Electrocardiogram Signal Classification for Diagnosis Sudden Cardiac Death Using 2D CNN and LSTM

Authors

  • Agustino Halim, Sani Muhamad Isa

Keywords:

Electrocardiogram, sudden cardiac death, CNN, LSTM

Abstract

Electrocardiogram (ECG) signal evaluation is routinely used in clinics as a significant diagnostic method for detecting sudden cardiac death. Using automated detection and classification methods in the clinic can assist doctors in making accurate and expeditious diagnoses of diseases. In this study, we developed a classification method for sudden cardiac death based on image 2D with the combination of a convolutional neural network and long short-term memory, which was then used to diagnose a normal sinus rhythm and sudden cardiac death. The ECG data of the experiment were derived from the MIT-BIH SCD Holter database and MIT-BIH Normal Sinus Rhythm. 2D CNN model give the best result with average accuracy 96.67%, average sensitivity 100%, average specificity 92.90%, average precision 92.90% and the average F1 score is 97.10% for 1 minutes, 2 minutes and 3 minutes before VF onset.

Downloads

Download data is not yet available.

Author Biography

Agustino Halim, Sani Muhamad Isa

Agustino Halim1, Sani Muhamad Isa1

1Computer Science Department, Binus Graduate Program – Master of Computer Science

Bina Nusantara University

Jakarta, Indonesia 11480

{ agustino.halim; sani.m.isa }@binus.ac.id

 

References

Zipes, D. P., & Wellens, H. J. (1998). Sudden Cardiac Death. Circulation, 98(21), 2334–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9826323

Lerma, C., & Glass, L. (2016). Predicting the risk of sudden cardiac death. The Journal of physiology, 594(9), 2445-2458.

R. Mrowka, H. Theres, A. Patzak, and G. Baumann, “Alternans-like phenomena due to filtering of electrocardiographic data,” Comput. Cardiol., vol. 25, pp. 725–727, 1998. https://doi.org/10.1109/cic.1998.731976

Ji, Y., Zhang, S., & Xiao, W. (2019). Electrocardiogram classification based on faster regions with convolutional neural network. Sensors, 19(11), 2558.

Zheng, Z., Chen, Z., Hu, F., Zhu, J., Tang, Q., & Liang, Y. (2020). An automatic diagnosis of arrhythmias using a combination of CNN and LSTM technology. Electronics, 9(1), 121.

Bhatt, A., Dubey, S. K., & Bhatt, A. K. (2017). Sudden cardiac arrest prediction using pre-dictive analytics. International Journal of Intelligent Engineering & Systems, 10-3.

Panjaitan, F., Nurmaini, S., Akbar, M., Mirza, A. H., Syaputra, H., & Kurniawan, T. B. (2019, October). Identification of classification method for sudden cardiac death: A review. In 2019 International Conference on Electrical Engineering and Computer Science (ICECOS) (pp. 93-97). IEEE.

Abrishami, H., Han, C., Zhou, X., Campbell, M., & Czosek, R. (2018). Supervised ECG interval segmentation using LSTM neural network. In Proceedings of the International Conference on Bioinformatics & Computational Biology (BIOCOMP) (pp. 71-77). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).

Acharya, U. R., Fujita, H., Sudarshan, V. K., Sree, V. S., Eugene, L. W. J., Ghista, D. N., & San Tan, R. (2015). An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features. Knowledge-Based Systems, 83, 149-158.

Fujita, H., Acharya, U. R., Sudarshan, V. K., Ghista, D. N., Sree, S. V., Eugene, L. W. J., & Koh, J. E. (2016). Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Applied Soft Computing, 43, 510-519.

Acharya, U. R., Fujita, H., Sudarshan, V. K., Ghista, D. N., Lim, W. J. E., & Koh, J. E. (2015, October). Automated prediction of sudden cardiac death risk using Kolmogorov complexity and recurrence quantification analysis features extracted from HRV signals. In 2015 IEEE International Conference on Systems, Man, and Cybernetics (pp. 1110-1115). IEEE.

Amezquita-Sanchez, J. P., Valtierra-Rodriguez, M., Adeli, H., & Perez-Ramirez, C. A. (2018). A novel wavelet transform-homogeneity model for sudden cardiac death prediction using ECG signals. Journal of medical systems, 42(10), 1-15.

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), E215–E220. https://doi.org/10.1161/01.cir.101.23.e215

Myerburg, R. J. (2008). Cardiac arrest and sudden death. Heart disease: A textbook of cardiovascular medicine, 2, 933-974.

Engelstein, E. D. (1998). Sudden cardiac death. The heart, arteries and veins, 1081-1112.

Furberg, C., Romo, M., Linko, E., Siltanen, P., Tibblin, G., & Wilhelmsen, L. (1977). Sudden coronary death in Scandinavia: a report from Scandinavian Coronary Heart Disease Registers. Acta Medica Scandinavica, 201(1‐6), 553-557.

Wellens, H. J., Schwartz, P. J., Lindemans, F. W., Buxton, A. E., Goldberger, J. J., Hohnloser, S. H., ... & Wilde, A. A. (2014). Risk stratification for sudden cardiac death: current status and challenges for the future. European heart journal, 35(25), 1642-1651.

Deyell, M. W., Krahn, A. D., & Goldberger, J. J. (2015). Sudden cardiac death risk stratification. Circulation research, 116(12), 1907-1918.

Data Transformation with timeseries data

Downloads

Published

28.02.2023

How to Cite

Agustino Halim, Sani Muhamad Isa. (2023). Electrocardiogram Signal Classification for Diagnosis Sudden Cardiac Death Using 2D CNN and LSTM. International Journal of Intelligent Systems and Applications in Engineering, 11(4s), 558–564. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2726

Issue

Section

Research Article