Deep Learning Based Segmentation of Brain MRI: Systematic Review (from 2018 to 2022) and Meta-Analysis
Keywords:
Deep learning, Meta-analysis, segmentation, dice score, forest plots, publication biasAbstract
Background This paper aims to perform an examination and statistical analysis of deep learning (DL) models utilized in the segmentation of brain tumor MR Images.
Methods The research systematically searched for pertinent research in databases such as PubMed, Science Direct, The Cochrane Library, and Web of Science. The studies related to deep learning (DL) in the context of brain tumor MR image segmentation are included for analysis. Meta-analysis focusing on the dice similarity coefficient (DSC) is conducted to evaluate the segmentation outcomes of these DL models. To categorize the research studies on the basis of sample size and method of segmentation, subgroup analysis is also carried out. Subgroup analysis is important to remove publication bias.
Results Thirty articles are selected from the published research works (n=445) and incorporated into the literature review scope. Eleven cohort studies met the inclusion criteria of the meta-analysis. For the performance of segmented tumors, the average DSC score for the included studies' DLAs is 0.93 (95% CI: 0.88–0.98). However, there is a large amount of variation amongst the papers that were included, and a bias toward publication can also be seen.
Conclusion The accuracy of DLAs used to automate the segmentation of gliomas is high, suggesting that they will be useful in neuroradiology in the future. However, accessible, high-quality public databases and extensive research validation are still required on a large scale.
Downloads
References
Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300–318. https://doi.org/https://doi.org/10.1016/j.mri.2019.05.028
Acharya, U. R., Fernandes, S. L., WeiKoh, J. E., Ciaccio, E. J., Fabell, M. K. M., Tanik, U. J., Rajinikanth, V., & Yeong, C. H. (2019). Automated Detection of Alzheimer’s Disease Using Brain MRI Images- A Study with Various Feature Extraction Techniques. Journal of Medical Systems, 43(9), 302. https://doi.org/10.1007/s10916-019-1428-9
Agrawal, P., Katal, N., & Hooda, N. (2022). Segmentation and classification of brain tumor using 3D-UNet deep neural networks. International Journal of Cognitive Computing in Engineering, 3(November), 199–210. https://doi.org/10.1016/j.ijcce.2022.11.001
Ahmadi, M., Sharifi, A., Jafarian Fard, M., & Soleimani, N. (2023). Detection of brain lesion location in MRI images using convolutional neural network and robust PCA. International Journal of Neuroscience, 133(1), 55–66. https://doi.org/10.1080/00207454.2021.1883602
Alpar, O. (2023). A mathematical fuzzy fusion framework for whole tumor segmentation in multimodal MRI using Nakagami imaging. Expert Systems with Applications, 216(December 2022), 119462. https://doi.org/10.1016/j.eswa.2022.119462
Amin, J., Sharif, M., Yasmin, M., & Fernandes, S. L. (2020). A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters, 139, 118–127. https://doi.org/https://doi.org/10.1016/j.patrec.2017.10.036
Aminian, M., & Khotanlou, H. (2022). CapsNet-based brain tumor segmentation in multimodal MRI images using inhomogeneous voxels in Del vector domain. 17793–17815.
Amoroso, N., La Rocca, M., Monaco, A., Bellotti, R., & Tangaro, S. (2018). Complex networks reveal early MRI markers of Parkinson’s disease. Medical Image Analysis, 48, 12–24. https://doi.org/10.1016/j.media.2018.05.004
Anand, V., Gupta, S., Gupta, D., Gulzar, Y., Xin, Q., Juneja, S., Shah, A., & Shaikh, A. (2023). Weighted Average Ensemble Deep Learning Model for Stratification of Brain Tumor in MRI Images. Diagnostics, 13(7). https://doi.org/10.3390/diagnostics13071320
Anita Jasmine, R., Arockia Jansi Rani, P., & Ashley Dhas, J. (2022). Hyper Parameters Optimization for Effective Brain Tumor Segmentation with YOLO Deep Learning. Journal of Pharmaceutical Negative Results, 13(6), 2247–2257. https://doi.org/10.47750/pnr.2022.13.S06.292
Arif, M., Ajesh, F., Shamsudheen, S., Geman, O., Izdrui, D., & Vicoveanu, D. (2022). Brain Tumor Detection and Classification by MRI Using Biologically Inspired Orthogonal Wavelet Transform and Deep Learning Techniques. Journal of Healthcare Engineering, 2022. https://doi.org/10.1155/2022/2693621
Arif, M., Jims, A., Ajesh, A., Geman, O., Craciun, M. D., & Leuciuc, F. (2022). Application of Genetic Algorithm and U-Net in Brain Tumor Segmentation and Classification: A Deep Learning Approach. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/5625757
Athisayamani, S., Antonyswamy, R. S., Sarveshwaran, V., Almeshari, M., Alzamil, Y., & Ravi, V. (2023). Feature Extraction Using a Residual Deep Convolutional Neural Network (ResNet-152) and Optimized Feature Dimension Reduction for MRI Brain Tumor Classification. Diagnostics, 13(4). https://doi.org/10.3390/diagnostics13040668
Autoencoder, C., & Badža, M. M. (2021). applied sciences Segmentation of Brain Tumors from MRI Images Using.
Balamurugan, T., & Gnanamanoharan, E. (2023). Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier. Neural Computing and Applications, 35(6), 4739–4753. https://doi.org/10.1007/s00521-022-07934-7
Bruun, M., Koikkalainen, J., Rhodius-Meester, H. F. M., Baroni, M., Gjerum, L., van Gils, M., Soininen, H., Remes, A. M., Hartikainen, P., Waldemar, G., Mecocci, P., Barkhof, F., Pijnenburg, Y., van der Flier, W. M., Hasselbalch, S. G., Lötjönen, J., & Frederiksen, K. S. (2019). Detecting frontotemporal dementia syndromes using MRI biomarkers. NeuroImage. Clinical, 22, 101711. https://doi.org/10.1016/j.nicl.2019.101711
Chattopadhyay, A., & Maitra, M. (2022). MRI-based brain tumour image detection using CNN based deep learning method. Neuroscience Informatics, 2(4), 100060. https://doi.org/10.1016/j.neuri.2022.100060
Dang, K., Vo, T., Ngo, L., & Ha, H. (2022). A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification. IBRO Neuroscience Reports, 13(October), 523–532. https://doi.org/10.1016/j.ibneur.2022.10.014
Deepa, S., Janet, J., Sumathi, S., & Ananth, J. P. (2023). Hybrid Optimization Algorithm Enabled Deep Learning Approach Brain Tumor Segmentation and Classification Using MRI. Journal of Digital Imaging, 0123456789. https://doi.org/10.1007/s10278-022-00752-2
Elhamzi, W., Ayadi, W., & Atri, M. (2022). A novel automatic approach for glioma segmentation. Neural Computing and Applications, 34(22), 20191–20201. https://doi.org/10.1007/s00521-022-07583-w
Farajzadeh, N., Sadeghzadeh, N., & Hashemzadeh, M. (2023). Brain tumor segmentation and classification on MRI via deep hybrid representation learning. Expert Systems with Applications, 224(March), 119963. https://doi.org/10.1016/j.eswa.2023.119963
Futrega, M., Milesi, A., Marcinkiewicz, M., & Ribalta, P. (2022). Optimized U-Net for Brain Tumor Segmentation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12963 LNCS, 15–29. https://doi.org/10.1007/978-3-031-09002-8_2
Gómez-Guzmán, M. A., Jiménez-Beristaín, L., García-Guerrero, E. E., López-Bonilla, O. R., Tamayo-Perez, U. J., Esqueda-Elizondo, J. J., Palomino-Vizcaino, K., & Inzunza-González, E. (2023). Classifying Brain Tumors on Magnetic Resonance Imaging by Using Convolutional Neural Networks. Electronics (Switzerland), 12(4), 1–22. https://doi.org/10.3390/electronics12040955
Habib, H., Amin, R., Ahmed, B., & Hannan, A. (2022). Hybrid algorithms for brain tumor segmentation, classification and feature extraction. Journal of Ambient Intelligence and Humanized Computing, 13(5), 2763–2784. https://doi.org/10.1007/s12652-021-03544-8
Haq, E. U., Jianjun, H., Huarong, X., Li, K., & Weng, L. (2022). A Hybrid Approach Based on Deep CNN and Machine Learning Classifiers for the Tumor Segmentation and Classification in Brain MRI. Computational and Mathematical Methods in Medicine, 2022. https://doi.org/10.1155/2022/6446680
Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557 LP – 560. https://doi.org/10.1136/bmj.327.7414.557
Huang, H., Yang, G., Zhang, W., Xu, X., Yang, W., Jiang, W., & Lai, X. (2021). A Deep Multi-Task Learning Framework for Brain Tumor Segmentation. Frontiers in Oncology, 11(June), 1–16. https://doi.org/10.3389/fonc.2021.690244
Ilhan, A., Sekeroglu, B., & Abiyev, R. (2022). Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net. International Journal of Computer Assisted Radiology and Surgery, 17(3), 589–600. https://doi.org/10.1007/s11548-022-02566-7
Ingle, A., Roja, M., Sankhe, M., & Patkar, D. (2022). Efficient segmentation and classification of the tumor using improved encoder-decoder architecture in brain MRI images. International Journal of Electrical and Computer Engineering Systems, 13(8), 643–651. https://doi.org/10.32985/ijeces.13.8.4
Kader, I. A. El, Xu, G., Shuai, Z., Saminu, S., Javaid, I., Ahmad, I. S., & Kamhi, S. (2021). Brain tumor detection and classification on mr images by a deep wavelet auto‐encoder model. Diagnostics, 11(9). https://doi.org/10.3390/diagnostics11091589
Kalpana, R., Bennet, M. A., & Rahmani, A. W. (2022). Metaheuristic Optimization-Driven Novel Deep Learning Approach for Brain Tumor Segmentation. BioMed Research International, 2022. https://doi.org/10.1155/2022/2980691
Kaur, H., & Gill, A. K. (2017). Review of Brain Tumor Detection Using Various Techniques.
Kavitha, A. R., & Palaniappan, K. (2023). Brain tumor segmentation using a deep Shuffled-YOLO network. International Journal of Imaging Systems and Technology, 33(2), 511–522. https://doi.org/10.1002/ima.22832
Khan, M. M., Omee, A. S., Tazin, T., Almalki, F. A., Aljohani, M., & Algethami, H. (2022). A Novel Approach to Predict Brain Cancerous Tumor Using Transfer Learning. Computational and Mathematical Methods in Medicine, 2022, 2702328. https://doi.org/10.1155/2022/2702328
Kishanrao, S. A., & Jondhale, K. C. (2023). An improved grade based MRI brain tumor classification using hybrid DCNN-DH framework. Biomedical Signal Processing and Control, 85(April), 104973. https://doi.org/10.1016/j.bspc.2023.104973
Kokkalla, S., Kakarla, J., Venkateswarlu, I. B., & Singh, M. (2021). Three-class brain tumor classification using deep dense inception residual network. Soft Computing, 25(13), 8721–8729. https://doi.org/10.1007/s00500-021-05748-8
Kumari, N., & Saxena, S. (2018). Review of Brain Tumor Segmentation and Classification. 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), 1–6. https://doi.org/10.1109/ICCTCT.2018.8551004
Ladkat, A. S., Bangare, S. L., Jagota, V., Sanober, S., Beram, S. M., Rane, K., & Singh, B. K. (2022). Deep Neural Network-Based Novel Mathematical Model for 3D Brain Tumor Segmentation. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/4271711
Latif, G. (2022). DeepTumor: Framework for Brain MR Image Classification, Segmentation and Tumor Detection. Diagnostics, 12(11). https://doi.org/10.3390/diagnostics12112888
Li, H., Li, A., & Wang, M. (2019). A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Computers in Biology and Medicine, 108(March), 150–160. https://doi.org/10.1016/j.compbiomed.2019.03.014
Li, S., Liu, J., & Song, Z. (2022). Brain tumor segmentation based on region of interest-aided localization and segmentation U-Net. International Journal of Machine Learning and Cybernetics, 13(9), 2435–2445. https://doi.org/10.1007/s13042-022-01536-4
Liang, J., Yang, C., Zhong, J., & Ye, X. (2022). BTSwin-Unet: 3D U-shaped Symmetrical Swin Transformer-based Network for Brain Tumor Segmentation with Self-supervised Pre-training. Neural Processing Letters, 696. https://doi.org/10.1007/s11063-022-10919-1
Liu, J., Li, M., Wang, J., Wu, F., Liu, T., & Pan, Y. (2014). A survey of MRI-based brain tumor segmentation methods. Tsinghua Science and Technology, 19(6), 578–595. https://doi.org/10.1109/TST.2014.6961028
Liu, Y., Mu, F., Shi, Y., Cheng, J., Li, C., & Chen, X. (n.d.). Brain tumor segmentation in multimodal MRI via pixel-level and feature-level image fusion.
Mahesh Kumar, G., & Parthasarathy, E. (2023). Development of an enhanced U-Net model for brain tumor segmentation with optimized architecture. Biomedical Signal Processing and Control, 81(November 2022), 104427. https://doi.org/10.1016/j.bspc.2022.104427
Meenakshi, K. S. K., Bindu, H., & Karuna, V. G. (2022). Segmentation and detection of brain tumor through optimal selection of integrated features using transfer learning. Multimedia Tools and Applications.
MRI t1 vs t2. (n.d.). https://helpary.wordpress.com/2019/02/26/mri-t1-vs-t2/
Nazir, M., Shakil, S., & Khurshid, K. (2021). Role of deep learning in brain tumor detection and classification (2015 to 2020): A review. Computerized Medical Imaging and Graphics, 91(April), 101940. https://doi.org/10.1016/j.compmedimag.2021.101940
Neelima, G., Chigurukota, D. R., Maram, B., & Girirajan, B. (2022). Optimal DeepMRSeg based tumor segmentation with GAN for brain tumor classification. Biomedical Signal Processing and Control, 74(January), 103537. https://doi.org/10.1016/j.bspc.2022.103537
Nyo, M. T., Mebarek-Oudina, F., Hlaing, S. S., & Khan, N. A. (2022). Otsu’s thresholding technique for MRI image brain tumor segmentation. Multimedia Tools and Applications, 81(30), 43837–43849. https://doi.org/10.1007/s11042-022-13215-1
Polat, Ö., & Güngen, C. (2021). Classification of brain tumors from MR images using deep transfer learning. Journal of Supercomputing, 77(7), 7236–7252. https://doi.org/10.1007/s11227-020-03572-9
Rahman, T., & Islam, M. S. (2023). MRI brain tumor detection and classification using parallel deep convolutional neural networks. Measurement: Sensors, 26(December 2022), 100694. https://doi.org/10.1016/j.measen.2023.100694
Raja, M., & Vijayachitra, S. (2023). A hybrid approach to segment and detect brain abnormalities from MRI scan. Expert Systems with Applications, 216(May 2022), 119435. https://doi.org/10.1016/j.eswa.2022.119435
Ramesh, S., Sasikala, S., & Paramanandham, N. (2021). Segmentation and classification of brain tumors using modified median noise filter and deep learning approaches. Multimedia Tools and Applications, 80(8), 11789–11813. https://doi.org/10.1007/s11042-020-10351-4
Ramprasad, M. V. S., Rahman, M. Z. U., & Bayleyegn, M. D. (2022). A Deep Probabilistic Sensing and Learning Model for Brain Tumor Classification with Fusion-Net and HFCMIK Segmentation. IEEE Open Journal of Engineering in Medicine and Biology, 3, 178–188. https://doi.org/10.1109/OJEMB.2022.3217186
Ranjbarzadeh, R., Bagherian Kasgari, A., Jafarzadeh Ghoushchi, S., Anari, S., Naseri, M., & Bendechache, M. (2021). Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-90428-8
Rasool, M., Ismail, N., Boulila, W., Ammar, A., Samma, H., Yafooz, W. S., & Emara, A. H. (2022). A Hybrid Deep Learning Model for Brain Tumour Classification. Entropy, 24(6). https://doi.org/10.3390/e24060799
Rasool Reddy, K., & Dhuli, R. (2022). Segmentation and classification of brain tumors from MRI images based on adaptive mechanisms and ELDP feature descriptor. Biomedical Signal Processing and Control, 76(April), 103704. https://doi.org/10.1016/j.bspc.2022.103704
Reddy, K. R., & Dhuli, R. (2023). A Novel Lightweight CNN Architecture for the Diagnosis of Brain Tumors Using MR Images. Diagnostics, 13(2). https://doi.org/10.3390/diagnostics13020312
Saeed, M. U., Ali, G., Bin, W., Almotiri, S. H., Alghamdi, M. A., Nagra, A. A., Masood, K., & Amin, R. U. (2021). Rmu-net: A novel residual mobile u-net model for brain tumor segmentation from MR images. Electronics (Switzerland), 10(16), 1–17. https://doi.org/10.3390/electronics10161962
Saeedi, S., Rezayi, S., Keshavarz, H., & R. Niakan Kalhori, S. (2023). MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques. BMC Medical Informatics and Decision Making, 23(1), 1–17. https://doi.org/10.1186/s12911-023-02114-6
Samee, N. A., Ahmad, T., Mahmoud, N. F., Atteia, G., Abdallah, H. A., & Rizwan, A. (2022). Clinical Decision Support Framework for Segmentation and Classification of Brain Tumor MRIs Using a U-Net and DCNN Cascaded Learning Algorithm. Healthcare (Switzerland), 10(12). https://doi.org/10.3390/healthcare10122340
Shanthi, S., Saradha, S., Smitha, J. A., Prasath, N., & Anandakumar, H. (2022). An efficient automatic brain tumor classification using optimized hybrid deep neural network. International Journal of Intelligent Networks, 3(November), 188–196. https://doi.org/10.1016/j.ijin.2022.11.003
Sharif, M., Amin, J., Raza, M., Yasmin, M., & Satapathy, S. C. (2020). An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recognition Letters, 129, 150–157. https://doi.org/https://doi.org/10.1016/j.patrec.2019.11.017
Sharif, M. I., Li, J. P., Khan, M. A., & Saleem, M. A. (2020). Active deep neural network features selection for segmentation and recognition of brain tumors using MRI images. Pattern Recognition Letters, 129, 181–189. https://doi.org/10.1016/j.patrec.2019.11.019
Shinde, A., & Girish, V. (2020). Image Mining Methodology for Detection of Brain Tumor: A Review. 232–237. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00044
Soltaninejad, M., Yang, G., Lambrou, T., Allinson, N., Jones, T. L., Barrick, T. R., Howe, F. A., & Ye, X. (2018). Supervised learning based multimodal MRI brain tumour segmentation using texture features from supervoxels. Computer Methods and Programs in Biomedicine, 157, 69–84. https://doi.org/10.1016/j.cmpb.2018.01.003
Srividya, K., Anilkumar, B., & Sowjanya, A. M. (2023). Histo-Quartic Graph and Stack Entropy-Based Deep Neural Network Method for Brain and Tumor Segmentation. Neural Processing Letters. https://doi.org/10.1007/s11063-023-11276-3
Svm, M., & Maqsood, S. (2022). Multi-Modal Brain Tumor Detection Using Deep Neural. Mdpi.
Tandel, G. S., Tiwari, A., & Kakde, O. G. (2022). Performance enhancement of MRI-based brain tumor classification using suitable segmentation method and deep learning-based ensemble algorithm. Biomedical Signal Processing and Control, 78(March), 104018. https://doi.org/10.1016/j.bspc.2022.104018
Tandel, G. S., Tiwari, A., Kakde, O. G., Gupta, N., Saba, L., & Suri, J. S. (2023). Role of Ensemble Deep Learning for Brain Tumor Classification in Multiple Magnetic Resonance Imaging Sequence Data. Diagnostics, 13(3). https://doi.org/10.3390/diagnostics13030481
Tiwari, A., Srivastava, S., & Pant, M. (2020). Brain tumor segmentation and classification from magnetic resonance images: Review of selected methods from 2014 to 2019. Pattern Recognition Letters, 131, 244–260. https://doi.org/10.1016/j.patrec.2019.11.020
Tiwari, P., Pant, B., Elarabawy, M. M., Abd-Elnaby, M., Mohd, N., Dhiman, G., & Sharma, S. (2022). CNN Based Multiclass Brain Tumor Detection Using Medical Imaging. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/1830010
van Kempen, E. J., Post, M., Mannil, M., Kusters, B., Ter Laan, M., Meijer, F. J. A., & Henssen, D. J. H. A. (2021). Accuracy of machine learning algorithms for the classification of molecular features of gliomas on mri: A systematic literature review and meta-analysis. Cancers, 13(11), 9638–9653. https://doi.org/10.3390/cancers13112606
Vankdothu, R., Hameed, M. A., & Fatima, H. (2022). A Brain Tumor Identification and Classification Using Deep Learning based on CNN-LSTM Method. Computers and Electrical Engineering, 101(March), 107960. https://doi.org/10.1016/j.compeleceng.2022.107960
Viechtbauer, W. (2010). Conducting Meta-Analyses in R with The metafor Package. Journal of Statistical Software, 36. https://doi.org/10.18637/jss.v036.i03
Wu, W., Li, D., Du, J., Gao, X., Gu, W., Zhao, F., Feng, X., & Yan, H. (2020). An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm. Computational and Mathematical Methods in Medicine, 2020. https://doi.org/10.1155/2020/6789306
Wu, Y., Zhao, Z., Wu, W., Lin, Y., & Wang, M. (2019). Automatic glioma segmentation based on adaptive superpixel. BMC Medical Imaging, 19(1), 1–14. https://doi.org/10.1186/s12880-019-0369-6
Yeghiazaryan, V., & Voiculescu, I. (2018). Family of boundary overlap metrics for the evaluation of medical image segmentation. Journal of Medical Imaging (Bellingham, Wash.), 5(1), 15006. https://doi.org/10.1117/1.JMI.5.1.015006
Younis, A., Qiang, L., Nyatega, C. O., Adamu, M. J., & Kawuwa, H. B. (2022). Brain Tumor Analysis Using Deep Learning and VGG-16 Ensembling Learning Approaches. Applied Sciences (Switzerland), 12(14). https://doi.org/10.3390/app12147282
ZainEldin, H., Gamel, S. A., El-Kenawy, E. S. M., Alharbi, A. H., Khafaga, D. S., Ibrahim, A., & Talaat, F. M. (2023). Brain Tumor Detection and Classification Using Deep Learning and Sine-Cosine Fitness Grey Wolf Optimization. Bioengineering, 10(1), 1–19. https://doi.org/10.3390/bioengineering10010018
Zheng, P., Zhu, X., & Guo, W. (2022). Brain tumour segmentation based on an improved U-Net. BMC Medical Imaging, 22(1), 1–9. https://doi.org/10.1186/s12880-022-00931-1
Brian Moore, Peter Thomas, Giovanni Rossi, Anna Kowalska, Manuel López. Deep Reinforcement Learning for Dynamic Decision Making in Decision Science. Kuwait Journal of Machine Learning, 2(4). Retrieved from http://kuwaitjournals.com/index.php/kjml/article/view/219
Vijayalakshmi, S. ., Vishnupriya, S. ., Sarala, B. ., Karthik Ch., B. ., Dhanalakshmi, R. ., Hephzipah, J. J. ., & Pavaiyarkarasi, R. . (2023). Improved DASH Architecture for Quality Cloud Video Streaming in Automated Systems. International Journal on Recent and Innovation Trends in Computing and Communication, 11(2s), 32–42. https://doi.org/10.17762/ijritcc.v11i2s.6026
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.