Advancing Neurodegenerative Disorder Diagnosis: A Machine Learning-Driven Evaluation of Assessment Modalities

Authors

  • Shridevi Karande Research Scholar, School of Computer Engineering and Technology, Faculty of Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune.
  • Vrushali Kulkarni School of Computer Engineering and Technology, Faculty of Engineering, Dr. Vishwanath Karad MIT World Peace University, Pune.

Keywords:

Neurodegenerative Disorders, Diagnostic Modalities, Dementia, Alzheimer's Disease, Multimodal Assessment, Early Detection, machine learning, SVM

Abstract

The global epidemic of neurodegenerative diseases demands a paradigm change in diagnostic approaches. This work initiates a machine learning-focused investigation into the evaluation of neurodegenerative diseases, including dementia and Alzheimer's disease. We present a thorough analysis that combines four different assessment modalities, all enhanced by machine learning algorithms: the classic Clock-drawing Test (CDT), the sophisticated Eye Gaze Analysis, the cognitive Trail-making Test (TMT), and the novel Speech Analysis. This study recognizes the complex range of neurodegenerative illnesses and strategically emphasizes multi-modal evaluation. Given the significant influence these disorders have on patient outcomes, special attention is paid to their early diagnosis. Through a thorough analysis of the advantages and disadvantages of each evaluation method, our research attempts to provide medical practitioners with a machine learning-based framework for accurate diagnosis of neurodegenerative disorders. Our method aims to promote early interventions and enhance patient care in addition to improving diagnostic accuracy. Incorporating machine learning improves diagnostic performance and creates the groundwork for novel advances in the study of neurodegenerative disorders. This comprehensive study advances our knowledge of these illnesses and pave the way for a time when machine learning and sophisticated diagnostics will work together to improve the quality of treatment for people with neurodegenerative diseases.

Downloads

Download data is not yet available.

References

AZDI, “Alzheimer’s Disease International Contribuyentes. World Alzheimer Report 2019,” Alzheimer Disease International. p. 13, 2019.

H. Amieva et al., “Compensatory mechanisms in higher-educated subjects with Alzheimer’s disease: A study of 20 years of cognitive decline,” Brain, vol. 137, no. 4, pp. 1167–1175, 2014, doi: 10.1093/brain/awu035.

A. Sevcik and M. Rusko, “A Systematic Review of Alzheimer’s disease detection based on speech and natural language processing,” 2022 32nd Int. Conf. Radioelektronika, RADIOELEKTRONIKA 2022 - Proc., 2022, doi: 10.1109/RADIOELEKTRONIKA54537.2022.9764938.

B. Abdallah-Qasaimeh and S. Ratté, “Detecting depression in Alzheimer’s disease and MCI by speech analysis,” J. Theor. Appl. Inf. Technol., vol. 99, no. 5, pp. 1162–1171, 2021.

N. Bharanidharan and H. Rajaguru, “Classification of dementia using harmony search optimization technique,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC, vol. 2018-Decem, pp. 0–4, 2019, doi: 10.1109/R10-HTC.2018.8629846.

I. Linari, G. E. Juantorena, A. Ibáñez, A. Petroni, and J. E. Kamienkowski, “Unveiling Trail Making Test: visual and manual trajectories indexing multiple executive processes,” Sci. Rep., vol. 12, no. 1, pp. 1–15, 2022, doi: 10.1038/s41598-022-16431-9.

N. Noiret, B. Vigneron, M. Diogo, P. Vandel, and É. Laurent, “Saccadic eye movements: what do they tell us about aging cognition?,” Aging, Neuropsychol. Cogn., vol. 24, no. 5, pp. 575–599, 2017, doi: 10.1080/13825585.2016.1237613.

J. K. H. Lim et al., “The eye as a biomarker for Alzheimer’s disease,” Front. Neurosci., vol. 10, no. NOV, pp. 1–14, 2016, doi: 10.3389/fnins.2016.00536.

J. Escudero, E. Ifeachor, J. P. Zajicek, C. Green, J. Shearer, and S. Pearson, “Machine learning-based method for personalized and cost-effective detection of alzheimer’s disease,” IEEE Trans. Biomed. Eng., vol. 60, no. 1, pp. 164–168, 2013, doi: 10.1109/TBME.2012.2212278.

S. Ye et al., “A Computerized Cognitive Test Battery for Detection of Dementia and Mild Cognitive Impairment: Instrument Validation Study,” JMIR Aging, vol. 5, no. 2, pp. 1–12, 2022, doi: 10.2196/36825.

R. Sivakani and G. A. Ansari, “Machine Learning Framework for Implementing Alzheimer’s Disease,” Proc. 2020 IEEE Int. Conf. Commun. Signal Process. ICCSP 2020, pp. 588–592, 2020, doi: 10.1109/ICCSP48568.2020.9182220.

S. Minhas, “Impairment to Alzheimer ’s Disease Using Autoregressive Modelling of Longitudinal and,” vol. 22, no. 3, pp. 818–825, 2018.

K. Mengoudi et al., “With Instruction-Less Eye-Tracking Tests,” vol. 24, no. 11, pp. 3066–3075, 2020.

H. Tanaka et al., “Detecting Dementia Through Interactive Computer Avatars,” IEEE J. Transl. Eng. Heal. Med., vol. 5, no. April, 2017, doi: 10.1109/JTEHM.2017.2752152.

H. Tanaka, H. Adachi, N. Ukita, T. Kudo, and S. Nakamura, “Automatic detection of very early stage of dementia through multimodal interaction with computer avatars,” ICMI 2016 - Proc. 18th ACM Int. Conf. Multimodal Interact., pp. 261–265, 2016, doi: 10.1145/2993148.2993193.

L. B. Dos Santos, E. A. Corrêa, O. N. Oliveira, D. R. Amancio, L. L. Mansur, and S. M. Aluísio, “Enriching complex networks with word embeddings for detecting mild cognitive impairment from speech transcripts,” ACL 2017 - 55th Annu. Meet. Assoc. Comput. Linguist. Proc. Conf. (Long Pap., vol. 1, pp. 1284–1296, 2017, doi: 10.18653/v1/P17-1118.

L. Tóth et al., “Automatic detection of Mild cognitive impairment from spontaneous speech using ASR,” Proc. Annu. Conf. Int. Speech Commun. Assoc. INTERSPEECH, vol. 2015-Janua, pp. 2694–2698, 2015, doi: 10.21437/interspeech.2015-568.

J. J. G. Meilán, F. Martínez-Sánchez, J. Carro, D. E. López, L. Millian-Morell, and J. M. Arana, “Speech in alzheimer’s disease: Can temporal and acoustic parameters discriminate dementia?,” Dement. Geriatr. Cogn. Disord., vol. 37, no. 5–6, pp. 327–334, 2014, doi: 10.1159/000356726.

A. Khodabakhsh, S. Kusxuoglu, and C. Demiroglu, “Natural language features for detection of Alzheimer’s disease in conversational speech,” 2014 IEEE-EMBS Int. Conf. Biomed. Heal. Informatics, BHI 2014, pp. 581–584, 2014, doi: 10.1109/BHI.2014.6864431.

W. Jarrold et al., “Aided Diagnosis of Dementia Type through Computer-Based Analysis of Spontaneous Speech,” Proc. Annu. Meet. Assoc. Comput. Linguist., pp. 27–37, 2014, doi: 10.3115/v1/w14-3204.

A. König et al., “The role of information and communication technologies in clinical trials with patients with Alzheimer’s disease and related disorders,” Front. Aging Neurosci., vol. 7, no. JUN, p. 110, 2015, doi: 10.3389/fnagi.2015.00110.

N. Yadav et al., “Portable neurological disease assessment using temporal analysis of speech,” BCB 2015 - 6th ACM Conf. Bioinformatics, Comput. Biol. Heal. Informatics, pp. 77–85, 2015, doi: 10.1145/2808719.2808727.

S. Hanai, S. Kato, T. Sakuma, R. Ohdake, M. Masuda, and H. Watanabe, “A Dementia Classification Based on Speech Analysis of Casual Talk During a Clinical Interview,” LifeTech 2022 - 2022 IEEE 4th Glob. Conf. Life Sci. Technol., pp. 38–40, 2022, doi: 10.1109/LifeTech53646.2022.9754933.

J. J. Miller, “The Clock-Drawing Test,” Psychiatr. Times, vol. 40, no. 3, p. 6, 2023.

S. Amini et al., “An AI-assisted Online Tool for Cognitive Impairment Detection Using Images from the Clock Drawing Test,” medRxiv, p. 2021.03.06.21253047, 2021, [Online]. Available: https://www.medrxiv.org/content/10.1101/2021.03.06.21253047v1%0Ahttps://www.medrxiv.org/content/10.1101/2021.03.06.21253047v1.abstract.

V. Bloniecki, G. Hagman, M. Ryden, and M. Kivipelto, “Digital Screening for Cognitive Impairment — A Proof of Concept Study,” J. Prev. Alzheimer’s Dis., vol. 8, no. 2, pp. 127–134, 2021, doi: 10.14283/jpad.2021.2.

S. Khonthapagdee, S. Lownoppakul, N. Chotchoey, N. Wiwatwattana, S. Mongkolluksamee, and V. Sa-Ing, “Alzheimer Screening using Drawing Test Scores,” 17th Int. Conf. Electr. Eng. Comput. Telecommun. Inf. Technol. ECTI-CON 2020, pp. 101–104, 2020, doi: 10.1109/ECTI-CON49241.2020.9158244.

O. Kaya, “Saat Çizme Testinin Sayısal olarak Tanınması ve gerlendirilmesi Digital Recognition and Evaluation of the Clock Drawing Test,” pp. 1–4, 2018.

L. Toth et al., “A Speech Recognition-based Solution for the Automatic Detection of Mild Cognitive Impairment from Spontaneous Speech,” Curr. Alzheimer Res., vol. 15, no. 2, pp. 130–138, 2017, doi: 10.2174/1567205014666171121114930.

C.-S. Ang, K.-M. Teo, Y.-L. Ong, and S.-L. Siak, “Trial Making Test (TMT) Parts A & B,” Addict. Heal., vol. 11, no. 1, pp. 1–10, 2019, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/31308904%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC6612240.

S. P. Hagenaars et al., “Genetic contributions to Trail Making Test performance in UK Biobank,” Mol. Psychiatry, vol. 23, no. 7, pp. 1575–1583, 2018, doi: 10.1038/mp.2017.189.

A. Varjacic, D. Mantini, N. Demeyere, and C. R. Gillebert, “Neural signatures of Trail Making Test performance: Evidence from lesion-mapping and neuroimaging studies,” Neuropsychologia, vol. 115, no. June 2017, pp. 78–87, 2018, doi: 10.1016/j.neuropsychologia.2018.03.031.

J. C. Arango-Lasprilla et al., “Trail Making Test: Normative data for the Latin American Spanish speaking adult population,” NeuroRehabilitation, vol. 37, no. 4, pp. 639–661, 2015, doi: 10.3233/NRE-151284.

T. A. Salthouse, “What cognitive abilities are involved in trail-making performance?,” Intelligence, vol. 39, no. 4, pp. 222–232, 2011, doi: 10.1016/j.intell.2011.03.001.

T. N. Tombaugh, “Trail Making Test A and B: Normative data stratified by age and education,” Arch. Clin. Neuropsychol., vol. 19, no. 2, pp. 203–214, 2004, doi: 10.1016/S0887-6177(03)00039-8.

C. R. Bowie and P. D. Harvey, “Administration and interpretation of the Trail Making Test,” Nat. Protoc., vol. 1, no. 5, pp. 2277–2281, 2006, doi: 10.1038/nprot.2006.390.

M. L. G. Freitas Pereira, M. Z. von Zuben A Camargo, I. Aprahamian, and O. V. Forlenza, “Eye movement analysis and cognitive processing: Detecting indicators of conversion to Alzheimer’s disease,” Neuropsychiatr. Dis. Treat., vol. 10, pp. 1273–1285, 2014, doi: 10.2147/NDT.S55371.

T. S. Field et al., “Machine learning analysis of speech and eye tracking data to distinguish Alzheimer’s clinic patients from healthy controls,” Alzheimer’s Dement., vol. 16, no. S5, pp. 1–2, 2020, doi: 10.1002/alz.046742.

U. Nam, K. Lee, H. Ko, J. Y. Lee, and E. C. Lee, “Analyzing facial and eye movements to screen for alzheimer’s disease,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–11, 2020, doi: 10.3390/s20185349.

A. Oyama et al., “Novel Method for Rapid Assessment of Cognitive Impairment Using High-Performance Eye-Tracking Technology,” Sci. Rep., vol. 9, no. 1, pp. 1–9, 2019, doi: 10.1038/s41598-019-49275-x.

J. Beltrán, M. S. García-Vázquez, J. Benois-Pineau, L. M. Gutierrez-Robledo, and J. F. Dartigues, “Computational Techniques for Eye Movements Analysis towards Supporting Early Diagnosis of Alzheimer’s Disease: A Review,” Comput. Math. Methods Med., vol. 2018, 2018, doi: 10.1155/2018/2676409.

J. Biondi, G. Fernandez, S. Castro, and O. Agamennoni, “Eye movement behavior identification for Alzheimer’s disease diagnosis,” J. Integr. Neurosci., vol. 17, no. 4, pp. 349–354, 2018, doi: 10.31083/J.JIN.2018.04.0416.

Muhammad Khan, Machine Learning for Predictive Maintenance in Manufacturing: A Case Study , Machine Learning Applications Conference Proceedings, Vol 1 2021.

Kshirsagar, D. R. . (2021). Malicious Node Detection in Adhoc Wireless Sensor Networks Using Secure Trust Protocol. Research Journal of Computer Systems and Engineering, 2(2), 12:16. Retrieved from https://technicaljournals.org/RJCSE/index.php/journal/article/view/26

Dhabliya, D. Dhabliya, R. Key characteristics and components of cloud computing (2019) International Journal of Control and Automation, 12 (6 Special Issue), pp. 12-18.

Downloads

Published

24.11.2023

How to Cite

Karande, S. ., & Kulkarni, V. . (2023). Advancing Neurodegenerative Disorder Diagnosis: A Machine Learning-Driven Evaluation of Assessment Modalities. International Journal of Intelligent Systems and Applications in Engineering, 12(5s), 309–323. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3893

Issue

Section

Research Article