Diagnosis of Vector Borne Disease using Various Machine Learning Techniques

Authors

  • Salim G. Shaikh Research Scholar, department of CSE, Amity University, Jaiapur, India
  • B. Suresh Kumar Associate professor department of CSE Sanjay Ghodawat University Kolhapur
  • Geetika Narang Associate professor Head of Dept CSE. TCOER,Pune, India
  • N.N.Pachpor Assist. professor IIMS, Pune, India

Keywords:

Medicine diagnosis, supervised machine learning, detection and classification, disease detection, vector borne disease

Abstract

Vector-borne diseases (VBDs) are one of the most serious human health issues, impacting millions of people each year in every corner of the globe. Multiple decision-making techniques are employed in this study to give a better diagnosis of VBDs. It assesses alternative illnesses with opposing symptoms. It is difficult to precisely define the weight of criteria and the ranking of alternatives (diseases) for each criterion. The proposed method is used to diagnose VBDs such as malaria, chikungunya, and dengue fever. In this paper, we proposed a prediction of VBD using various supervised machine learning classification algorithms. The Weka 3.7 machine learning framework has been used for the classification of data. The algorithms used, such as SVM, Naive Bayes, Adaboost, decision tree, ANN, etc., In extensive experimental analysis, we observed the SVM prediction had better detection and classification accuracy over the other machine-earning classes. For evaluation, we used 3000 records of patient data. The modified SVM (mSVM) achieves 100% accuracy for different cross validations.

Downloads

Download data is not yet available.

References

Vijayakumar, V., Malathi, D., Subramaniyaswamy, V., Saravanan, P. and Logesh, R., 2019. Fog computing-based intelligent healthcare system for the detection and prevention of mosquito-borne diseases. Computers in Human Behavior, 100, pp.275-285.

Inokuchi, M., Dumre, S. P., Mizukami, S., Tun, M. M. N., Kamel, M. G., Manh, D. H., ... & Hirayama, K. (2018). Association between dengue severity and plasma levels of denguespecific IgE and chymase. Archives of virology, 163(9), 2337-

Iqbal N., & Islam, M. (2019). Machine learning for dengue outbreak prediction: A performance evaluation of different prominent classifiers. Informatica, 43(3).

Taneja, P., & Gautam, N. (2019). Hybrid Classification Method for Dengue Prediction. International Journal of Engineering and Advanced Technology (IJEAT).

Guzman, M. G., & Kouri, G. (2003). Dengue and dengue hemorrhagic fever in the Americas: lessons and challenges. Journal of Clinical Virology, 27(1), 1-13.

San Martín J. L., Brathwaite, O., Zambrano, B., Solórzano, J. O., Bouckenooghe, A., Dayan, G. H., & Guzmán, M. G. (2010). The epidemiology of dengue in the Americas over the last three decades: a worrisome reality. The American journal of tropical medicine and hygiene, 82(1), 128.

Shepard, D. S., Undurraga, E. A., Betancourt-Cravioto, M., Guzman, M. G., Halstead, S. B., Harris, E., & Gubler, D. J. (2014). Approaches to refining estimates of global burden and economics of dengue. PLoS neglected tropical diseases, 8(11), e3306.

Ibrahim F., Taib, M. N., Abas, W. A. B. W., Guan, C. C., & Sulaiman, S. (2005). A novel dengue fever (DF) and dengue haemorrhagic fever (DHF) analysis using artificial neural network (ANN). Computer methods and programs in biomedicine, 79(3), 273-281.

Gomes, A. L. V., Wee, L. J., Khan, A. M., Gil, L. H., Marques Jr, E. T., Calzavara-Silva, C. E., & Tan, T. W. (2010). Classification of dengue fever patients based on gene expression data using support vector machines. PloS one, 5(6), e11267.

Guo, P., Liu, T., Zhang, Q., Wang, L., Xiao, J., Zhang, Q., ... & Ma, W. (2017). Developing a dengue forecast model using machine learning: A case study in China. PLoS neglected tropical diseases, 11(10), e0005973.

Carvajal, T. M., Viacrusis, K. M., Hernandez, L. F. T., Ho, H. T., Amalin, D. M., & Watanabe, K. (2018). Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines. BMC infectious diseases, 18(1), 1- 15.

Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian informatics journal, 16(3), 261-273.

Indhumathi, K., & Kumar, K. S. (2021). A review on prediction of seasonal diseases based on climate change using big data. Materials Today: Proceedings, 37, 2648-2652.

Alfred, R., & Obit, J. H. (2021). The roles of machine learning methods in limiting the spread of deadly diseases: A systematic review. Heliyon, 7(6), e07371.

Reddy, D. N. (2021). Machine Learning Algorithms for Detection: A Survey and Classification. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(10), 3468-3475.

alias Balamurugan, S. A., Mallick, M. M., & Chinthana, G. (2020). Improved prediction of dengue outbreak using combinatorial feature selector and classifier based on entropy weighted score based optimal ranking. Informatics in Medicine Unlocked, 20, 100400.

Ye, J., & Moreno-Madriñán, M. J. (2020). Comparing different spatio-temporal modeling methods in dengue fever data analysis in Colombia during 2012–2015. Spatial and Spatiotemporal Epidemiology, 34, 100360.

Mussumeci, E., & Coelho, F. C. (2020). Large-scale multivariate forecasting models for Dengue-LSTM versus random forest regression. Spatial and Spatio-temporal Epidemiology, 35, 100372.

Chakraborty, T., Chattopadhyay, S., & Ghosh, I. (2019). Forecasting dengue epidemics using a hybrid methodology. Physica A: Statistical Mechanics and its Applications, 527, 121266.

Appice, A., Gel, Y. R., Iliev, I., Lyubchich, V., & Malerba, D. (2020). A multi-stage machine learning approach to predict dengue incidence: a case study in Mexico. Ieee Access, 8, 52713- 52725.

Gambhir, S., Malik, S. K., & Kumar, Y. (2017). PSO-ANN based diagnostic model for the early detection of dengue disease. New Horizons in Translational Medicine, 4(1-4), 1-8.

Mello-Román, J. D., Mello-Román, J. C., Gomez-Guerrero, S., & García-Torres, M. (2019). Predictive models for the medical diagnosis of dengue: a case study in Paraguay. Computational and mathematical methods in medicine, 2019.

Portugal, I., Alencar, P. and Cowan, D., 2018. The use of machine learning algorithms in recommender systems: A systematic review. Expert Systems with Applications, 97, pp.205-227.

Vairale, V.S. and Shukla, S., 2019. Recommendation Framework for Diet and Exercise Based on Clinical Data: A Systematic Review. In Data Science and Big Data Analytics (pp. 333-346). Springer, Singapore.

Shatte, A.B., Hutchinson, D.M. and Teague, S.J., 2019. Machine learning in mental health: a scoping review of methods and applications. Psychological medicine, 49(9), pp.1426-1448.

Yuvaraj, N. and SriPreethaa, K.R., 2019. Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster. Cluster Computing, 22(1), pp.1-9.

Jaswinder Singh, Sandeep Sharma. 2019 Prediction of Cervical Cancer Using Machine Learning Techniques. International Journal of Applied Engineering Research ISSN 0973-4562 Volume 14, Number 11 (2019) pp. 2570-2577.

Sahoo, A.K., Pradhan, C., Barik, R.K. and Dubey, H., 2019. DeepReco: Deep Learning Based Health Recommender System Using Collaborative Filtering. Computation, 7(2), p.25.

Waqar, M., Majeed, N., Dawood, H., Daud, A. and Aljohani, N.R., 2019. An adaptive doctorrecommender system. Behaviour & Information Technology, pp.1

Hussein, A.S., Omer, W., Li, X. and Ati, M., 2012. Accurate and reliable recommender system for chronic disease diagnosis. In GLOBAL HEALTH, The First International Conference on Global Health Challenges Venice, Italy.

Janani, M. and Yuvaraj, N., 2019. Social Interaction and Stress-Based Recommendations for Elderly Healthcare Support System—A Survey. In Advances in Big Data and Cloud Computing (pp. 291-303). Springer, Singapore.

Sahoo, A.K., Mallik, S., Pradhan, C., Mishra, B.S.P., Barik, R.K. and Das, H., 2019. Intelligence-Based Health Recommendation System Using Big Data Analytics. In Big Data Analytics for Intelligent Healthcare Management (pp. 227-246). Academic Press.

Martínez-Pérez, B., De La Torre-Díez, I., & López-Coronado, M. (2015). Privacy and security in mobile health apps: a review and recommendations. Journal of medical systems, 39(1), 1-8.

Hii Y.L, Rocklöv. J and Ng, N. Short Term Effects of Weather on Hand, Foot and Mouth Disease, PLoS ONE 2011, 6, e16796

Lopman. B, Armstrong. B, Atchison. C and Gray, J.J. Host, Weather and Virological Factors Drive Norovirus Epidemiology: Time-Series Analysis of Laboratory Surveillance Data in England and Wales. PLoS ONE 2009, 4, e6671

Huang X, Williams. G, Clements, A.C.A and Hu, W. Imported Dengue Cases, Weather Variation and Autochthonous Dengue Incidence in Cairns, Australia. PLoS ONE 2013, 8, e81887.

Liu. T, Zhang. Y, Lin. H, Lv. X, Xiao. J, Zeng. W, Gu. Y, Rutherford. S, Tong S, Ma. W. A large temperature fluctuation may trigger an epidemic erythromelalgia outbreak in China. Sci. Rep. 2015, 5, 9525.

Blanford. J.I, Blanford. S, Crane. R.G, Mann. M.E, Paaijmans. K.P, Schreiber. K.V, Thomas. M.B, Implications of temperature variation for malaria parasite development across Africa. Sci. Rep. 2013, 3, 1300.

Noden, B.H.; Kent, M.D.; Beier, J.C. The impact of variations in temperature on early Plasmodium falciparum development in Anopheles stephensi. Parasitology 1995, 111, 539–545.

Liang. W, Gu. X, Li. X, Zhang. K, Wu. K, Pang. M, Dong. J, Merrill. H.R,Hu. T, Liu, K; et al. Mapping the epidemic changes and risks of hemorrhagic fever with renal syndrome in Shaanxi Province, China, 2005–2016. Sci. Rep. 2018, 8, 749.

Recommender Model in machine learning

Downloads

Published

25.02.2023

How to Cite

Salim G. Shaikh, B. Suresh Kumar, Geetika Narang, & N.N.Pachpor. (2023). Diagnosis of Vector Borne Disease using Various Machine Learning Techniques. International Journal of Intelligent Systems and Applications in Engineering, 11(4s), 517–526. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2721

Issue

Section

Research Article