Improving of Swing up Motion Control Parameters for a Gymnastics Robot Using the Gray Wolf Algorithm

Authors

  • Noura Ahmed Sayer Department of Electrical & Electronic Engineering, College of Engineering, University of Kerbala, Iraq
  • Haider Galil Kamil Department of Computer Engineering Techniques, AlSafwa University College, Kerbala Iraq
  • Ahmed Abdulhadi Al-Moadhen Department of Computer Engineering Techniques, AlSafwa University College, Kerbala Iraq

Keywords:

Gymnastic Robot, Gray Wolf Optimization, Inverted Pendulum, Swinging-up Control

Abstract

This paper focuses on controlling the swing of a robot consisting of three joints that features free movement of the first joint that causes the system to be both nonlinear system and to develop complex motion. The resulting robot gymnast thus simulates a human trying to swing smoothly from a stable (lower) position to an unstable (upper) position by feeding power to the shoulder and hip joints. The main purpose of this paper is to determine how best to adjust the control signal input to the DC motors in the robot’s “shoulder” and “hip” in order to move these joints into a vertical balanced plane. The Gray Wolf Algorithm (GWO) was adopted as a novel optimisation technique to calculate the optimal values for simulation of the behaviour of the robot in the swing phase, and the ensuing experimental and simulation results suggested that this was successful in managing the robot’s swing.

Downloads

Download data is not yet available.

References

E. E. Eldukhri and H. G. Kamil, “Optimisation of swing-up control parameters for a robot gymnast using the Bees Algorithm,” J. Intell. Manuf., vol. 26, no. 5, pp. 1039–1047, Oct. 2015, doi: 10.1007/s10845-013-0848-5

D. LIU and H. YAMAURA, “Giant Swing Motion Control of 3-link Gymnastic Robot with Friction around an Underactuated Joint,” J. Syst. Des. Dyn., vol. 5, no. 5, pp. 925–936, 2011, doi: 10.1299/jsdd.5.925.

E. E. Eldukh E. E. Eldukhri and D. T. Pham, “Autonomous swing-up control of a three-link robot gymnast,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., vol. 224, no. 7, pp. 825–833, Nov. 2010, doi: 10.1243/09596518JSCE948

N. P. Nguyen, H. Oh, Y. Kim, J. Moon, “A nonlinear hybrid controller for swinging-up and stabilizing the rotary inverted pendulum SpringerNature., 2021, doi: 10.1007/s11071-021-06317-2

Spong MW, “The Swing Up Control Problem For The Acrobot,” IEEE Control Syst., no. May 1994, pp. 49–55, 1995.

X. Yu and M. Bedillion, “Control for a two-link planar robot with an actuated tail,” ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 4A-2018. 2018. doi: 10.1115/IMECE2018-86827.

F. Tajdari, E. Khodabakhshi, M. Kabganian, and A. Golgouneh, “Switching controller design to swing-up a two-link underactuated robot,” 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation, KBEI 2017, vol. 2018-Janua. pp. 0595–0599, 2018. doi: 10.1109/KBEI.2017.8324869.

M. Tum, G. Gyeong, Ja. H. Park, and Y. S. Lee2, “Swing-up Control of a Single Inverted Pendulum on a Cart With Input and Output Constraints,” IEEE 2014, doi: 10.5220/0005018604750482.

L. SHAIKHET, “STABILITY OF DIFFERENCE ANALOGUE OF LINEAR MATHEMATICAL INVERTED PENDULUM”, Hindawi, (2005), doi: 10.1155/DDNS.2005.215 .

Hongliang Gao ,1 Xiaoling Li,1 Chao Gao,2 and Jie Wu1 1School“Neural Network Supervision Control Strategy for Inverted Pendulum Tracking Control”, Hindawi Discrete Dynamics in Nature and Society Volume 2021, Article ID 5536573, 14 pages, doi.org/10.1155/2021/5536573.

Y. S. Hussein, H. G. Kamil, A. A. Al-Moadhen, “Robust Hybrid Controller Design to Stabilise an Underactuated Robot Vehicle under Various Input,” Journal of Robotics Volume 2022, Article ID 5477391, 16 pages,doi:10.1155/2022/5477391.

João M. Lopes, Luís Moreira, Cristiana Pinheiro, Daniel Sanz-Merodio, Joana Figueiredo, Cristina P. Santos, and Elena Garcia, “Autonomous swing-up control of a three-link robot gymnast,” Nov.(2019), doi:10.1109@ENBENG.2019.8692531.

M. Yamakita, K. Nonaka, and K. Furuta, “Swing up control of a double pendulum,” American Control Conference. pp. 2229–2232, 1993. doi: 10.23919/acc.1993.4793279.

Y. W. Tseng and J. G. Hsieh, “Optimal control for a family of systems in novel state derivative space form with experiment in a double inverted pendulum system,” Abstract and Applied Analysis, vol. 2013. 2013. doi: 10.1155/2013/715026.

Boutaina Elkinany ,1 Mohammed Alfidi,1 Redouane Chaibi,2 and Zakaria Chalh 1 1Laboratory T-S “Fuzzy System Controller for Stabilizing the Double Inverted Pendulum”, Hindawi Advances in Fuzzy Systems Volume 2020, Article ID 8835511, 9 pages doi: 10.1155/2020/8835511.

T. Henmi, M. Deng, Ahra Inoue, “Swing-up Control of a Serial Double Inverted Pendulum” American Control Conference Boston, Massachusetts June 30. July 2,2004, doi: 0-7803-8335-4.

M. Bugeja, “Non-linear swing-up and stabilizing control of an inverted pendulum system,” IEEE Region 8 EUROCON 2003: Computer as a Tool - Proceedings, vol. B. pp. 437–441, 2003. doi: 10.1109/EURCON.2003.1248235.

J. L. Sung et al., “Characterizing the Validity of the Inverted Pendulum Model for Quiet Standing,” Journal of Healthcare Engineering, vol. 2021. 2021. doi: 10.1155/2021/8884614.

H. G. Kamil, A. A. Ahmed, A. K. Abbas, “Tuning of Control Motion for a three link robot manipulator using Particle Swarm Optimization Technique,” Journal University of Kerbala , Vol. 15 No.4 Scientific . 2017, doi: KJ1351061512073800.

Dung-Han Lee , lui-Hsiu Hsu, Po-Wen Lin, Te-Hsin Chang, Pei-Chun Lin, “Swing up control of a double pendulum,” 20 17 IEEE, doi: 10.1109/ICCAR.2017.7942681.

A. A Al - Moadhen1, A. M Abdulhussein, H. G Kamil, “Planning and acting framework under robot operating system,” Materials Science and Engineering 433 (2018) 012090 doi:10.1088/1757-899X/433/1/012090

H. G. Kamil, E. E. Eldukhri, and P. A. Uk, “OPTIMISATION OF SWING-UP CONTROL PARAMETERS FOR A ROBOT GYMNAST USING THE BEES ALGORITHM.”

A. Kaveh and P. Zakian, “Improved GWO algorithm for optimal design of truss structures,” Eng. Comput., vol. 34, no. 4, pp. 685–707, Oct. 2018, doi: 10.1007/s00366-017-0567-1.

N. Singh and S. B. Singh, “Hybrid Algorithm of Particle Swarm Optimization and Grey Wolf Optimizer for Improving Convergence Performance,” Journal of Applied Mathematics, vol. 2017. 2017. doi: 10.1155/2017/2030489.

P. Saxena and A. Kothari, “Optimal Pattern Synthesis of Linear Antenna Array Using Grey Wolf Optimization Algorithm,” International Journal of Antennas and Propagation, vol. 2016. 2016. doi: 10.1155/2016/1205970.

Sen Zhang1 and Yongquan Zhou1,2 1College, “Grey WolfOptimizer Based on Powell Local Optimization Method for Clustering Analysis”, Hindawi 2015, Article ID 481360, 17 pages doi:10.1155/2015/481360.

S. Gholizadeh, “OPTIMAL DESIGN OF DOUBLE LAYER GRIDS CONSIDERING NONLINEAR BEHAVIOUR BY SEQUENTIAL GREY WOLF ALGORITHM,” INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING Int. J. Optim. Civil Eng., 2015; 5(4):511-523.

E. Hernández, O. Castillo, and J. Soria, “Optimization of Fuzzy Controllers for Autonomous Mobile Robots Using the Grey Wolf Optimizer,” Studies in Computational Intelligence, vol. 827. pp. 289–299, 2020. doi: 10.1007/978-3-030-34135-0_20.

M.A.EBRAHIM1, M.E.MOUSA2, E.M. SAID1,3, M.MAHMOUD ZAKY2, S.A.KOTB2 “Optimal Design of Hybrid Optimization Technique for Balancing Inverted Pendulum System”, DOI: 10.37394/23202.2020.19.19.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.

Schematic Diagram of a Robot Gymnast

Downloads

Published

17.05.2023

How to Cite

Ahmed Sayer, N. ., Kamil, H. G. ., & Al-Moadhen, A. A. . (2023). Improving of Swing up Motion Control Parameters for a Gymnastics Robot Using the Gray Wolf Algorithm. International Journal of Intelligent Systems and Applications in Engineering, 11(6s), 441 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/2869

Issue

Section

Research Article