A Novel Framework for Brain Tumor Segmentation using Neuro Trypetidae Fruit Fly-Based UNet

Authors

  • A. Vinisha Research Scholar, Department of Electronics and Communication Engineering, Koneru Lakshmiah Education Foundation, Hyderabad campus, Telangana 500075, India.
  • Ravi Boda Corresponding Author, Department of Electronics and Communication Engineering, Koneru Lakshmiah Education Foundation, Hyderabad campus, Telangana 500075, India.

Keywords:

MRI brain tumour pictures, feature extraction, tumour segmentation, tumour tracking, Dice and Jaccard, Trypetidae fruit fly optimization, UNet deep learning

Abstract

Most challenging tasks associated with medical image processing involve segmenting and analyzing complex images, such as brain images. Additionally, MRI scans are frequently used to forecast many brain ailments; if the scans are complicated, the disease forecasting precision is relatively low. The current study has designed an approach to deal with this issue.to create a cutting-edge Trypetidae fruit fly-based UNet (TFFbU) system to precisely detect the tumour. Additionally, the UNet pooling module increased the Trypetidae fruit fly's fitness. That has typically produced the best outcomes. In the beginning, the system was trained using the standard datasets that are collected from the internet. As a result, the training errors are eliminated in the TFFbU's primary layer before the data has been cleaned of errors, which is then used to detect and segment tumours in the UNet dense layer. Lastly, the suggested model is run in MATLAB, and the effectiveness of the developed TFFbU. The model is estimated with various parameters like accuracy, recall, precision, Dice, and Jaccard. Additionally, the projected innovative TFFbU model has the capacity to segment and predict various tumour varieties.

Downloads

Download data is not yet available.

References

Das S, Bose S, Nayak GK, Satapathy SC, Saxena S. Brain tumor segmentation and overall survival period prediction in glioblastoma multiforme using radiomic features. Concurr Comput Pract Exp. 2021;e6501. doi:10.1002/cpe.6501

Xie X, Li L, Lian S, Chen S, Luo Z. SERU: a cascaded SE-ResNeXT U-net for kidney and tumor segmentation. Concurr Comput Pract Exp. 2020;32(14):e5738. doi:10.1002/cpe.5738

Thiruvenkadam K, Nagarajan K, Padmanaban S. An automatic self-initialized clustering method for brain tissue segmentation and pathology detection from magnetic resonance human head scans with graphics processing unit machine.Concurr Comput Pract Exp. 2021;33(6):e6084. doi:10.1002/cpe.6084

Zhang D, Huang G, Zhang Q, Han J,Wang Y, Yu Y. Exploring task structure for brain tumor segmentation from multi-modalityMR images. IEEE Trans Image Process. 2020;29:9032-9043. doi:10.1109/TIP.2020.3023609

Naser MA, Deen MJ. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images. Comput Biol Med. 2020;121:103758. doi:10.1016/j.compbiomed.2020.103758

Di Ieva A, Russo C, Liu S, et al. Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario. Neuroradiology. 2021;63:1-10. doi:10.1007/s00234-021-02649-3

Tran DH, Winkler-Schwartz A, TuznikM, et al. Quantitation of tissue resection using a brain tumor model and MRI Imaging. World surgeon 2021;148:e326-e339. doi:10.1016/j.wneu.2020.12.141

Menze B, Isensee F, Wiest R, et al. Analyzing magnetic resonance imaging data from glioma patients using deep learning. Comput Med Imaging Graph. 2021;88:101828. doi:10.1016/j.compmedimag.2020.101828

Mohammed E, Hassaan M, Amin S, Ebied HM. Brain tumor segmentation: a comparative analysis. In: The International Conference on Artificial Intelligence and Computer Vision, Springer, Cham; 2021. doi:10.1007/978-3-030-76346-6_46

Lin F,Wu Q, Liu J,Wang D, Kong X. Path aggregation U-net model for brain tumor segmentation. Multimed Tools Appl. 2021;80(15):22951-22964. doi:10. 1007/s11042-020-08795-9

Alhassan AM, Zainon WMNW. Brain tumor classification in magnetic resonance image using hard swish-based RELU activation function-convolutional neural network. Neural Comput Appl. 2021;33:9075-9087. doi:10.1007/s00521-020-05671-3

Bacanin N, Bezdan T, Venkatachalam K, Al-Turjman F. Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade. J Real Time Image Process. 2021;18:1085-1098. doi:10.1007/s11554-021-01106-x

Biswas A, Bhattacharya P,Maity SP, Banik R. Data augmentation for improved brain tumor segmentation. IETE J Res. 2021;1-11. doi:10.1080/03772063. 2021.1905562 BODA ET AL. 17 of 17

Budati AK, Katta RB. An automated brain tumor detection and classification from MRI images using machine learning techniques with IoT. Environ Dev Sustain. 2021;1-15. doi:10.1007/s10668-021-01861-8

Zhou T, Canu S, Vera P, Ruan S. Latent correlation representation learning for brain tumor segmentation with missing MRI modalities. IEEE Trans Image Process. 2021;30:4263-4274. doi:10.1109/TIP.2021.3070752

Chikhalikar AM, Dharwadkar NV.Model for enhancement and segmentation of magnetic resonance images for brain tumor classification. Pattern Recogn Image Anal. 2021;31(1):49-59. doi:10.1134/S1054661821010065

Zhou X, Li X, Hu K, Zhang Y, Chen Z, Gao X. ERV-net: an efficient 3D residual neural network for brain tumor segmentation. Expert Syst Appl. 2021;170:114566. doi:10.1016/j.eswa.2021.114566

Lei X, Yu X, Chi J, Wang Y, Zhang J, Wu C. Brain tumor segmentation in MR images using a sparse constrained level set algorithm. Expert Syst Appl. 2021;168:114262. doi:10.1016/j.eswa.2020.114262

Khosravanian A, Rahmanimanesh M, Keshavarzi P, Mozaffari S. Fast level set method for glioma brain tumor segmentation based on superpixel fuzzy clustering and lattice boltzmann method. Comput Methods Programs Biomed. 2021;198:105809. doi:10.1016/j.cmpb.2020.105809

Zhang D, Huang G, Zhang Q, Han J, Han J, Yu Y. Cross-modality deep feature learning for brain tumor segmentation. Pattern Recogn. 2021;110:107562. doi:10.1016/j.patcog.2020.107562

Tiwari A, Srivastava S, Pant M. Brain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019. Pattern Recogn Lett. 2020;131:244-260. doi:10.1016/j.patrec.2019.11.020

Selvathi D. Brain tissues segmentation inmagnetic resonance imaging for the diagnosis of brain disorders using a convolutional neural network.Handbook of Decision Support Systems for Neurological Disorders. Academic Press; 2021:167-186. doi:10.1016/B978-0-12-822271-3.00014-1

Fan Y, Wang P, Heidari AA, et al. Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis. Expert Syst Appl. 2020;157:113486. doi:10.1016/j.eswa.2020.113486

ShuvoMB,Ahommed R, Reza S, HashemMMA.CNL-UNet: a novel lightweight deep learning architecture formultimodal biomedical image segmentation with false output suppression. Biomed Signal Process Control. 2021;70:102959. doi:10.1016/j.bspc.2021.102959

Pitchai R, Supraja P, Victoria AH, Madhavi M. Brain tumor segmentation using deep learning and fuzzy K-means clustering for magnetic resonance images. Neural Process Lett. 2021;53(4):2519-2532. doi:10.1007/s11063-020-10326-4

Saman S, Narayanan SJ. Active contour model driven by optimized energy functionals for MR brain tumor segmentation with intensity inhomogeneity correction. Multimed Tools Appl. 2021;80(14):21925-21954. doi:10.1007/s11042-021-10738-x

Saravanan S, Karthigaivel R, Magudeeswaran V. A brain tumor image segmentation technique in image processing using ICA-LDA algorithm with ARHE model. J Ambient Intell Hum Comput. 2021;12(5):4727-4735. doi:10.1007/s12652-020-01875-6

Al-Saffar ZA, Yildirim T. A hybrid approach based on multiple eigenvalues selection (MES) for the automated grading of a brain tumor using MRI. Comput Methods Programs Biomed. 2021;201:105945. doi:10.1016/j.cmpb.2021.105945

Kesav N, Jibukumar MG. Efficient and low complex architecture for detection and classification of brain tumor using RCNN with two channel CNN. J King Saud Univ- Comput Inf Sci. 2021. doi:10.1016/j.jksuci.2021.05.008

Fu, J. ., & Saad, N. H. M. . (2023). Cross Border E-Commerce Uses Blockchain Technology to Solve Payment Risks. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3s), 205–215. https://doi.org/10.17762/ijritcc.v11i3s.6182

Johansson Anna, Maria Jansen, Anna Wagner, Anna Fischer, Maria Esposito. Machine Learning Techniques to Improve Learning Analytics. Kuwait Journal of Machine Learning, 2(2). Retrieved from http://kuwaitjournals.com/index.php/kjml/article/view/189

Anand, R., Ahamad, S., Veeraiah, V., Janardan, S. K., Dhabliya, D., Sindhwani, N., & Gupta, A. (2023). Optimizing 6G wireless network security for effective communication. Innovative smart materials used in wireless communication technology (pp. 1-20) doi:10.4018/978-1-6684-7000-8.ch001 Retrieved from www.scopus.com

Downloads

Published

03.09.2023

How to Cite

Vinisha, A. ., & Boda, R. . (2023). A Novel Framework for Brain Tumor Segmentation using Neuro Trypetidae Fruit Fly-Based UNet. International Journal of Intelligent Systems and Applications in Engineering, 12(1s), 783–796. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3551

Issue

Section

Research Article