Performance Improvement in ALGaN /GaN HEMT by High-K Approach

Authors

  • Swati Dhondiram Jadhav Department of Electrical and Electronics Engineering Department. Chatrapati Shivaji Maharaj University, Panvel, Maharashtra, India.
  • Aboo Bakar Khan Department of Electrical and Electronics Engineering Department. Chatrapati Shivaji Maharaj University, Panvel, Maharashtra, India.

Keywords:

AlGaN/GaN HEMT, high-K dielectric, gate leakage current, performance improvement, power efficiency, threshold voltage

Abstract

The integration of high-K dielectrics into AlGaN/GaN HEMTs opens up opportunities for future advancements in device design and fabrication In this work we have investigated the effect of field plate with the change in passivation layer using high-K technique. The materials are used are SiN, AL2O3, HfSiO4, HfO2, SiO2 and observed the effects on electrical characteristic. The drain current is increased as the band gap of the material increases. After the simulation of proposed device, obtained drain current is 0.22A/mm with 31.81% improvement. It is also studies that threshold voltage is increased 3.4V. It is found that the threshold voltage percentage improvement is 25%.  Further study includes that how gain depends on the dielectric material. Larger the value of dielectric constant larger the gain. By changing the passivation layer, gain of the device improved positively 121.13dB at 1MHz.  It is shown that obtained Breakdown voltage is 300V for the material AL2O3 by considering all electrical parameters with field plate length of 0.4μm, 0.4μm Length of Gate and Dielectric ( ) value is 8.5 and it is completely depend on dielectric material. Tranconductance (Gm) is 0.15S/mm noticed and increased by 66.00 % positively. Additionally other electrical parameters are taken into the consideration such as cutoff Frequency is 76.0GHz at -2.1V with decrement of 9.63% and Capacitance between Gate and Source (CgsMax) is 3.54×10-13F/mm with 39.33 % improvement negatively, which has to take for tor future scope. The device is simulated by TCAD software.  

Downloads

Download data is not yet available.

References

. Chen, M.J., Wang, X.P., Hu, C., Han, G., Tan, C.H. and Yeo, Y.C.,(2004). High-k gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics, 96(4), pp.2019-2034.

. Park, M., Lee, S., and Park, K., (2006). High-k gate dielectrics for future metal–oxide–semiconductor field-effect transistors. Journal of Applied Physics, 99(8), p.081301.

. Houssa, M., Pourtois, G., Afanas'ev, V.V. and Stesmans, A., (2008). High-k materials for MOS gate dielectric layers. Materials Science and Engineering: R: Reports, 64(1-3), pp.1-53.

. Osten, H.J. and von Schwerin, A.,(2010). High-k materials for nanoelectronics: Current status and materials properties considerations. Journal of Applied Physics, 107(2), p.021101.

. Robertson, J., (2012). High dielectric constant gate oxides for metal oxide Si transistors. Reports on Progress in Physics, 75(3), p.034501.

. Zhu, M., Li, M.F., Seng, H.L., Tan, C.H. and Lo, G.Q., (2013). High-k gate dielectric materials for advanced CMOS devices. Progress in Materials Science, 58(6), pp.825-873.

. Lee, J.C., Cui, Y., Duan, C., Guo, H., Wang, K.L., Palacios, T., Chen, Y.C. and Kim, T.W., (2015). Advanced high-k dielectric materials for future gate stack of advanced CMOS and beyond. ECS Journal of Solid State Science and Technology, 4(4), pp.Q3090-Q3101.

. Kwo, J., Hong, M., Chu, J., and Chen, M.J., (2017). High-K Gate Dielectrics for Emerging Devices: Materials, Physics, and Engineering. Annual Review of Materials Research, 47, pp. 49-85.

. Qi, X., Huang, R. and Gan, F., (2019). High-k dielectric materials for advanced metal–oxide–semiconductor field-effect transistor applications. Journal of Materials Science: Materials in Electronics, 30(9), pp.7998-8017.

. Touati Zine-eddine, Hamaizia Zahra, Messai Zitouni, Design and analysis of 10 nm T-gate enhancement-mode MOS-HEMT for high power microwave applications Journal of Science: Advanced Materials and Devices.

. L. Xu, N. Gao, Z. Zhang, and L.-M. Peng, , (2018) Lowering interface state density in carbon nanotube thin film transistors through using stacked Y2O3/HfO2 gate dielectric Appl. Phys. Lett., vol. 113, no. 8, pp. 083105.

. C. H. Lee, C. Lu, T. Tabata, W. F. Zhang, T. Nishimura, K. Nagashio, and A. Toriumi (2013). Oxygen Potential Engineering of Interfacial Layer for Deep Sub-nm EOT High-k Gate Stacks on Ge,” IEEE International Electron Devices Meeting(IEDM), pp. 2.5.1-2.5.4.

. S. H. Kim, D. M. Geum, M. S. Park, and W. J. Choi (2015). In0.53Ga0.47As-on-Insulator Metal–Oxide–Semiconductor Field-Effect Transistors Utilizing Y2O3 Buried Oxide,” IEEE Electron Device Lett., vol. 36, no. 5, pp.451-453.

. H. Hanawa, H. Onodera, A. Nakajima, and K. Horio, (2014). Numerical analysis of breakdown voltage enhancement in AlGaN/GaN HEMTs with a high-k passivation layer,” IEEE Transactions on Electron Devices, vol. 61, no. 3, pp. 769-775.

. S. Yang, Z. Tang, K.-Y. Wong, Y.-S. Lin, C. Liu, Y. Lu, S. Huang, and K. J. Chen (2013) High-quality interface in Al2O3/GaN/AlGaN/GaN MIS structures with in situ pre-gate plasma nitridation. IEEE Electron Device Letters, vol. 34, no. 12, pp. 1497-1499.

. R. Stoklas, D. Gregušová, M. Blaho, K. Fröhlich, J. Novák, M. Matys, Z. Yatabe, P. Kordoš, and T. Hashizume, (2017) Influence of oxygen-plasma treatment on AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 by atomic layer deposition: leakage current and density of states reduction. Semiconductor Science and Technology, vol. 32, no. 4, pp. 045018, 2017.

. H. Jiang, C. Liu, K. W. Ng, C. W. Tang, and K. M. Lau, (2018) High-performance AlGaN/GaN/Si power MOSHEMTs with ZrO2 gate dielectric. IEEE Transactions on Electron Devices, vol. 65, no. 12, pp. 5337-5342, 2018.

. C.-S. Lee, W.-C. Hsu, B.-J. Chiang, H.-Y. Liu, and H.-Y. Lee, (2017). Comparative studies on AlGaN/GaN/Si MOS-HFETs with Al2O3/TiO2 stacked dielectrics by using an ultrasonic spray pyrolysis deposition technique .Semiconductor Science and Technology, vol. 32, no. 5, pp. 055012, 2017.

. K. Nishiguchi, J. Ohira, S. Kaneki, S. Toiya, and T. Hashizume (2016). Controllability improvement of Al2O3-gate structure for GaN transistors” Compound Semiconductor Week 2016 978-1-5090-1964-9/16/$31.00 ©2016 IEEE.

. Bo-Yi Chou, Han-Yin Liu, Wei-Chou Hsu, Ching-Sung Lee1, Yu-Sheng Wu, and En-Ping Yao. “Electrical and Reliability Performances of Stacked HfO2/Al2O3 MOS-HEMTs”, 978-1-4799-3197-2/14/$31.00 ©2014 IEEE.

. Kenya Nishiguchi et al ( 2017). Current linearity and operation stability in Al2O3- gate AlGaN/GaN MOS high electron mobility. Japanese Journal of Applied Physics transistorsJpn. J. Appl. Phys. 56 101001.

. Yuji Ando1, Shota Kaneki1, and Tamotsu Hashizume. (2019). Improved operation stability of Al2O3/AlGaN/GaN MOS high-electron-mobility transistors grown on GaN substrates. Applied Physics Express 12, 024002.

. J. Buckley, M. Bocquet, G. Molas, M. Gely, P. Brianceau, N. Rochat, E.Martinez, F.Martin, H. Grampeix, JP. Colonna, A.Toffoli, V. Vidal, C. Leroux, G. Ghibaudo, G. Pananakakis, C. Bongiorno, D. Corso, S. Lombardo, B. DeSalvo, S.Deleonibus,In-depth Investigation of Hf-based High-k Dielectrics as Storage Layer of Charge-Trap NVMs, CNR-IMM, Stradale Primosole 95121 Catania, Italy.

. G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo (2015) Review on High-k Dielectrics Reliability Issues IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 5, NO. 1.

. Yutao Cai, Yang Wang, Miao Cui, Wen Liu, Huiqing Wen, Cezhou Zhao Paul R. Chalker. Effect of High-k Passivation Layer on Electrical Properties of GaN Metal-Insulator-Semiconductor Device. University of Liverpool, Liverpool, L69 3GJ, UK.

. O Ambacher, J Majewski, C Miskys, A Link, M Hermann, M Eickhoff, M Stutzmann, F Bernardini, V, V Tilak, B Schaff and L F Eastman(2002), Pyroelectric properties of Al(In)GaN/GaN heteroand quantum well structures, J. Phys.: Condense. Matter, 14 :3399–3434. https://doi.org/10.1088/0953- 8984/14/13/302.

. Santa Clara (2016) ,Device Simulation Software SILVACO Int. ATLAS User’s Manual; , CA, USA, Available online: https://www.silvaco.com.

. M. Farahmand; C. Garetto; E. Bellotti; K.F. Brennan; M. Goano; E. Ghillino; G. Ghione; J.D. Albrecht; P.P. Ruden (2001) Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries, IEEE Transactions on Electron Devices, vol. 48:535-542. https://doi.org/10.1109/16.906448

. Aboo Bakar Khan and M. J. Siddiqui (2019) Impact of Back Barrier with Back Gate on Device Performance of AlGaN/GaN DG-HEMT Journal of Nanoelectronics and Optoelectronics Vol. 14, pp. 1–6.

. A. Soltani, , M. Rousseau, J.-C. Gerbedoen, M. Mattalah, P. L. Bonanno, A. Telia, N. Bourzgui, G. Patriarche, A.Ougazzaden, and A. BenMoussa (2014); High performance TiN gate contact on AlGaN/GaN transistor using a mechanically strain induced P-doping Appl. Phys. Lett. American Institute of Physics 104, 233506 doi: 10.1063/1.4882415

. Farzan Jazaeri and Jean-Michel Sallese (2019)Charge-Based EPFL HEMT Model, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 66, NO. 3.

. Hyeon-Tak Kwak 1, Seung-Bo Chang 1, Hyun-Jung Kim 1, Kyu-Won Jang 1, Hyung Sup Yoon 2, Sang-Heung Lee 2, Jong-Won Lim 2 and Hyun-Seok Kim 1 Operational Improvement of AlGaN/GaN High Electron Mobility Transistor by an Inner Field-Plate Structure

. Sushanta Bordoloi, Ashok Ray, D Gaurav Trivedi, (2021) Introspection Into Reliability Aspects in AlGaN/GaN HEMTs With Gate Geometry Modification Published in: IEEE Access ( Volume: 9) Page(s): 99828 – 99841 Electronic ISSN: 2169-3536 INSPEC Accession Number: 21074305 DOI: 10.1109/ACCESS.2021.3096988

. Wang Xin-Hua,Zhao Miao, Liu Xin-Yu,Pu Yan,Zheng Ying-Kui, and Wei Ke. (2010) The physical process analysis of the capacitance voltage characteristics of AlGaN/AlN/GaN high electron mobility transistors. Chin. Phys. B Vol. 19, No. 9 097302.

. Fu, W., Xu, Y., Yan, B., Zhang, B. and Xu, R.,(2013) Numerical simulation of local doped barrier layer AlGaN/GaN HEMTs. Superlattices and Microstructures, 60, pp.443–452.

. P, R. H. ., B, S. D. ., M, D. K. ., Sooda, K. ., & B, K. R. . (2023). Transfer Learning based Automated Essay Summarization. International Journal on Recent and Innovation Trends in Computing and Communication, 11(1), 20–25. https://doi.org/10.17762/ijritcc.v11i1.5983

. Smith, J., Jones, D., Martinez, J., Perez, A., & Silva, D. Enhancing Engineering Education through Machine Learning: A Case Study. Kuwait Journal of Machine Learning, 1(1). Retrieved from http://kuwaitjournals.com/index.php/kjml/article/view/86

Downloads

Published

27.10.2023

How to Cite

Jadhav, S. D. ., & Khan, A. B. . (2023). Performance Improvement in ALGaN /GaN HEMT by High-K Approach. International Journal of Intelligent Systems and Applications in Engineering, 12(2s), 82–92. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3561

Issue

Section

Research Article