Recent Advances of Energy and Delay Techniques in MAC Protocols that Enhances WSN Life Span: A Comprehensive Investigation


  • Seethamraju Sudhamsu Mouli Ph.D. Scholar, Computer Science and Engineering, Mahindra University, Hyderabad, Telangana, India
  • Veeraiah T. Assistant professor, Computer Science and Engineering, Mahindra University, Hyderabad, Telangana, India.
  • M. P. Singh Professor, Computer Science and Engineering, National Institute of Technology-Patna, Bihar, India.


WSN, MAC, protocol, S-MAC, communication


The Wireless Sensor Network (WSN) can essentially be applied to numerous applications, including PC observing and information checking. In any case, applications for remote sensor networks have various attributes and necessities than standard wireless local area network (WLAN) applications. Wireless or Remote Sensor Networks (WSNs) have become a main arrangement in numerous significant applications, for example, interruption discovery, tracing the target, mechanical mechanization, brilliant structure, etc. The sensor hubs are commonly unattended after their arrangement in dangerous, antagonistic or far-off regions. A few MAC conventions for the WSNs are portrayed accentuating their quality and shortcoming. Efficient or smart energy utilization is the most significant idea of WSN. The low message rates and streamlined idleness necessities regularly utilized in sensor network applications can diminish the remote force utilization of sensor terminals. In this paper, we carried out a study of several energy-efficient Medium Access Control (MAC) protocols premeditated for wireless sensor networks namely Sensor-MAC (S-MAC) in addition to Time-out MAC (T-MAC). Finally, we will discuss the forthcoming research guidelines in the MAC protocol strategy.


Download data is not yet available.


Yang, X., Wang, L., Su, J., Gong, Y., (2018) Hybrid MAC protocol design for mobile wireless sensors networks. IEEE Sensors letters 2:1-4.

RheeI., WarrierA., AiaM., MinJ., SichitiuM. L., (2008) Z-MAC: A hybrid MAC for wireless sensor networks. IEEE/ACM Trans. Netw 16:511–524.

UllahA., AhnJ. S., (2016). Performance evaluation of X-MAC/BEB protocol for wireless sensor networks, Journal of Communication Network 18:857–869.

BuettnerM., YeeG. V., AndersonE., HanR., (2006) X-MAC: A short preamble MAC protocol for duty-cycled wireless sensor networks. in Proc. 4th Int. Conf. Embedded Netw. Sens. Syst., Boulder, CO, USA, 307–320.

JangJ., KimS. W., WieS., (2012) Throughput and delay analysis of a reliable cooperative MAC protocol in ad hoc networks. Journal of Communication Networks 14:524–532.

QuangP. T. A., KimD. S., (2015) Clustering algorithm of hierarchical structures in large-scale wireless sensor and actuator networks. Journal of Communication Network. 17:473–481.

Yu M.,YangX., (2018) COO-MAC: A Novel Cooperative MAC Protocol for Wireless Sensor Networks. IEEE sensors letters, 2(4):1-4.

Liu B., Yan Z., Chen C. W., (2013) MAC protocol in wireless body area networks for E-health: Challenges and a context-aware design. IEEE Wireless Communication 20:64–72.

KartsakliE., Lalos A. S., Antonopoulos A., TenninaS., Renzo M. D., Alonso L., VerikoukisC., (2014). A survey on M2M systems for mHealth: a wireless communications perspective. Sensors 14:18009-18052,

AslamN., XiaK., AliA.,UllahS., (2017) Adaptive TCP-ICCW Congestion Control Mechanism for QoS in Renewable Wireless Sensor Networks. IEEE Sensors Letters 1:1-4.

AslamN., XiaK., HaiderM., HadiM., (2017) Energy-Aware Adaptive Weighted Grid Clustering Algorithm for Renewable Wireless Sensor Networks. Future Internet 9(4), 54:1-21.

Vazifehdan J., Prasad R. V., Jacobsson M., Niemegeers I., (2012). An analytical energy consumption model for packet transfer over wireless links. IEEE Communications Letters 16:30-33.

Li Z., Li M., Liu Y. (2014). Towards energy-fairness in asynchronous duty-cycling sensor networks. ACM Transactions on Sensor Networks (TOSN) 10:3(38),

Jing L., Ming L., Bin Y., Wenlong L (2015) A novel energy efficient MAC protocol for Wireless Body Area Network. China Communications, 12(2):11-20.

IEEE Standard for Local and metropolitan area networks- Part 15.6: Wireless Body Area Networks, IEEE Standard 802.15.6.

Lin C H, Lin K C J, Chen W T (2017) Channel-Aware Polling-Based MAC Protocol for Body Area Networks: Design and Analysis. IEEE Sensors Journal 17(9):2936-2948,

LiJ., LazarouG., (2004) A bit-map-assisted energy-efficient MAC scheme for wireless sensor networks, Third International Symposium on Information Processing in Sensor Networks in Proc. IPSN, Berkeley, USA, 55–60.

T. -H. Hsu and P. -Y. Yen, (2011) Adaptive time division multiple access-based medium access control protocol for energy conserving and data transmission in wireless sensor networks, IET Communications 5(18):2662–2672.

Alvi, A.N., Bouk, S.H., Ahmed, S.H., Yaqub, M.A., Javaid, N. and Kim, D., (2015) Enhanced TDMA based MAC protocol for adaptive data control in wireless sensor networks. Journal of communications and networks, 17(3):247-255.

Zheng, M., Wang, C., Du, M., Chen, L., Liang, W. and Yu, H., (2019) A Short Preamble Cognitive MAC Protocol in Cognitive Radio Sensor Networks. IEEE Sensors Journal 19(15):6530-6538.

Gomes, A., Macedo, D.F. and Vieira, L.F., (2020) Automatic MAC protocol selection in wireless networks based on reinforcement learning. Computer Communications 149:312-323.

Shah, B., Abbas, A., Ali, G., Iqbal, F., Khattak, A.M., Alfandi, O. and Kim, K.I., (2020) Guaranteed Lifetime Protocol for IoT based Wireless Sensor Networks with Multiple Constraints. Ad Hoc Networks 104,

Rahman, M.A., Asyhari, A.T., Kurniawan, I.F., Ali, M.J., Rahman, M.M. and Karim, M., (2020) A scalable hybrid MAC strategy for traffic-differentiated IoT-enabled intra-vehicular networks. Computer Communications.

Rehan, W., Fischer, S., Rehan, M., Mawad, Y. and Saleem, S., (2020) QCM2R: A QoS-aware cross-layered multichannel multisink routing protocol for stream based wireless sensor networks. Journal of Network and Computer Applications,

Naghibi, M. and Barati, H., (2020) EGRPM: Energy efficient geographic routing protocol based on mobile sink in wireless sensor networks. Sustainable Computing: Informatics and Systems, 25,

Haseeb, K., Islam, N., Saba, T., Rehman, A. and Mehmood, Z., (2020) LSDAR: A light-weight structure based data aggregation routing protocol with secure internet of things integrated next-generation sensor networks. Sustainable Cities and Society, 54.

Alves, R.C.A., Margi, C.B. and Kuipers, F.A., (2020) Know when to listen: SDN-based protocols for directed IoT networks. Computer Communications, 150:672-686.

Stephan, T., Al-Turjman, F., Joseph, K.S., Balusamy, B. and Srivastava, S., (2020) Artificial intelligence inspired energy and spectrum aware cluster based routing protocol for cognitive radio sensor networks. Journal of Parallel and Distributed Computing. 142:90-105.

Li, Q.Q. and Peng, Y., (2020) A Wireless Mesh Multipath Routing Protocol Based on Sorting Ant Colony Algorithm. Procedia Computer Science, 166, 570-575.

Liu, J., Wang, Q., He, C., Jaffrès-Runser, K., Xu, Y., Li, Z. and Xu, Y., (2020) QMR: Q-learning based multi-objective optimization routing protocol for flying ad hoc networks. Computer Communications 150:304-316.

Ramli, M.R., Lee, J.M. and Kim, D.S., (2019) Hybrid mac protocol for uav-assisted data gathering in a wireless sensor network. Internet of Things

Rodriguez, P.M., Lizeaga, A., Mendicute, M. and Val, I., (2019) Spectrum handoff strategy for cognitive radio-based MAC for real-time industrial wireless sensor and actuator networks. Computer Networks 152:186-198.

Gomes, R.D., Benavente-Peces, C., Fonseca, I.E. and Alencar, M.S., (2019) Adaptive and Beacon-based multi-channel protocol for Industrial Wireless Sensor Networks. Journal of Network and Computer Applications 132:22-39.

Barnawi, A.Y., Mohsen, G.A. and Shahra, E.Q., (2019) Performance analysis of rpl protocol for data gathering applications in wireless sensor networks. Procedia Computer Science 151:185-193.

Kumar, S., Lal, N. and Chaurasiya, V.K., (2019) An energy efficient IPv6 packet delivery scheme for industrial IoT over G. 9959 protocol based wireless sensor network (WSN). Computer Networks 154:79-87.

Mahmud, M.T., Rahman, M.O., Hassan, M.M., Almogren, A. and Zhou, M., (2019) An Efficient Cooperative Medium Access Control Protocol for Wireless IoT networks in Smart World System. Journal of Network and Computer Applications, 133:26-38.

Sun, Z., Wei, M., Zhang, Z. and Qu, G., (2019) Secure Routing Protocol based on Multi-objective Ant-colony-optimization for wireless sensor networks. Applied Soft Computing 77:366-375.

Cheng, Y., Yang, D., Zhou, H. and Wang, H., (2019) Adopting IEEE 802.11 MAC for industrial delay-sensitive wireless control and monitoring applications: A survey. Computer Networks 157:41-67.

Toor, A.S. and Jain, A.K., (2019) Energy aware cluster based multi-hop energy efficient routing protocol using multiple mobile nodes (MEACBM) in wireless sensor networks. AEU-International Journal of Electronics and Communications 102:41-53.

Sakya, G. and Sharma, V., (2019) ADMC-MAC: Energy efficient adaptive MAC protocol for mission critical applications in WSN. Sustainable Computing. Informatics and Systems 23:21-28.

Chehri, A., (2019) Energy-efficient modified DCC-MAC protocol for IoT in e-health applications. Internet of things 14:1-22.

Abbache, B., Aissani, S., Omar, M., Ouada, F.S., Yessad, N., Azni, M. and Tari, A., (2019) Dissimulation-based and load-balance-aware routing protocol for request and event oriented mobile wireless sensor networks. AEU-International Journal of Electronics and Communications 99:264-283.

Kia, G. and Hassanzadeh, A., (2019) A multi-threshold long life time protocol with consistent performance for wireless sensor networks. AEU-International Journal of Electronics and Communications 101:114-127.

Feng, P., Bai, Y., Huang, J., Wang, W., Gu, Y. and Liu, S., (2019) CogMOR-MAC: A cognitive multi-channel opportunistic reservation MAC for multi-UAVs ad hoc networks. Computer Communications 136:30-42.

Shamna, H.R. and Lillykutty, J., (2017) An energy and throughput efficient distributed cooperative MAC protocol for multihop wireless networks. Computer Networks 126:15-30.

Rahdar, A. and Khalily-Dermany, M., (2017) A schedule-based MAC in wireless Ad-hoc Network by utilizing Fuzzy TOPSIS. Procedia computer science, 116:301-308.

. Jornet, J. M., &Akyildiz, I. F. (2011) Information capacity of pulse-based wireless nano sensor networks. In 8th Annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON 2011), 80–88.

Cho, S., & Hayes, J. P. (2005) Impact of mobility on connection stability in ad hoc networks. In IEEE Wireless communications and networking conference (WCNC), New Orleans, USA, 16501656.

Rikhtegar N., Keshtgari M., Ronaghi Z., (2017) EEWNSN: Energy efficient wireless nano sensor network MAC protocol for communications in the terahertz band. Wireless Personal Communications 97(1):521-537.

Anubhama, R., Rajendran, T. PRIB-MAC: a preamble-based receiver initiated MAC protocol for broadcast in wireless sensor networks. Sādhanā 45, 79 (2020).

Anubhama, R. and Rajendran, T., (2020) PRIB-MAC: a preamble-based receiver initiated MAC protocol for broadcast in wireless sensor networks.Sādhanā 45:1-8.

Lee, J. and Kim, S., (2020) EnRI-MAC: An enhanced receiver-initiated MAC protocol for various traffic types in wireless sensor networks. Wireless Networks 26(2):1193-1202.

Alfayez, F., Hammoudeh, M. and Abuarqoub, A., (2015) A survey on MAC protocols for duty-cycled wireless sensor networks. Procedia Computer Science 73:482-489.

Mr. Dharmesh Dhabliya, Mr. Rahul Sharma. (2012). Efficient Cluster Formation Protocol in WSN. International Journal of New Practices in Management and Engineering, 1(03), 08 - 17. Retrieved from

Dhiman, O. ., & Sharma, D. A. . (2020). Detection of Gliomas in Spinal Cord Using U-Net++ Segmentation with Xg Boost Classification. Research Journal of Computer Systems and Engineering, 1(1), 17–22. Retrieved from




How to Cite

Mouli, S. S. ., T., V. ., & Singh, M. P. . (2023). Recent Advances of Energy and Delay Techniques in MAC Protocols that Enhances WSN Life Span: A Comprehensive Investigation. International Journal of Intelligent Systems and Applications in Engineering, 12(4s), 616–634. Retrieved from



Research Article