Web Solution for Processing and Visualizing Mass-Spectrometry Data and Protein Peptides Identified in Cancer Patients

Authors

  • Mohammed N. Khudher Dep. of Computer Science - University of Zakho - Duhok, Iraq
  • Karwan Jacksi Dep. of Computer Science - University of Zakho - Duhok, Iraq
  • Husen M. Umer Dep. of Oncology-Pathology Science for Life Laboratory -Karolinska Institute - Stockholm, Sweden

Keywords:

Mass Spectrometry, Proteomics, Cancer, Web-Based Solution, Data Processing, Data Visualization, Network Visualization, Peptides, Protein Identification

Abstract

This paper addresses the critical problem of processing and visualizing mass spectrometry data and protein peptides identified in cancer patients. The growing volume of data produced by advanced technologies, such as mass spectrometry, has necessitated the development of computer systems capable of effectively storing, analyzing, and presenting this data. In response to this challenge, a web-based solution is presented that empowers researchers and clinicians to gain valuable insights through network visualization of peptides and their associated data points across various cancer types and patient cohorts. By leveraging the power of Laravel on PHP 8, this system provides a robust foundation for efficient data processing and management. Additionally, the integration of an API enables seamless communication with a TypeScript and React-based front-end, resulting in an engaging and interactive user experience. The platform's ability to present the complex relationships between protein peptides and cancer-specific data in a network visualization format offers a powerful tool for researchers and clinicians to explore and interpret the data effectively. The development of this web-based solution contributes to the advancement of proteomics research and holds great potential for improving cancer treatment outcomes. By facilitating the exploration and analysis of mass spectrometry data and protein peptides, the system enables researchers to uncover valuable patterns and insights that can inform the development of more effective treatments for cancer patients. Through this work, a meaningful impact in the field of cancer research is strived for by us, and a valuable resource for the scientific community is provided.

Downloads

Download data is not yet available.

References

J. Canderan, M. Stamboulian, and Y. Ye, “MetaProD: A Highly-Configurable Mass Spectrometry Analyzer for Multiplexed Proteomic and Metaproteomic Data,” J. Proteome Res., vol. 22, no. 2, pp. 442–453, Feb. 2023, doi: 10.1021/acs.jproteome.2c00614.

A. S. Kashina and J. R. Yates Iii, “Identification of Arginylated Proteins by Mass Spectrometry,” in Protein Arginylation, A. S. Kashina, Ed., New York, NY: Springer US, 2023, pp. 139–152. doi: 10.1007/978-1-0716-2942-0_19.

D. Pietkiewicz et al., “Mass spectrometry imaging in gynecological cancers: the best is yet to come,” Cancer Cell Int, vol. 22, no. 1, p. 414, Dec. 2022, doi: 10.1186/s12935-022-02832-3.

S. Yanamadala et al., “Biological Activity of Cyclic Peptide Extracted from Sphaeranthus amaranthoides Using De Novo Sequencing Strategy by Mass Spectrometry for Cancer,” Biology, vol. 12, no. 3, p. 412, Mar. 2023, doi: 10.3390/biology12030412.

P. Carrillo-Rodriguez, F. Selheim, and M. Hernandez-Valladares, “Mass Spectrometry-Based Proteomics Workflows in Cancer Research: The Relevance of Choosing the Right Steps,” Cancers, vol. 15, no. 2, p. 555, Jan. 2023, doi: 10.3390/cancers15020555.

J.-S. Behnke and L. H. Urner, “Emergence of mass spectrometry detergents for membrane proteomics,” Anal Bioanal Chem, Feb. 2023, doi: 10.1007/s00216-023-04584-z.

P. Grocholska, M. Kowalska, and R. Bąchor, “Qualitative and Quantitative Mass Spectrometry in Salivary Metabolomics and Proteomics,” Metabolites, vol. 13, no. 2, p. 155, Jan. 2023, doi: 10.3390/metabo13020155.

Y. Zhao et al., “Evolution of Mass Spectrometry Instruments and Techniques for Blood Proteomics,” J. Proteome Res., vol. 22, no. 4, pp. 1009–1023, Apr. 2023, doi: 10.1021/acs.jproteome.3c00102.

[9] D. T. Cervone, R. Moreno‐Justicia, J. P. Quesada, and A. S. Deshmukh, “Mass spectrometry‐based proteomics approaches to interrogate skeletal muscle adaptations to exercise,” Scandinavian Med Sci Sports, p. sms.14334, Mar. 2023, doi: 10.1111/sms.14334.

Y.-W. Au et al., “Abstract 3974: Discovery and validation of therapeutic targets in immune cells by mass spectrometry-based proteomics,” Cancer Research, vol. 83, no. 7_Supplement, pp. 3974–3974, Apr. 2023, doi: 10.1158/1538-7445.AM2023-3974.

C. Punzalan, L. Wang, B. Bajrami, and X. Yao, “Measurement and utilization of the proteomic reactivity by mass spectrometry,” Mass Spectrometry Reviews, p. mas.21837, Mar. 2023, doi: 10.1002/mas.21837.

N. Takemori and A. Takemori, “In-depth structural proteomics integrating mass spectrometry and polyacrylamide gel electrophoresis,” Front. Anal. Sci., vol. 2, p. 1107183, Jan. 2023, doi: 10.3389/frans.2022.1107183.

[13] M. D. P. Chantada-Vázquez, C. Núñez, and S. B. Bravo, “Quantitative proteomics by mass spectrometry in food science,” in Food Proteomics, Elsevier, 2022, pp. 15–48. doi: 10.1016/B978-0-323-90889-4.00006-3.

H. Webel et al., “Mass spectrometry-based proteomics imputation using self supervised deep learning,” Bioinformatics, preprint, Jan. 2023. doi: 10.1101/2023.01.12.523792.

W. Albuquerque et al., “Mass Spectrometry-Based Proteomic Profiling of a Silvaner White Wine,” Biomolecules, vol. 13, no. 4, p. 650, Apr. 2023, doi: 10.3390/biom13040650.

S. Parikh, R. Patel, D. Khunt, V. P. Chavda, and L. Vora, “Data Analytics and Data Visualization for the Pharmaceutical Industry,” in Bioinformatics Tools for Pharmaceutical Drug Product Development, V. Chavda, K. Anand, and V. Apostolopoulos, Eds., 1st ed.Wiley, 2023, pp. 55–76. doi: 10.1002/9781119865728.ch4.

Y. Yoshimura and N. Zaima, “Application of Mass Spectrometry Imaging for Visualizing Food Components,” Foods, vol. 9, no. 5, p. 575, May 2020, doi: 10.3390/foods9050575.

H. Aikawa et al., “Abstract 350: Visualizing alectinib distribution in mice brain by using MALDI mass spectrometry imaging technique,” Cancer Research, vol. 76, no. 14_Supplement, pp. 350–350, Jul. 2016, doi: 10.1158/1538-7445.AM2016-350.

Y. Fujimura and D. Miura, “MALDI Mass Spectrometry Imaging for Visualizing In Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals,” Metabolites, vol. 4, no. 2, pp. 319–346, May 2014, doi: 10.3390/metabo4020319.

M. Lorenz et al., “Co-Registered Application of Matrix Assisted Laser Desorption/Ionization Mass Spectrometry and Time-of-Flight Secondary Ion Mass Spectrometry Images for Visualizing Signaling Molecules,” Microsc Microanal, vol. 25, no. S2, pp. 1170–1171, Aug. 2019, doi: 10.1017/S1431927619006585.

M. Tognetti, N. Beaton, K. Sklodowski, R. Bruderer, and L. Reiter, “602 Mass spectrometry-based protein biomarker analysis in chemoimmunotherapy combinations identifies unique immune signatures in pancreatic cancer,” J Immunother Cancer, vol. 10, no. Suppl 2, Nov. 2022, doi: 10.1136/jitc-2022-SITC2022.0602.

C. Chen, J. Hou, J. J. Tanner, and J. Cheng, “Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis,” International Journal of Molecular Sciences, vol. 21, no. 8, Art. no. 8, Jan. 2020, doi: 10.3390/ijms21082873.

V. Kumar, S. Ray, S. Ghantasala, and S. Srivastava, “An Integrated Quantitative Proteomics Workflow for Cancer Biomarker Discovery and Validation in Plasma,” Front. Oncol., vol. 10, p. 543997, Sep. 2020, doi: 10.3389/fonc.2020.543997.

M. Bantscheff, S. Lemeer, M. M. Savitski, and B. Kuster, “Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present,” Anal Bioanal Chem, vol. 404, no. 4, pp. 939–965, Sep. 2012, doi: 10.1007/s00216-012-6203-4.

S. A. Carr et al., “Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometry-based Assay Development Using a Fit-for-Purpose Approach,” Molecular & Cellular Proteomics, vol. 13, no. 3, pp. 907–917, Mar. 2014, doi: 10.1074/mcp.M113.036095.

H. Wang, “Data Mining in Protein Identification by Tandem Mass Spectrometry:,” in Encyclopedia of Data Warehousing and Mining, Second Edition, J. Wang, Ed., IGI Global, 2009, pp. 472–478. doi: 10.4018/978-1-60566-010-3.ch074.

S. J. De Veer, J. Weidmann, and D. J. Craik, “Cyclotides as Tools in Chemical Biology,” Acc. Chem. Res., vol. 50, no. 7, pp. 1557–1565, Jul. 2017, doi: 10.1021/acs.accounts.7b00157.

D. Paul, A. Kumar, A. Gajbhiye, M. K. Santra, and R. Srikanth, “Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture,” BioMed Research International, vol. 2013, pp. 1–16, 2013, doi: 10.1155/2013/783131.

J. K. Eng, T. A. Jahan, and M. R. Hoopmann, “Comet: An open-source MS/MS sequence database search tool,” Proteomics, vol. 13, no. 1, pp. 22–24, Jan. 2013, doi: 10.1002/pmic.201200439.

J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, “Electrospray Ionization for Mass Spectrometry of Large Biomolecules,” Science, vol. 246, no. 4926, pp. 64–71, Oct. 1989, doi: 10.1126/science.2675315.

A. F. R. Hühmer et al., “The Chromosome-Centric Human Proteome Project: A Call to Action,” J. Proteome Res., vol. 12, no. 1, pp. 28–32, Jan. 2013, doi: 10.1021/pr300933p.

A. Matta, R. Ralhan, L. V. DeSouza, and K. W. M. Siu, “Mass spectrometry‐based clinical proteomics: Head‐and‐neck cancer biomarkers and drug‐targets discovery,” Mass Spectrom. Rev., vol. 29, no. 6, pp. 945–961, Nov. 2010, doi: 10.1002/mas.20296.

M. Hossain et al., “Enhanced Sensitivity for Selected Reaction Monitoring Mass Spectrometry-based Targeted Proteomics Using a Dual Stage Electrodynamic Ion Funnel Interface,” Molecular & Cellular Proteomics, vol. 10, no. 2, pp. S1–S9, Feb. 2011, doi: 10.1074/mcp.M000062-MCP201.

Y. Ishihama et al., “Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein,” Molecular & Cellular Proteomics, vol. 4, no. 9, pp. 1265–1272, Sep. 2005, doi: 10.1074/mcp.M500061-MCP200.

J. D. Jaffe, D. R. Mani, K. C. Leptos, G. M. Church, M. A. Gillette, and S. A. Carr, “PEPPeR, a Platform for Experimental Proteomic Pattern Recognition,” Molecular & Cellular Proteomics, vol. 5, no. 10, pp. 1927–1941, Oct. 2006, doi: 10.1074/mcp.M600222-MCP200.

H. Keshishian et al., “Multiplexed, Quantitative Workflow for Sensitive Biomarker Discovery in Plasma Yields Novel Candidates for Early Myocardial Injury,” Molecular & Cellular Proteomics, vol. 14, no. 9, pp. 2375–2393, Sep. 2015, doi: 10.1074/mcp.M114.046813.

A. I. Nesvizhskii, “Proteogenomics: concepts, applications and computational strategies,” Nat Methods, vol. 11, no. 11, pp. 1114–1125, Nov. 2014, doi: 10.1038/nmeth.3144.

L. Zamdborg et al., “ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry,” Nucleic Acids Research, vol. 35, no. Web Server, pp. W701–W706, May 2007, doi: 10.1093/nar/gkm371.

W. W. Kallemeijn et al., “Proteome-wide analysis of protein lipidation using chemical probes: in-gel fluorescence visualization, identification and quantification of N-myristoylation, N- and S-acylation, O-cholesterylation, S-farnesylation and S-geranylgeranylation,” Nat Protoc, vol. 16, no. 11, pp. 5083–5122, Nov. 2021, doi: 10.1038/s41596-021-00601-6.

O. T. Schubert, H. L. Röst, B. C. Collins, G. Rosenberger, and R. Aebersold, “Quantitative proteomics: challenges and opportunities in basic and applied research,” Nat Protoc, vol. 12, no. 7, pp. 1289–1294, Jul. 2017, doi: 10.1038/nprot.2017.040.

N. Singhal, M. Kumar, P. K. Kanaujia, and J. S. Virdi, “MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis,” Front. Microbiol., vol. 6, Aug. 2015, doi: 10.3389/fmicb.2015.00791.

D. L. Tabb, C. G. Fernando, and M. C. Chambers, “MyriMatch: Highly Accurate Tandem Mass Spectral Peptide Identification by Multivariate Hypergeometric Analysis,” J. Proteome Res., vol. 6, no. 2, pp. 654–661, Feb. 2007, doi: 10.1021/pr0604054.

S. S. Thakur et al., “Deep and Highly Sensitive Proteome Coverage by LC-MS/MS Without Prefractionation,” Molecular & Cellular Proteomics, vol. 10, no. 8, p. M110.003699, Aug. 2011, doi: 10.1074/mcp.M110.003699.

B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz, and K. W. Kinzler, “Cancer Genome Landscapes,” Science, vol. 339, no. 6127, pp. 1546–1558, Mar. 2013, doi: 10.1126/science.1235122.

X. Wang et al., “Protein Identification Using Customized Protein Sequence Databases Derived from RNA-Seq Data,” J. Proteome Res., vol. 11, no. 2, pp. 1009–1017, Feb. 2012, doi: 10.1021/pr200766z.

W. W. Wu, G. Wang, S. J. Baek, and R.-F. Shen, “Comparative Study of Three Proteomic Quantitative Methods, DIGE, cICAT, and iTRAQ, Using 2D Gel- or LC−MALDI TOF/TOF,” J. Proteome Res., vol. 5, no. 3, pp. 651–658, Mar. 2006, doi: 10.1021/pr050405o.

Y. Zhang, Z. Wen, M. P. Washburn, and L. Florens, “Refinements to Label Free Proteome Quantitation: How to Deal with Peptides Shared by Multiple Proteins,” Anal. Chem., vol. 82, no. 6, pp. 2272–2281, Mar. 2010, doi: 10.1021/ac9023999.

S. Liu et al., “TMT-Based Quantitative Proteomics Analysis Reveals Airborne PM2.5-Induced Pulmonary Fibrosis,” IJERPH, vol. 16, no. 1, p. 98, Dec. 2018, doi: 10.3390/ijerph16010098.

Y. Zhu et al., “Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow,” Nat Commun, vol. 9, no. 1, p. 903, Mar. 2018, doi: 10.1038/s41467-018-03311-y.

B. L. Zybailov, L. Florens, and M. P. Washburn, “Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors,” Mol. BioSyst., vol. 3, no. 5, p. 354, 2007, doi: 10.1039/b701483j.

B. Zybailov, A. L. Mosley, M. E. Sardiu, M. K. Coleman, L. Florens, and M. P. Washburn, “Statistical Analysis of Membrane Proteome Expression Changes in Saccharomyces cerevisiae,” J. Proteome Res., vol. 5, no. 9, pp. 2339–2347, Sep. 2006, doi: 10.1021/pr060161n.

Q. Huang et al., “Quantitative Proteomics Reveal the Protective Effects of the Combined Chinese Herbal Extracts Against Alzheimer’s Disease via Modulating the Expression of Synapse-associated Proteins in Mouse Model,” In Review, preprint, Oct. 2021. doi: 10.21203/rs.3.rs-956329/v1.

H. F. Gilbert, “Protein Disulfide Isomerase and the Catalysis of Oxidative Protein Folding,” in Folding of Disulfide Proteins, R. J. Y. Chang and S. Ventura, Eds., New York, NY: Springer New York, 2011, pp. 133–149. doi: 10.1007/978-1-4419-7273-6_7.

G. Zhang et al., “Identifying Membrane Protein-Lipid Interactions with Lipidomic Lipid Exchange-Mass Spectrometry,” Biophysics, preprint, Jun. 2023. doi: 10.1101/2023.06.02.543293.

P. He and G. R. Moran, “Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily,” Journal of Inorganic Biochemistry, vol. 105, no. 10, pp. 1259–1272, Oct. 2011, doi: 10.1016/j.jinorgbio.2011.06.006.

E. M. Templeton et al., “Comparison of SPEED, S-Trap, and In-Solution-Based Sample Preparation Methods for Mass Spectrometry in Kidney Tissue and Plasma,” IJMS, vol. 24, no. 7, p. 6290, Mar. 2023, doi: 10.3390/ijms24076290.

Yadav, R. ., & Singh, R. . (2023). A Hyper-parameter Tuning based Novel Model for Prediction of Software Maintainability. International Journal on Recent and Innovation Trends in Computing and Communication, 11(2), 106–113. https://doi.org/10.17762/ijritcc.v11i2.6134

Muhammad Khan, Machine Learning for Predictive Maintenance in Manufacturing: A Case Study , Machine Learning Applications Conference Proceedings, Vol 1 2021.

Kothandaraman, D., Praveena, N., Varadarajkumar, K., Madhav Rao, B., Dhabliya, D., Satla, S., & Abera, W. (2022). Intelligent forecasting of air quality and pollution prediction using machine learning. Adsorption Science and Technology, 2022 doi:10.1155/2022/5086622

Downloads

Published

16.07.2023

How to Cite

Khudher, M. N. ., Jacksi, K. ., & Umer, H. M. . (2023). Web Solution for Processing and Visualizing Mass-Spectrometry Data and Protein Peptides Identified in Cancer Patients. International Journal of Intelligent Systems and Applications in Engineering, 11(3), 1005–1019. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3355

Issue

Section

Research Article