Cutting-Edge Neural Network for Early Cardiovascular Disease Prevention

Authors

  • Shivganga Udhan Department of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University. Aurangabad, India.
  • Bankat Patil Department of Computer Science and Information Technology, Dr. Babasaheb Ambedkar Marathwada University. Aurangabad, India.

Keywords:

Cardiovascular diseases, Machine Learning, Deep Neural Network, Prediction, Prevention

Abstract

Cardiovascular diseases (CVD) are common and life-threatening, requiring early detection to reduce mortality. This study presents an efficient system for predicting and preventing CVD. It utilizes a hybrid dataset from various sources datasets, preprocesses them. Feature selection methods like ANOVA and CHI2 enhance prediction accuracy. The Class Balanced Feature Selection Deep Neural Network model is an enhanced deep neural network that incorporates balanced data and utilizes a prominent feature selection technique. Multiple classifiers, including Naïve Bayes,  Decision Tree, CBFS-DNN, SVM, Random Forest, and KNN   are trained on the hybrid dataset using the selection of features and class balancing. The DNN with CHI2 selection achieves an impressive 99.79% accuracy, demonstrating high Precision, Recall, and 97.3%, 97.2%, and 97.2%, respectively, for the F1 Score.

Downloads

Download data is not yet available.

References

E. Ahmad, “Cardiovascular Diseases (CVDs) Detection using Machine Learning Algorithms,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 6, pp. 2341–2346, 2020, doi: 10.22214/ijraset.2020.6376.

D. Prabhakaran et al., “The changing patterns of cardiovascular diseases and their risk factors in the states of India: the Global Burden of Disease Study 1990–2016,” Lancet Glob. Heal., vol. 6, no. 12, pp. e1339–e1351, Dec. 2018, doi: 10.1016/S2214-109X(18)30407-8.

J. Poorolajal, “Neglected major causes of death much deadlier than COVID-19,” J. Res. Health Sci., vol. 20, no. 2, pp. 19–21, 2020, doi: 10.34172/jrhs.2020.12.

J. M. Rippe, “AnAlytic,” 2018, doi: 10.1177/1559827618812395.

S. Frančula-Zaninović and I. A. Nola, “Send Orders for Reprints to reprints@benthamscience.ae Management of Measurable Variable Cardiovascular Disease’ Risk Factors,” Curr. Cardiol. Rev., vol. 14, pp. 153–163, 2018, doi: 10.2174/1573403X14666180222102312.

F. Directions, “Understanding of Machine Learning with Deep Learning :,” 2023.

S. Dash, S. K. Shakyawar, M. Sharma, and S. Kaushik, “Big data in healthcare: management, analysis and future prospects,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0217-0.

I. Arel, D. Rose, and T. Karnowski, “Deep machine learning-A new frontier in artificial intelligence research,” IEEE Comput. Intell. Mag., vol. 5, no. 4, pp. 13–18, 2010, doi: 10.1109/MCI.2010.938364.

L. Benos, A. C. Tagarakis, G. Dolias, R. Berruto, D. Kateris, and D. Bochtis, “Machine learning in agriculture: A comprehensive updated review,” Sensors, vol. 21, no. 11, pp. 1–55, 2021, doi: 10.3390/s21113758.

J. Huang, J. Chai, and S. Cho, “Deep learning in finance and banking: A literature review and classification,” Front. Bus. Res. China, vol. 14, no. 1, 2020, doi: 10.1186/s11782-020-00082-6.

C. Gambella, B. Ghaddar, and J. Naoum-Sawaya, “Optimization problems for machine learning: A survey,” Eur. J. Oper. Res., vol. 290, no. 3, pp. 807–828, 2021, doi: 10.1016/j.ejor.2020.08.045.

Q. Vuong, “Machine Learning for Robotic Manipulation,” 2021, [Online]. Available: http://arxiv.org/abs/2101.00755

F.-G. Yuan, S. A. Zargar, Q. Chen, and S. Wang, “Machine learning for structural health monitoring: challenges and opportunities,” vol. 1137903, no. April 2020, p. 2, 2020, doi: 10.1117/12.2561610.

M. Peng et al., “Prediction of cardiovascular disease risk based on major contributing features,” Sci. Rep., vol. 13, no. 1, pp. 1–11, 2023, doi: 10.1038/s41598-023-31870-8.

A. Javeed, S. S. Rizvi, S. Zhou, R. Riaz, S. U. Khan, and S. J. Kwon, “Heart risk failure prediction using a novel feature selection method for feature refinement and neural network for classification,” Mob. Inf. Syst., vol. 2020, 2020, doi: 10.1155/2020/8843115.

P. Rahman, A. Rifat, I. A. Chy, M. M. Khan, M. Masud, and S. Aljahdali, “Machine Learning and Artificial Neural Network for Predicting Heart Failure Risk,” Comput. Syst. Sci. Eng., vol. 44, no. 1, pp. 757–775, 2022, doi: 10.32604/csse.2023.021469.

A. M. Qadri, A. Raza, K. Munir, and M. S. Almutairi, “Effective Feature Engineering Technique for Heart Disease Prediction With Machine Learning,” IEEE Access, vol. 11, no. May, pp. 56214–56224, 2023, doi: 10.1109/ACCESS.2023.3281484.

B. P. Doppala, D. Bhattacharyya, M. Chakkravarthy, and T. Kim, “A hybrid machine learning approach to identify coronary diseases using feature selection mechanism on heart disease dataset,” Distrib. Parallel Databases, vol. 41, no. 1, pp. 1–20, 2023, doi: 10.1007/s10619-021-07329-y.

L. A. Alqahtani, H. M. Alotaibi, I. U. Khan, and N. Aslam, “Automated prediction of Heart disease using optimized machine learning techniques,” 2020 11th IEEE Annu. Ubiquitous Comput. Electron. Mob. Commun. Conf. UEMCON 2020, no. October 2020, pp. 0298–0302, 2020, doi: 10.1109/UEMCON51285.2020.9298051.

G. Magesh and P. Swarnalatha, “Optimal feature selection through a cluster-based DT learning (CDTL) in heart disease prediction,” Evolutionary Intelligence, vol. 14, no. 2. pp. 583–593, 2021. doi: 10.1007/s12065-019-00336-0.

P. Rani, R. Kumar, A. Jain, and R. Lamba, “Taxonomy of Machine Learning Algorithms and Its Applications,” J. Comput. Theor. Nanosci., vol. 17, no. 6, pp. 2508–2513, Sep. 2020, doi: 10.1166/JCTN.2020.8922.

S. P. Patro, G. S. Nayak, and N. Padhy, “Heart disease prediction by using novel optimization algorithm: A supervised learning prospective,” Informatics Med. Unlocked, vol. 26, 2021, doi: 10.1016/j.imu.2021.100696.

M. S. Nawaz, B. Shoaib, and M. A. Ashraf, “Intelligent Cardiovascular Disease Prediction Empowered with Gradient Descent Optimization,” Heliyon, vol. 7, no. 5, p. e06948, 2021, doi: 10.1016/j.heliyon.2021.e06948.

D. P. Yadav, P. Saini, and P. Mittal, “Feature Optimization Based Heart Disease Prediction using Machine Learning,” 2021 5th Int. Conf. Inf. Syst. Comput. Networks, ISCON 2021, no. March, 2021, doi: 10.1109/ISCON52037.2021.9702410.

H. B. Kibria and A. Matin, “The severity prediction of the binary and multi-class cardiovascular disease − A machine learning-based fusion approach,” Comput. Biol. Chem., vol. 98, 2022, doi: 10.1016/j.compbiolchem.2022.107672.

V. V. R. Karna, S. Paramasivam, I. Elamvazuthi, H. N. Chua, A. A. Aziz, and P. Satyamurthy, “Novel Feature Engineering for Heart Disease Risk Prediction Using Optimized Machine Learning,” 2022 Int. Conf. Futur. Trends Smart Communities, ICFTSC 2022, pp. 158–163, 2022, doi: 10.1109/ICFTSC57269.2022.10040063.

Mwangi, J., Cohen, D., Costa, R., Min-ji, K., & Suzuki, H. Optimizing Neural Network Architecture for Time Series Forecasting. Kuwait Journal of Machine Learning, 1(3). Retrieved from http://kuwaitjournals.com/index.php/kjml/article/view/132

Barwal, R. K. ., Raheja, N. ., Bhiyana, M. ., & Rani, D. . (2023). Machine Learning-Based Hybrid Recommendation (SVOF-KNN) Model For Breast Cancer Coimbra Dataset Diagnosis. International Journal on Recent and Innovation Trends in Computing and Communication, 11(1s), 23–42. https://doi.org/10.17762/ijritcc.v11i1s.5991

Downloads

Published

04.11.2023

How to Cite

Udhan, S. ., & Patil, B. . (2023). Cutting-Edge Neural Network for Early Cardiovascular Disease Prevention. International Journal of Intelligent Systems and Applications in Engineering, 12(3s), 05–16. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3657

Issue

Section

Research Article