Advancing Preeclampsia Prediction with Machine Learning: A Comprehensive Systematic Literature Review

Authors

  • R. Topan-Aditya Rahman Graduate Program Doctoral Student, Sultan Idris Education University, Malaysia; Sari Mulia University, Indonesia
  • Muhammad-Modi Lakulu Faculty of Computing and Meta-Technology, Sultan Idris Education University, Malaysia.
  • Ismail-Yusuf Panessai Faculty of Computing and Meta-Technology, Sultan Idris Education University, Malaysia.

Keywords:

Artificial Intelligence, Machine Learning, Pregnancy, Preeclampsia, Prediction

Abstract

Preeclampsia is one of the leading causes of maternal mortality, which is a serious problem during pregnancy, which is further complicated by issues related to pathophysiology and etiology. The focus of this research is on the early detection of preeclampsia by using machine learning with multiple algorithms. Specifically, the aim of this study is to identify the causes of preeclampsia.  A total of 21 articles were obtained from four scientific databases, namely ScienceDirect, Scopus, IEEE, and PubMed, which were published between 2018 and 2022, using several keywords such as “Artificial Intelligence”, “Machine Learning”, “Prediction”, and “Preeclampsia”.  The method of the review adhered to the principles outlined in a guideline published by Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). The systematic review of these articles was focused on the accuracy of prediction of preeclampsia using machine learning. The results showed machine learning was the most popular method, garnering 40.4% of mentions, followed by deep learning (11.5%), hybrid learning (2%), and other methods (19%), while other types of features, such as cell DNA, cohort, and resonance imaging received sizable mention (46.1%). Stochastic Gradient Boosting (SGBoost), which had an accuracy of 97.3%, was the most accurate algorithm.  Machine learning is, therefore, deemed to be the best method for predicting pregnancy outcomes in light of these findings. Clearly, further research is needed to determine the best algorithm for developing prenatal diagnosis models, particularly for the early detection of preeclampsia.

Downloads

Download data is not yet available.

References

A. Bertini, R. Salas, S. Chabert, L. Sobrevia, and F. Pardo, “Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review,” Front Bioeng Biotechnol, vol. 9, no. January, pp. 1–16, 2022, doi: 10.3389/fbioe.2021.780389.

I. C. Udenze, A. P. Arikawe, C. C. Makwe, and O. F. Olowoselu, “A prospective cohort study on the clinical utility of second trimester mean arterial blood pressure in the prediction of late-onset preeclampsia among Nigerian women,” Niger J Clin Pract, vol. 20, no. 6, pp. 741–745, 2017, doi: 10.4103/1119-3077.208948.

I. Bellos, V. Pergialiotis, D. Loutradis, A. Papapanagiotou, and G. Daskalakis, “The role of hemoglobin degradation pathway in preeclampsia: A systematic review and meta-analysis,” Placenta, vol. 92, pp. 9–16, 2020, doi: 10.1016/J.PLACENTA.2020.01.014.

D. D. Smith and M. M. Costantine, “The role of statins in the prevention of preeclampsia,” Am J Obstet Gynecol, vol. 226, no. 2, pp. S1171–S1181, Feb. 2022, doi: 10.1016/j.ajog.2020.08.040.

C. W. Ives, R. Sinkey, I. Rajapreyar, A. T. N. Tita, and S. Oparil, “Preeclampsia—Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review,” J Am Coll Cardiol, vol. 76, no. 14, pp. 1690–1702, 2020, doi: 10.1016/j.jacc.2020.08.014.

V. R. Kay, N. Wedel, and G. N. Smith, “Family History of Hypertension, Cardiovascular Disease, or Diabetes and Risk of Developing Preeclampsia: A Systematic Review,” Journal of Obstetrics and Gynaecology Canada, vol. 43, no. 2. J Obstet Gynaecol Can, pp. 227-236.e19, Feb. 01, 2021. doi: 10.1016/j.jogc.2020.08.010.

E. Tejera, Y. Pérez-Castillo, A. Chamorro, A. Cabrera-Andrade, and M. E. Sanchez, “A multi-objective approach for drug repurposing in preeclampsia,” Molecules, vol. 26, no. 4, Feb. 2021, doi: 10.3390/MOLECULES26040777.

E. Jung et al., “The etiology of preeclampsia,” Am J Obstet Gynecol, vol. 226, no. 2, pp. S844–S866, 2022, doi: 10.1016/j.ajog.2021.11.1356.

H. Sufriyana, Y. W. Wu, and E. C. Y. Su, “Prediction of preeclampsia and intrauterine growth restriction: Development of machine learning models on a prospective cohort,” JMIR Med Inform, vol. 8, no. 5, 2020, doi: 10.2196/15411.

E. Bartsch, K. E. Medcalf, A. L. Park, and J. G. Ray, “Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies,” BMJ, vol. 353, p. i1753, Apr. 2016, doi: 10.1136/bmj.i1753.

R. Chu et al., “Predicting the Risk of Adverse Events in Pregnant Women With Congenital Heart Disease,” J Am Heart Assoc, vol. 9, no. 14, Jul. 2020, doi: 10.1161/JAHA.120.016371.

M. Lewandowska, “The association of familial hypertension and risk of gestational hypertension and preeclampsia,” Int J Environ Res Public Health, vol. 18, no. 13, 2021, doi: 10.3390/ijerph18137045.

M. Liu et al., “Development of a prediction model on preeclampsia using machine learning-based method: a retrospective cohort study in China,” Front Physiol, vol. 13, no. August, pp. 1–9, Aug. 2022, doi: 10.3389/fphys.2022.896969.

I. Abuelezz et al., “Contribution of Artificial Intelligence in Pregnancy: A Scoping Review,” Stud Health Technol Inform, vol. 289, pp. 333–336, 2022, doi: 10.3233/SHTI210927.

A. M. Oprescu, G. Miró-Amarante, L. García-Díaz, L. M. Beltrán, V. E. Rey, and M. Romero-Ternero, “Artificial intelligence in pregnancy: A scoping review,” IEEE Access, vol. 8, pp. 181450–181484, 2020, doi: 10.1109/ACCESS.2020.3028333.

C. D. Valle and R. Almazan, “Towards an understanding of artificial intelligence in government,” in Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, New York, NY, USA: ACM, May 2018, pp. 1–2. doi: 10.1145/3209281.3209397.

H. Sufriyana, Y. W. Wu, and E. C. Y. Su, “Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia,” EBioMedicine, vol. 54, 2020, doi: 10.1016/j.ebiom.2020.102710.

C. Espinosa et al., “Data-Driven Modeling of Pregnancy-Related Complications,” Trends Mol Med, vol. 27, no. 8, pp. 762–776, 2021, doi: 10.1016/j.molmed.2021.01.007.

E. Nsugbe, “A cybernetic framework for predicting preterm and enhancing care strategies: A review,” Biomedical Engineering Advances, vol. 2, no. November, p. 100024, 2021, doi: 10.1016/j.bea.2021.100024.

F. Liu et al., “C1431T variant of PPARγ is associated with preeclampsia in pregnant women,” Life, vol. 11, no. 10, 2021, doi: 10.3390/life11101052.

W. Zhang, C. Wu, H. Zhong, Y. Li, and L. Wang, “Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization,” Geoscience Frontiers, vol. 12, no. 1, pp. 469–477, Jan. 2021, doi: 10.1016/j.gsf.2020.03.007.

R. Ramakrishnan, S. Rao, and J. R. He, “Perinatal health predictors using artificial intelligence: A review,” Women’s Health, vol. 17, 2021, doi: 10.1177/17455065211046132.

F. T. D. S. Lusyana. Purwadi. Taufik, “Implementasi Sistem Pakar Untuk Mendiagnosa Penyakit Dalam Pada Manusia Menggunakan Metode Dempster Shafer,” Jurnal Sarjana Teknik Informatika, vol. 1, no. 3, pp. 118–127, 2022.

R. Susetyoko, W. Yuwono, E. Purwantini, and N. Ramadijanti, “Perbandingan Metode Random Forest, Regresi Logistik, Naïve Bayes, dan Multilayer Perceptron Pada Klasifikasi Uang Kuliah Tunggal (UKT),” Jurnal Infomedia: Teknik Informatika, Multimedia & Jaringan, vol. 7, no. 1, pp. 8–16, 2022.

R. K. Saroj and M. Anand, “Environmental factors prediction in preterm birth using comparison between logistic regression and decision tree methods: An exploratory analysis,” Social Sciences & Humanities Open, vol. 4, no. 1, p. 100216, 2021, doi: 10.1016/j.ssaho.2021.100216.

M. Pietsch et al., “APPLAUSE: Automatic Prediction of PLAcental health via U-net Segmentation and statistical Evaluation,” Med Image Anal, vol. 72, p. 102145, 2021, doi: 10.1016/j.media.2021.102145.

M. Amin-Beidokhti, H. Sadeghi, R. Pirjani, L. Gachkar, M. Gholami, and R. Mirfakhraie, “Differential expression of Hsa-miR-517a/b in placental tissue may contribute to the pathogenesis of preeclampsia,” Journal of the Turkish-German Gynecological Association, vol. 22, no. 4, pp. 273–278, Dec. 2021, doi: 10.4274/jtgga.galenos.2021.2021.0062.

S. et al Munchel, “A molecular signal f¬ or p¬ re¬ eclampsia,” vol. 16, no. September, p. 2020, 2020.

D. L. Rolnik, K. H. Nicolaides, and L. C. Poon, “Prevention of preeclampsia with aspirin,” Am J Obstet Gynecol, vol. 226, no. 2, pp. S1108–S1119, 2022, doi: 10.1016/j.ajog.2020.08.045.

Y. Li et al., “Novel electronic health records applied for prediction of pre-eclampsia: Machine-learning algorithms,” Pregnancy Hypertens, vol. 26, no. August, pp. 102–109, Dec. 2021, doi: 10.1016/j.preghy.2021.10.006.

J. H. Jhee et al., “Prediction model development of late-onset preeclampsia using machine learning-based methods,” PLoS One, vol. 14, no. 8, p. e0221202, Aug. 2019, doi: 10.1371/journal.pone.0221202.

R. Ramakrishnan, S. Rao, and J. R. He, “Perinatal health predictors using artificial intelligence: A review,” Women’s Health, vol. 17, 2021, doi: 10.1177/17455065211046132.

L. Myatt, “The prediction of preeclampsia: the way forward,” Am J Obstet Gynecol, vol. 226, no. 2, pp. S1102-S1107.e8, 2022, doi: 10.1016/j.ajog.2020.10.047.

C. Gao, S. Osmundson, D. R. Velez Edwards, G. P. Jackson, B. A. Malin, and Y. Chen, “Deep learning predicts extreme preterm birth from electronic health records,” J Biomed Inform, vol. 100, no. January, p. 103334, 2019, doi: 10.1016/j.jbi.2019.103334.

K. K. Venkatesh, J. Beckham, A. M. Friedman, K. Boggess, E. Jelovsek, and D. M. Stamilio, “A prediction model for postpartum readmission for hypertension or preeclampsia,” Am J Obstet Gynecol, vol. 224, no. 2, pp. S42–S43, Feb. 2021, doi: 10.1016/j.ajog.2020.12.058.

Q. Wang, D. Liu, and G. Liu, “Value of Ultrasonic Image Features in Diagnosis of Perinatal Outcomes of Severe Preeclampsia on account of Deep Learning Algorithm,” Comput Math Methods Med, vol. 2022, 2022, doi: 10.1155/2022/4010339.

P. Mobadersany, L. A. D. Cooper, and J. A. Goldstein, “GestAltNet: aggregation and attention to improve deep learning of gestational age from placental whole-slide images,” Laboratory Investigation, vol. 101, no. 7, pp. 942–951, 2021, doi: 10.1038/s41374-021-00579-5.

P. Nisha and J. Gonzales, “乳鼠心肌提取 HHS Public Access,” Physiol Behav, vol. 177, no. 7, pp. 917–918, 2017, doi: 10.1001/jamainternmed.2017.1422.Preeclampsia.

S. Rana, E. Lemoine, J. P. Granger, and S. A. Karumanchi, “Preeclampsia,” Circ Res, vol. 124, no. 7, pp. 1094–1112, Mar. 2019, doi: 10.1161/CIRCRESAHA.118.313276.

T. Tomimatsu, K. Mimura, M. Endo, K. Kumasawa, and T. Kimura, “Pathophysiology of preeclampsia: An angiogenic imbalance and long-lasting systemic vascular dysfunction,” Hypertension Research, vol. 40, no. 4, pp. 305–310, Apr. 2017, doi: 10.1038/HR.2016.152.

C. Bertholdt, M. Dap, M. Beaumont, J. Duan, and O. Morel, “New insights into human functional ultrasound imaging,” Placenta, vol. 117, no. August 2021, pp. 5–12, 2022, doi: 10.1016/j.placenta.2021.10.005.

T. M. MacDonald, S. P. Walker, N. J. Hannan, S. Tong, and T. J. Kaitu’u-Lino, “Clinical tools and biomarkers to predict preeclampsia,” EBioMedicine, vol. 75, p. 103780, 2022, doi: 10.1016/j.ebiom.2021.103780.

D. R. (Fakultas K. U. G. M. Hadiati, “Terapi Preeklamsia Perlu Dikembangkan untuk Menekan Angka Kematian Ibu,” Article text, no. 07 September 2017, 2017.

X. Han et al., “Differential dynamics of the maternal immune system in healthy pregnancy and preeclampsia,” Front Immunol, vol. 10, no. JUN, pp. 1–13, 2019, doi: 10.3389/fimmu.2019.01305.

A. Martínez-Velasco, L. Martínez-Villaseñor, and L. Miralles-Pechuán, “Machine learning approach for pre-eclampsia risk factors association,” ACM International Conference Proceeding Series, no. November, pp. 232–237, 2018, doi: 10.1145/3284869.3284912.

R. Kuciene and V. Dulskiene, “Associations of maternal gestational hypertension with high blood pressure and overweight/obesity in their adolescent offspring: a retrospective cohort study,” Sci Rep, vol. 12, no. 1, pp. 1–9, 2022, doi: 10.1038/s41598-022-07903-z.

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian Journal on Computer and Information Technology), vol. 5, no. 1, pp. 75–82, May 2020, doi: 10.31294/ijcit.v5i1.7951.

L. Davidson and M. R. Boland, “Towards deep phenotyping pregnancy: A systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes,” Brief Bioinform, vol. 22, no. 5, pp. 1–29, 2021, doi: 10.1093/bib/bbaa369.

A. Ho et al., “Placental magnetic resonance imaging in chronic hypertension: A case-control study,” Placenta, vol. 104, no. November 2020, pp. 138–145, 2021, doi: 10.1016/j.placenta.2020.12.006.

M. N. Moufarrej et al., “Early prediction of preeclampsia in pregnancy with cell-free RNA,” Nature, vol. 602, no. 7898, pp. 689–694, 2022, doi: 10.1038/s41586-022-04410-z.

L. M. Amaral, K. Wallace, M. Owens, and B. LaMarca, “Pathophysiology and Current Clinical Management of Preeclampsia,” Curr Hypertens Rep, vol. 19, no. 8, p. 61, Aug. 2017, doi: 10.1007/s11906-017-0757-7

Patil, A. ., & Govindaraj, S. K. . (2023). ADL-BSDF: A Deep Learning Framework for Brain Stroke Detection from MRI Scans towards an Automated Clinical Decision Support System. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3), 11–23. https://doi.org/10.17762/ijritcc.v11i3.6195

Verma, D. N.. (2022). Access Control-Based Cloud Storage Using Role-Fully Homomorphic Encryption Scheme. Research Journal of Computer Systems and Engineering, 3(1), 78–83. Retrieved from https://technicaljournals.org/RJCSE/index.php/journal/article/view/46

Downloads

Published

16.07.2023

How to Cite

Rahman , R. T.-A. ., Lakulu , M.-M. ., & Panessai , I.-Y. . (2023). Advancing Preeclampsia Prediction with Machine Learning: A Comprehensive Systematic Literature Review. International Journal of Intelligent Systems and Applications in Engineering, 11(3), 13–23. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3138

Issue

Section

Research Article