Supervised Model for the Detection of Coffee Leaf Diseases by Image Analysis

Authors

  • Camilo-Enrique Rocha-Calderón Faculty of Engineering, Universidad Distrital Francisco José de Caldas, Bogotá D.C. - 110110, Colombia
  • Julio Barón-Velandia Faculty of Engineering, Universidad Distrital Francisco José de Caldas, Bogotá D.C. - 110110, Colombia
  • Sebastian-Camilo Vanegas-Ayala Faculty of Engineering, Universidad Distrital Francisco José de Caldas, Bogotá D.C. - 110110, Colombia

Keywords:

Coffee, coffee rust, fuzzy inference system, image analysis, machine learning

Abstract

An alternative model is presented for the early detection of coffee leaf rust disease, since this disease usually causes yield losses of up to 30% during the pandemic season, considering that the traditional detection method known as direct observation requires monetary resources that the farmer does not have. There are several technological alternatives to detect plant diseases in a short time, which are accurate but not very interpretable, therefore a supervised image analysis model is generated at pixel level according to the EG and GCC color indices to detect coffee leaf rust based on a fuzzy inference system, being this developed under experimental and prototype-based methodologies. The model obtained an accuracy of 93.75%, being considered effective and ready to be tested in uncontrolled environments, where the GCC color index presents a better discrimination of the state of a plant against the EG.

Downloads

Download data is not yet available.

References

J. G. A. Barbedo, “A new automatic method for disease symptom segmentation in digital photographs of plant leaves,” Eur. J. Plant Pathol., vol. 147, no. 2, pp. 349–364, 2017, doi: 10.1007/s10658-016-1007-6.

M. A. Khan et al., “An Optimized Method for Segmentation and Classification of Apple Diseases Based on Strong Correlation and Genetic Algorithm Based Feature Selection,” IEEE Access, vol. 7, no. c, pp. 46261–46277, 2019, doi: 10.1109/ACCESS.2019.2908040.

V. Gonzalez-Huitron, J. A. León-Borges, A. E. Rodriguez-Mata, L. E. Amabilis-Sosa, B. Ramírez-Pereda, and H. Rodriguez, “Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4,” Comput. Electron. Agric., vol. 181, no. January, 2021, doi: 10.1016/j.compag.2020.105951.

K. R., H. M., S. Anand, P. Mathikshara, A. Johnson, and M. R., “Attention embedded residual CNN for disease detection in tomato leaves,” Appl. Soft Comput., vol. 86, p. 105933, 2020, doi: https://doi.org/10.1016/j.asoc.2019.105933.

J. Zhu, M. Cheng, Q. Wang, H. Yuan, and Z. Cai, “Grape Leaf Black Rot Detection Based on Super-Resolution Image Enhancement and Deep Learning,” Front. Plant Sci., vol. 12, no. June, pp. 1–16, 2021, doi: 10.3389/fpls.2021.695749.

J. Sun, Y. Yang, X. He, and X. Wu, “Northern Maize Leaf Blight Detection under Complex Field Environment Based on Deep Learning,” IEEE Access, vol. 8, pp. 33679–33688, 2020, doi: 10.1109/ACCESS.2020.2973658.

D. Bienkowski, M. J. Aitkenhead, A. K. Lees, C. Gallagher, and R. Neilson, “Detection and differentiation between potato (Solanum tuberosum) diseases using calibration models trained with non-imaging spectrometry data,” Comput. Electron. Agric., vol. 167, p. 105056, 2019, doi: https://doi.org/10.1016/j.compag.2019.105056.

A. V. Paéz Perilla, A. Patiño Villarraga, S. Lozada Garcés, and T. F. Tabares Carreño, “Calidad agrícola,” Quindío, 2018.

D.-D. Leal-Lara, J. Barón-Velandia, and C.-E. Rocha-Calderón, “Interpretabilidad en el campo de la detección de enfermedades en las plantas: Una revisión,” Rev. Fac. Ing., vol. 30, no. 58, pp. e13495–e13495, Nov. 2021, doi: 10.19053/01211129.V30.N58.2021.13495.

A. Ramcharan, K. Baranowski, P. McCloskey, B. Ahmed, J. Legg, and D. P. Hughes, “Deep learning for image-based cassava disease detection,” Front. Plant Sci., vol. 8, no. October, pp. 1–7, 2017, doi: 10.3389/fpls.2017.01852.

J. Morel et al., “Exploring the potential of PROCOSINE and close-range hyperspectral imaging to study the effects of fungal diseases on leaf physiology,” Sci. Rep., vol. 8, no. 1, pp. 1–14, 2018, doi: 10.1038/s41598-018-34429-0.

L. Yuan et al., “Detection of anthracnose in tea plants based on hyperspectral imaging,” Comput. Electron. Agric., vol. 167, p. 105039, 2019, doi: https://doi.org/10.1016/j.compag.2019.105039.

P. Jiang, Y. Chen, B. Liu, D. He, and C. Liang, “Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks,” IEEE Access, vol. 7, pp. 59069–59080, 2019, doi: 10.1109/ACCESS.2019.2914929.

L. M. Tassis, J. E. Tozzi de Souza, and R. A. Krohling, “A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images,” Comput. Electron. Agric., vol. 186, no. September 2020, 2021, doi: 10.1016/j.compag.2021.106191.

Q. Zeng, X. Ma, B. Cheng, E. Zhou, and W. Pang, “GANS-based data augmentation for citrus disease severity detection using deep learning,” IEEE Access, vol. 8, pp. 172882–172891, 2020, doi: 10.1109/ACCESS.2020.3025196.

X. E. Pantazi, D. Moshou, and A. A. Tamouridou, “Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers,” Comput. Electron. Agric., vol. 156, pp. 96–104, 2019, doi: https://doi.org/10.1016/j.compag.2018.11.005.

N. R. Deepa and N. Nagarajan, “Kuan noise filter with Hough transformation based reweighted linear program boost classification for plant leaf disease detection,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 6, pp. 5979–5992, 2021, doi: 10.1007/s12652-020-02149-x.

M. Sultan Mahmud, Q. U. Zaman, T. J. Esau, G. W. Price, and B. Prithiviraj, “Development of an artificial cloud lighting condition system using machine vision for strawberry powdery mildew disease detection,” Comput. Electron. Agric., vol. 158, no. January, pp. 219–225, 2019, doi: 10.1016/j.compag.2019.02.007.

W. Zhang, M. F. Hansen, M. Smith, L. Smith, and B. Grieve, “Photometric stereo for three-dimensional leaf venation extraction,” Comput. Ind., vol. 98, pp. 56–67, 2018, doi: 10.1016/j.compind.2018.02.006.

S. Kumar, B. Sharma, V. K. Sharma, H. Sharma, and J. C. Bansal, “Plant leaf disease identification using exponential spider monkey optimization,” Sustain. Comput. Informatics Syst., vol. 28, 2020, doi: 10.1016/j.suscom.2018.10.004.

I. Navrozidis, T. K. Alexandridis, A. Dimitrakos, A. L. Lagopodi, D. Moshou, and G. Zalidis, “Identification of purple spot disease on asparagus crops across spatial and spectral scales,” Comput. Electron. Agric., vol. 148, no. October 2017, pp. 322–329, 2018, doi: 10.1016/j.compag.2018.03.035.

M. Toseef and M. J. Khan, “An intelligent mobile application for diagnosis of crop diseases in Pakistan using fuzzy inference system,” Comput. Electron. Agric., vol. 153, pp. 1–11, Oct. 2018, doi: 10.1016/j.compag.2018.07.034.

T. M. Matsunaga, D. Ogawa, F. Taguchi-Shiobara, M. Ishimoto, S. Matsunaga, and Y. Habu, “Direct quantitative evaluation of disease symptoms on living plant leaves growing under natural light,” Breed. Sci., vol. 67, no. 3, pp. 316–319, 2017, doi: 10.1270/jsbbs.16169.

J. Avelino et al., “The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions,” Food Secur., vol. 7, no. 2, pp. 303–321, Apr. 2015, doi: 10.1007/s12571-015-0446-9.

A. M. Reid, W. K. Chapman, C. E. Prescott, and W. Nijland, “Using excess greenness and green chromatic coordinate colour indices from aerial images to assess lodgepole pine vigour, mortality and disease occurrence,” For. Ecol. Manage., vol. 374, pp. 146–153, Aug. 2016, doi: 10.1016/j.foreco.2016.05.006.

C. E. R. Calderón, O. J. S. Parra, and S. C. V. Ayala, “Water Quality Prediction and Detection of the Vibrio Cholerae Bacteria,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 6, pp. 2369–2374, 2021, doi: 10.18517/IJASEIT.11.6.13598.

R. S. Pressman, Ingenieria del Software. Un Enfoque Practico. 2010.

F. A. Coutelieris and A. Kanavouras, Experimentation Methodology for Engineers, 1st ed. Springer Cham, 2018.

R. Krohling, J. Esgario, and J. A. Ventura, “BRACOL - A Brazilian Arabica Coffee Leaf images dataset to identification and quantification of coffee diseases and pests,” vol. 1, 2019, doi: 10.17632/YY2K5Y8MXG.1.

Saxena, K. ., & Gupta, Y. K. . (2023). Analysis of Image Processing Strategies Dedicated to Underwater Scenarios. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3s), 253–258. https://doi.org/10.17762/ijritcc.v11i3s.6232

Hernandez, A., Hughes, W., Silva, D., Pérez, C., & Rodríguez, C. Machine Learning for Predictive Analytics in Engineering Procurement. Kuwait Journal of Machine Learning, 1(2). Retrieved from http://kuwaitjournals.com/index.php/kjml/article/view/124

Downloads

Published

16.07.2023

How to Cite

Rocha-Calderón, C.-E. ., Barón-Velandia, J. ., & Vanegas-Ayala, S.-C. . (2023). Supervised Model for the Detection of Coffee Leaf Diseases by Image Analysis. International Journal of Intelligent Systems and Applications in Engineering, 11(3), 405–411. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3181

Issue

Section

Research Article