Systematic Review for Comparison Type of Pulse Tube Refrigerator

Authors

  • Sarah Taher Y. Al- lami, Ali A. F. Al- Hamadani

Keywords:

: Pulse-Tubes-Refrigerator (PTR), Stirling Type Pulse Tube (STRP), Gifford McMahon Type Pulse Tube (GM)

Abstract

A PTR (Pulse-Tubes-Refrigerator) is a cryocooler that could produce exceptionally low temperatures in one stage and even lower temperatures in two stages. Rather than utilizing the vapor compression cycle to achieve refrigeration, a PTR uses oscillatory compression and gas expansion within a closed space to obtain the required cooling. This paper discusses the significance of PTR and the many types of PTR. The most important feature of its primary varieties is recommended for large-scale cooling applications. Compared to Stirling pulse tube technologies, the equipment employed by GM pulse tube has been noted with low frequencies.

Downloads

Download data is not yet available.

Author Biography

Sarah Taher Y. Al- lami, Ali A. F. Al- Hamadani

1Sarah Taher Y. Al- lami. 2Ali A.F. Al- Hamadani

1Student at the Faculty of Engineering, Wasit University

   sarahtaher301@uowasit.edu.iq                                                                       

2works in the faculty of engineering, Wasit University

aalhamadani@uowasit.edu.iq

 

References

Y. P. Banjare, R. K. Sahoo, and S. K. Sarangi, “CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator,” Cryogenics (Guildf)., vol. 50, no. 4, pp. 271–280, 2010, doi: 10.1016/j.cryogenics.2010.01.013.

G. Q. Lu and P. Cheng, “Numerical and Experimental Study of a Gifford-McMahon-Type Pulse Tube Refrigerator,” J. Thermophys. Heat Transf., vol. 17, no. 4, pp. 457–463, 2003, doi: 10.2514/2.6804.

M. Tendolkar, K. Narayankhedkar, and M. Atrey, Performance Comparison of Stirling-Type Single-Stage Pulse Tube Refrigerators of Inline and ‘U’ Configurations. 2008.

M. Avci and O. Aydin, “Second-law analysis of heat and fluid flow in microscale geometries,” Int. J. Exergy, vol. 4, no. 3, pp. 286–301, Jan. 2007, doi: 10.1504/IJEX.2007.013395.

“YP_Banjar_thesis”.

“a-review-of-pulse-tube-refrigerator-IJERTCONV4IS10026”.

C. Gu, Y. Zhou, J. Wang, W. Ji, and Q. Zhou, “CFD analysis of nonlinear processes in pulse tube refrigerators: Streaming induced by vortices,” Int. J. Heat Mass Transf., vol. 55, no. 25–26, pp. 7410–7418, 2012, doi: 10.1016/j.ijheatmasstransfer.2012.07.085.

“phasor analysis of GM-type pulse tube refrigerator”.

M. Baba, P. Kumar, and G. Kumar, “A Review on Pulse Tube Refrigerator,” 2021, pp. 433–445. doi: 10.1007/978-981-16-0942-8_42.

G. Popescu, V. Radcenco, E. Gargalian, and P. Bala, “Critical review of pulse tube cryogenerator research,” Int. J. Refrig., vol. 24, pp. 230–237, May 2001, doi: 10.1016/S0140-7007(00)00023-2.

A. Badgujar and M. Atrey, “Theoretical and experimental investigations on Stirling-type pulse tube cryocoolers with U-type configuration to achieve temperature below 20 K,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 229, no. 6, pp. 1112–1121, 2014, doi: 10.1177/0954406214542490.

B. Liu et al., “Numerical and experimental study on a Stirling/pulse tube hybrid refrigerator operating around 30 K,” Int. J. Refrig., vol. 123, pp. 34–44, 2021, doi: 10.1016/j.ijrefrig.2020.10.040.

J. Y. Hu, W. Dai, E. C. Luo, X. T. Wang, and Y. Huang, “Development of high efficiency Stirling-type pulse tube cryocoolers,” Cryogenics (Guildf)., vol. 50, no. 9, pp. 603–607, 2010, doi: 10.1016/j.cryogenics.2010.02.015.

Q. Cao et al., “Impedance magnitude optimization of the regenerator in Stirling pulse tube cryocoolers working at liquid-helium temperatures,” Cryogenics (Guildf)., vol. 58, pp. 38–44, 2013, doi: 10.1016/j.cryogenics.2013.09.007.

Z. Gan et al., “Study on a 5.0 W/80 K single stage Stirling type pulse tube cryocooler,” J. Zhejiang Univ. A, vol. 9, no. 9, pp. 1277–1282, 2008, doi: 10.1631/jzus.A0820220.

S. A. Potratz et al., “STIRLING-TYPE PULSE TUBE CRYOCOOLER WITH 1KW OF REFRIGERATION AT 77K,” vol. 985, pp. 42–48, 2008, doi: 10.1063/1.2908581.

Q. Cao et al., “Investigation on Precooling Effects of 4 K Stirling-Type Pulse Tube Cryocoolers,” J. Therm. Sci., vol. 28, no. 4, pp. 714–726, 2019, doi: 10.1007/s11630-019-1168-7.

L. Mohanta and M. Atrey, “Experimental Investigation of Single-Stage Inline Stirling-Type Pulse Tube Refrigerator,” Jun. 2022.

X. Chen, Y. Zeng, Z. Jiang, and Y. Cao, “Experimental study of single linear compressor driving two pulse tube refrigerators with adjusting valves,” Int. J. Refrig., vol. 88, pp. 291–299, 2018, doi: 10.1016/j.ijrefrig.2018.01.018.

H. Dang, “High-capacity 60K single-stage coaxial pulse tube cryocoolers,” Cryogenics (Guildf)., vol. 52, no. 4–6, pp. 205–211, 2012, doi: 10.1016/j.cryogenics.2012.01.006.

S. Zhu, Y. Kakimi, and Y. Matsubara, “Waiting time effect of a GM type orifice pulse tube refrigerator,” Cryogenics (Guildf)., vol. 38, no. 6, pp. 619–624, 1998, doi: https://doi.org/10.1016/S0011-2275(98)00026-5.

P. C. T. de Boer, “Optimization of the orifice pulse tube,” Cryogenics (Guildf)., vol. 40, no. 11, pp. 701–711, 2000, doi: https://doi.org/10.1016/S0011-2275(01)00003-0.

“Analysis of mass and energy flow rates in an orifice pulse-tube refrigerator1 F. Kuriyama * , R. Radebaugh National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80303, USA”.

X. B. Zhang, L. M. Qiu, Z. H. Gan, and Y. L. He, “CFD study of a simple orifice pulse tube cooler,” Cryogenics (Guildf)., vol. 47, no. 5–6, pp. 315–321, 2007, doi: 10.1016/j.cryogenics.2007.03.005.

S. K. Rout, A. K. Behura, S. Dalai, and R. K. Sahoo, “Numerical Analysis of a Modified Type Pulse Tube Refrigerator,” Energy Procedia, vol. 109, pp. 456–462, 2017, doi: 10.1016/j.egypro.2017.03.067.

K. Wang, Q. R. Zheng, C. Zhang, W. S. Lin, X. S. Lu, and A. Z. Gu, “The experimental investigation of a pulse tube refrigerator with a ‘L’ type pulse tube and two orifice valves,” Cryogenics (Guildf)., vol. 46, no. 9, pp. 643–647, 2006, doi: 10.1016/j.cryogenics.2006.01.019.

P. Kittel, “Ideal orifice pulse tube refrigerator performance,” Cryogenics (Guildf)., vol. 32, no. 9, pp. 843–844, 1992, doi: https://doi.org/10.1016/0011-2275(92)90320-A.

A. Schor, “Design of a single orifice pulse tube refrigerator through the development of a first-order model,” Feb. 2008.

C. Wang, P. Y. Wu, and Z. Q. Chen, “Numerical analysis of double-inlet pulse tube refrigerator,” Cryogenics (Guildf)., vol. 33, no. 5, pp. 526–530, 1993, doi: https://doi.org/10.1016/0011-2275(93)90249-N.

M. Arslan et al., “Impact of Varying Load Conditions and Cooling Energy Comparison of a Double-Inlet Pulse Tube Refrigerator,” Processes, vol. 8, no. 3, p. 352, 2020, doi: 10.3390/pr8030352.

D. L. Gardner and G. W. Swift, “Use of inertance in orifice pulse tube refrigerators,” Cryogenics (Guildf)., vol. 37, pp. 117–121, 1997.

P. C. T. de Boer, “Performance of the inertance pulse tube,” Cryogenics (Guildf)., vol. 42, no. 3, pp. 209–221, 2002, doi: https://doi.org/10.1016/S0011-2275(02)00007-3.

W. Dai, J. Hu, and E. Luo, “Comparison of two different ways of using inertance tube in a pulse tube cooler,” Cryogenics (Guildf)., vol. 46, no. 4, pp. 273–277, 2006, doi: 10.1016/j.cryogenics.2005.11.023.

R. Radebaugh, M. Lewis, E. Luo, J. Pfotenhauer, G. Nellis, and L. Schunk, “Inertance Tube Optimization for Pulse Tube Refrigerators,” AIP Conf. Proc., vol. 823, Apr. 2006, doi: 10.1063/1.2202401.

S. Liu, X. Chen, A. Zhang, Z. Jiang, Y. Wu, and H. Zhang, “Investigation of the inertance tube of a pulse tube refrigerator operating at high temperatures,” Energy, vol. 123, pp. 378–385, 2017, doi: 10.1016/j.energy.2017.02.004.

B. Wang and Z. H. Gan, “A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications,” Prog. Aerosp. Sci., vol. 61, pp. 43–70, 2013, doi: 10.1016/j.paerosci.2013.05.001.

Sketch of fundamental PTR

Downloads

Published

13.02.2023

How to Cite

Sarah Taher Y. Al- lami, Ali A. F. Al- Hamadani. (2023). Systematic Review for Comparison Type of Pulse Tube Refrigerator. International Journal of Intelligent Systems and Applications in Engineering, 11(4s), 625–633. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2740

Issue

Section

Research Article