonoelastography in non-palpable breast lesions. Eur Radiol. 2008;18:2381–2389

Keith LG, Oleszczuk JJ, Laguens M. Circadian rhythm chaos: a new breast cancer marker. Int J Fertil Womens Med. 2001;46:238–247

Salhab M, Sarakbi WAI, Mokbel K. Vol. 2. Tokyo: Springer; 2005. The evolving role of the dynamic thermal analysis in the early detection of breast cancer. Int Semin Surg Oncol; p. 8. Available from: http://www.issoonline.com/content/2/1/8.

Gautherine M, Gros C. Contribution of infrared thermography to early diagnosis, pretheraputic prognosis and post-irradiation follow-up of breast carcinomas. Med Mundi. 1976;21:135–149.

Gros C, Gautherie M, Bourjat P. Prognosis and post-therapeutic follow-up of breast cancers by thermography. Bibl Radiol. 1975:77–90.

Ng EYK, Chen Y, Ung LN. Computerized breast thermography: study of image segmentation and temperature cyclic variations. Int J Med Eng Technol. 2001;25:12–16.

Ng EYK. A review of thermography as promising non-invasive detection modality for breast tumour. Int J Therm Sci. 2009;48:849–859

Ng EYK, Sudharsan NM. Numerical modeling in conjunction with thermography as an adjunct tool for breast tumour detection. BMC Cancer. 2004;4:1–26.

Ammer K, Ring EFJ. Standard procedures for infrared imaging in medicine. In: Biomedical Engineering Handbook. CRC Press; 2006. pp. chapter 36: 1–14.

Amalu WC, Hobbins WB, Head JF, Elliott RL. Infrared imaging of the breast - an overview. In: Biomedical Engineering Handbook. CRC Press; 2006. pp. chapter 25: 1–36.

Wiecek B, Wiecek M, Strakowski R, Jakubowska T, Ng EYK. Wavelet-based thermal image classification for breast screening and other medical applications. In: Ng EYK, Acharya RU, Suri JS. Performance Evaluation Techniques in Multi-modality Breast Cancer Screening, Diagnosis and Treatment. American Scientific Publishers; 2010.

Ring EFJ, Ammer K. The technique of infra red imaging in medicine. Thermology Int. 2000;10:7–14

Heywang-Köbrunner SH, Viehweg P, Heinig A, Küchler C. Contrast-enhanced MRI of the breast: accuracy, value, controversies, solutions. Eur J Radiol. 1997;24:94–108

Liu PF, Debatin JF, Caduff RF, Kacl G, Garzoli E, Krestin GP. Improved diagnostic accuracy in dynamic contrast enhanced MRI of the breast by combined quantitative and qualitative analysis. Br J Radiol. 1998;71:501–509.

Basilion JP. Current and future technologies for breast cancer imaging. Breast Cancer Res. 2001;3:14–16.

Radipedia, 2020, https://radiopaedia.org/cases/breast-cancer-ct-appearances

Medical News Today, 2020, https://www.medicalnewstoday.com/articles/322068

Leach MO. Application of magnetic resonance imaging to angiogenesis in breast cancer. Breast Cancer Res. 2001;3:22–27.

Schnall MD. Application of magnetic resonance imaging to early detection of breast cancer. Breast Cancer Res. 2001;3:17–21

Lehman CD, Schnall MD. Imaging in breast cancer: Magnetic resonance imaging. Breast Cancer Res. 2005;7:215–219.

Fass L. Imaging and cancer: a review. Mol Oncol. 2008;2:115–152.

Stephan P. In: Hayat MA, editor. Lung and breast carcinomas. Elsevier; 2010. Mammography and Breast MRIs. Available from: http://breastcancer.about.com/od/mammograms/a/mammo_vs_mri_2.htm.

Munshi S. In: Hayat MA, editor. Lung and breast carcinomas. Elsevier; 2008. Scintimammography - an emerging technique for Breast Imaging. Available from: http://www.frost.com/prod/servlet/market-insight-top.pag?docid=137248277.

Brem RF, Rapelyea JA, Zisman G, Mohtashemi K, Raub J, Teal CB, Majewski S, Welch BL. Occult breast cancer: scintimammography with high-resolution breast-specific gamma camera in women at high risk for breast cancer. Radiology. 2005;237:274–280.

Prats E, Aisa F, Abós MD, Villavieja L, García-López F, Asenjo MJ, Razola P, Banzo J. Mammography and 99mTc-MIBI scintimammography in suspected breast cancer. J Nucl Med. 1999;40:296–301.

Zou Y, Guo Z. A review of electrical impedance techniques for breast cancer detection. Med Eng Phys. 2003;25:79–90

Liu Y, Bellomi M, Gatti G, Ping X. Accuracy of computed tomography perfusion in assessing metastatic involvement of enlarged axillary lymph nodes in patients with breast cancer. Breast Cancer Res. 2007;9:R40

Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA. 2007;298:317–323.

Sree, S. V., Ng, E. Y. K., Acharya, R. U., & Faust, O. (2011). Breast imaging: a survey. World journal of clinical oncology, 2(4), 171.

Salama, G. I., Abdelhalim, M. B., & Zeid, M. A. E. (2012, November). Experimental comparison of classifiers for breast cancer diagnosis. In 2012 Seventh International Conference on Computer Engineering & Systems (ICCES) (pp. 180-185). IEEE.

Moura, D. C., & López, M. A. G. (2013). An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. International journal of computer assisted radiology and surgery, 8(4), 561-574.

Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., ... & Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, 35(5), 1285-1298.

Zhang, S., Han, F., Liang, Z., Tan, J., Cao, W., Gao, Y., ... & Hou, W. (2019). An investigation of CNN models for differentiating malignant from benign lesions using small pathologically proven datasets. Computerized Medical Imaging and Graphics, 77, 101645.

C. Sun, A. Shrivastava, S. Singh and A. Gupta, "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, 2017, pp. 843-852, doi: 10.1109/ICCV.2017.97.

Oakden-Rayner, L. (2020). Exploring Large- scale Public Medical Image Datasets. Academic radiology, 27(1), 106- 112.

Lee, R. S., Gimenez, F., Hoogi, A., Miyake, K. K., Gorovoy, M., & Rubin, D. L. (2017). A curated mammography data set for use in computer-aided detection and diagnosis research. Scientific data, 4, 170177.

Moreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., & Cardoso, J. S.(2012). Inbreast: toward a full-field digital mammographic database. Academic radiology, 19(2), 236-248.

Lopez, M. G., Posada, N., Moura, D. C., Pollán, R. R., Valiente, J. M. F., Ortega, C. S., ... & Fernandes, T. C. (2012, July). BCDR: a breast cancer digital repository. In 15th International conference on experimental mechanics.

SUCKLING J, P. (1994). The mammographic image analysis society digital mammogram database. Digital Mammo, 375- 386.

Matheus BR, Schiabel H. Online mammographic images database for development and comparison of CAD schemes. J Digital Imaging 2010; 24:500–506

Pam Stephan, 2021 https://www.verywellhealth.com/mammogram-images-descriptions-and-details-4020351

Raudys, S.J., Jain, A.K., et al.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)

Weiss, G.M.: Mining with rarity: a unifying framework. ACM SigkddExplor. Newslett. 6(1), 7–19 (2004)

Krawczyk, B. Learning from imbalanced data: open challenges and future directions. Prog ArtifIntell 5, 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0

Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C. Prati, Bartosz Krawczyk, Francisco Herrera, "Learning from Imbalanced Data Sets", Springer International Publishing, 2018

Albashish, D., Al-Sayyed, R., Abdullah, A., Ryalat, M. H., & Almansour, N. A. (2021, July). Deep CNN Model based on VGG16 for Breast Cancer Classification. In 2021 International Conference on Information Technology (ICIT) (pp. 805-810). IEEE.

Mehra, R. (2018). Breast cancer histology images classification: Training from scratch or transfer learning?. ICT Express, 4(4), 247-254.

Rodrigues Filho, M. L., & Cortes, O. A. C. (2021, July). Efficient Breast Cancer Classification Using Histopathological Images and a Simpler VGG. In Anais do XV Brazilian e-Science Workshop (pp. 9-16). SBC.

Salama, W. M., Elbagoury, A. M., & Aly, M. H. (2020). Novel breast cancer classification framework based on deep learning. IET Image Processing, 14(13), 3254-3259.

Kassani, S. H., Kassani, P. H., Wesolowski, M. J., Schneider, K. A., & Deters, R. (2019, October). Breast cancer diagnosis with transfer learning and global pooling. In 2019 International Conference on Information and Communication Technology Convergence (ICTC) (pp. 519-524). IEEE.

Alkhaleefah, M., Ma, S. C., Chang, Y. L., Huang, B., Chittem, P. K., & Achhannagari, V. P. (2020). Double-shot transfer learning for breast cancer classification from X-ray images. Applied Sciences, 10(11), 3999.

Nawaz, W., Ahmed, S., Tahir, A., & Khan, H. A. (2018, June). Classification of breast cancer histology images using alexnet. In International conference image analysis and recognition (pp. 869-876). Springer, Cham.

Żejmo, M., Kowal, M., Korbicz, J., & Monczak, R. (2017). Classification of breast cancer cytological specimen using convolutional neural network. In Journal of Physics: Conference Series (Vol. 783, No. 1, p. 012060). IOP Publishing.

Jiang, Y., Chen, L., Zhang, H., & Xiao, X. (2019). Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PloS one, 14(3), e0214587.

Murtaza, G., Shuib, L., Wahab, A. W. A., Mujtaba, G., Raza, G., & Azmi, N. A. (2019, December). Breast cancer classification using digital biopsy histopathology images through transfer learning. In Journal of Physics: Conference Series (Vol. 1339, No. 1, p. 012035). IOP Publishing.

Alanazi, S. A., Kamruzzaman, M. M., Islam Sarker, M. N., Alruwaili, M., Alhwaiti, Y., Alshammari, N., & Siddiqi, M. H. (2021). Boosting breast cancer detection using convolutional neural network. Journal of Healthcare Engineering, 2021.

Aslam, M. A., & Cui, D. (2020, July). Breast Cancer Classification using Deep Convolutional Neural Network. In Journal of Physics: Conference Series (Vol. 1584, No. 1, p. 012005). IOP Publishing.

Wu, J., & Hicks, C. (2021). Breast Cancer Type Classification Using Machine Learning. Journal of personalized medicine, 11(2), 61.

Amrane, M., Oukid, S., Gagaoua, I., & Ensari, T. (2018, April). Breast cancer classification using machine learning. In 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT) (pp. 1-4). IEEE.

Rane, N., Sunny, J., Kanade, R., & Sulochana, D. (2020). Breast cancer classification and prediction using machine learning. International Journal of Engineering Research & Technology, 9(02), 576-580.

Kumar, V., Mishra, B. K., Mazzara, M., Thanh, D. N., & Verma, A. (2020). Prediction of malignant and benign breast cancer: A data mining approach in healthcare applications. In Advances in data science and management (pp. 435-442). Springer, Singapore.

Golatkar, A., Anand, D., & Sethi, A. (2018, June). Classification of breast cancer histology using deep learning. In International Conference Image Analysis and Recognition (pp. 837-844). Springer, Cham.

Petersen, K., Nielsen, M., Diao, P., Karssemeijer, N., & Lillholm, M. (2014, June). Breast tissue segmentation and mammographic risk scoring using deep learning. In International workshop on digital mammography (pp. 88-94). Springer, Cham.

Raudys, S.J., Jain, A.K., et al.: Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 252–264 (1991)

Krawczyk, B. Learning from imbalanced data: open challenges and future directions. Prog ArtifIntell 5, 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0

Mary Amala Bai, Geetha G Nair, Challenges and Solutions in CNN based Diagnostic Techniques on Breast Mammographic images: A Survey, ISSN 0975-2366, 2020

Mary Amala Bai, Geetha G Nair, A Survey on Machine Learning Algorithms Used for the Diagnosis of Breast Cancer, Proceedings of International Conference on Networks, Images and Security ICNIS‘19-April 10th& 11th, 2019.

Kumar, P. and Nair, G.G., 2021. An efficient classification framework for breast cancer using hyper parameter tuned Random Decision Forest Classifier and Bayesian Optimization. Biomedical Signal Processing and Control, 68, p.102682. -discussing the following ML Techniques

Yang, X., Peng, H., & Shi, M. (2013, August). SVM with multiple kernels based on manifold learning for Breast Cancer diagnosis. In 2013 IEEE International Conference on Information and Automation (ICIA) (pp. 396-399). IEEE.

Kabiraj, S., Raihan, M., Alvi, N., Afrin, M., Akter, L., Sohagi, S. A., & Podder, E. (2020, July). Breast cancer risk prediction using XGBoost and random forest algorithm. In 2020 11th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1-4). IEEE.

Scolaro, L., McLaughlin, R. A., Kennedy, B. F., Saunders, C. M., & Sampson, D. D. (2014). A review of optical coherence tomography in breast cancer. Photonics & Lasers in Medicine, 3(3), 225-240.

Al-Dhabyani, W., Gomaa, M., Khaled, H., & Fahmy, A. (2020). Dataset of breast ultrasound images. Data in brief, 28, 104863.

Tello-Mijares, S., Woo, F., & Flores, F. (2019). Breast cancer identification via thermography image segmentation with a gradient vector flow and a convolutional neural network. Journal of healthcare engineering, 2019.

Mayoclinic, 2018, https://www.mayoclinic.org/tests-procedures/breast-mri/about/pac-20384809

The American Society of Breast Surgeons Foundation, 2018, https://breast360.org/topic/2017/01/01/breast-pet-scan/

Al-Haija, Q. A., & Adebanjo, A. (2020, September). Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network. In 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) (pp. 1-7). IEE

Breast Cancer mammogram and thermogram image (Yamini Ranchod, (2020))

Downloads

Published

13.02.2023

How to Cite

Kumar P., P. ., Amala Bai, V. M. ., & Prasad Krishnamoorthy, R. . (2023). State-Of-The-Art Techniques for Classification of Breast Cancer Using Machine Learning and Deep Learning Methods: A Review. International Journal of Intelligent Systems and Applications in Engineering, 11(4s), 222–241. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2649

Issue

Section

Research Article