Design and Analysis of High-Gain Series fed Antenna Array Systems for Advanced Spaceborne Terahertz Applications

Authors

  • T. P. S. Kumar Kusumanchi Research Scholar, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, AP, INDIA
  • Lakshman Pappula Associate Professor, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, AP, INDIA
  • Sreevardhan Cheerla Associate Professor, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, AP, INDIA

Keywords:

THz antenna, series fed antenna array, space research services, LCP

Abstract

This paper presents an innovative high-gain terahertz (THz) antenna array designed for operation at a frequency of 0.867 THz. The array employs microstrip patch antennas (MPAs) and is crafted through a straightforward laboratory-based printed circuit board (PCB) etching process on a substrate made of Liquid Crystalline Polymer (LCP). The LCP substrate, with a thickness of 25 µm and a relative permittivity of 2.91, exhibits overall dimensions of 660 µm × 2800 µm × 25 µm. The potential applications of this antenna array span THz band space communication and extend into medical domains, including cancer detection via THz spectroscopy and vital sign detection through Doppler radar and on-body methodologies. The proposed antenna design is meticulously crafted and simulated using CST Microwave Studio, resulting in an antenna resonating at 0.867 THz with an impressive return loss of -25.3 dB. A 1×3 series-fed antenna array achieves a gain of 13.6dB with an operating bandwidth of 3.5 GHz, while a 1×5 series-fed antenna array achieves gain of 15dB with a broader 5 GHz operating bandwidth.

Downloads

Download data is not yet available.

References

Sensing with Terahertz Radiation, Ed. by D. Mittleman, (Springer-Verlag, Berlin, 2003)

C. Zandonella, Terahertz imaging: T-ray specs, Nature 424, 722 (2003).

B. Ferguson and X.-C. Zhang, Materials for Terahertz Science and Technology, Review Article, Nature Materials, 1, 26 (2002)

J.-F. Allard, A. Cornet, C. Debacq, M. Meurens, D. Houde and D. Morris, “Improved detection sensitivity of Dmannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements,” Optic Express, Vol. 19, No. 5, pp. 4644- 4652 (2011)

M. Nagel, P. Haring-Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, R. Büttner, “Integrated THz technology for Label-free Diagnostics,” Appl. Phys. Lett. 80, 154 (2002)

P.H. Siegel, Terahertz Technology in Biology and Medicine, IEEE Transactions on Microwave Theory and Techniques, Vol. 52, pp. 2438-2447 (2004)

Stanley Sy et al., Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast, Phys. Med. Biol. Vol. 55, 7587 (2010)

M.Yamaguchi, F. Miyamaru, K. Yamamoto, M.Tani, M.Hangyo, “Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition,” Appl.Phys. Lett. 86, 53903 (2005)

N. Laman, S. Sree Harsha, D. Grischkowsky, and Joseph S. Melinger, “High-Resolution Waveguide THz Spectroscopy of Biological Molecules,” Biophysical Journal Vol. 94, pp. 1010–1020 (2008)

G. Markelz, J. R. Knab, J. Y. Chen, Y. He, “Protein dynamical transition in terahertz dielectric response,” Chemical Physics Letters Vol. 442, pp. 413–417, (2007) 11. J. Xu, and X.C. Zhang,”Circular involute stage,” Opt. Lett

H. P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 10, pp. 2438–2447, Oct. 2004.

J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol., vol. 47, no. 7, 2002, Art. no. R67.

M. K. Choi, K. Taylor, A. Bettermann, and D. W. Van der Weide, “Broadband 10-300 GHz stimulus-response sensing for chemical and biological entities,” Phys. Med. Biol., vol. 47, no. 21, 2002, Art. no. 3777.

G.-J. Kim, W.-K. Han, J.-I. Kim, and S.-G. Jeon, “High resolution terahertz imaging (T-ray) with a horn antenna,” in Proc. 35th Int. Conf. Infrared, Millimeter, Terahertz Waves, 2010, pp. 1–2.

D. L. Woolard, J. O. Jensen, and R. J. Hwu, Terahertz Science and Technology for Military and Security Applications, vol. 46. Singapore: World Scientific, 2007.

R. E. Cofield and P. C. Stek, “Design and field-of-view calibration of 114– 660-GHz optics of the earth observing system microwave limb sounder,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 5, pp. 1166–1181, May 2006.

H. P.Siegel, “THz instruments for space,” IEEE Trans. Antennas Propag., vol. 55, no. 11, pp. 2957–2965, Nov. 2007.

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon., vol. 1, no. 2, pp. 97–105, 2007.

D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?” Proc. IEEE, vol. 93, no. 10, pp. 1722–1743, Oct. 2005.

G. P. Williams, “Filling the THz gap—High power sources and applications,” Rep. Prog. Phys., vol. 69, no. 2, p. 299–301, 2005.

K.-M. Luk et al., “A microfabricated low-profile wideband antenna array for terahertz communications,” Sci. Rep., vol. 7, no. 1, pp. 1–11, 2017.

D.-K. Lee et al., “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep., vol. 5, no. 1, pp. 1–7, 2015.

L. Razzari et al., “Terahertz dipole nanoantenna arrays: Resonance characteristics,” Plasmonics, vol. 8, no. 1, pp. 133–138, 2013.

D. Gray, J. W. Lu, and D. V. Thiel, “Electronically steerable Yagi-Uda microstrip patch antenna array,” IEEE Trans. Antennas Propag., vol. 46, no. 5 , pp. 605–608, May 1998.

C. Feuillet-Palma, Y. Todorov, A. Vasanelli, and C. Sirtori, “Strong near field enhancement in THz nano-antenna arrays,” Sci. Rep., vol. 3, no. 1, pp. 1–8, 2013.

K. Sengupta and A. Hajimiri, “A 0.28 THz power-generation and beamsteering array in CMOS based on distributed active radiators,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3013–3031, Dec. 2012.

F. Caster II et al., “Design and analysis of a W-band 9-element imaging array receiver using spatial-overlapping super-pixels in silicon,” IEEE J. Solid-State Circuits, vol. 49, no. 6, pp. 1317–1332, Jun. 2014.

Danana, B.; Choudhury, B.; Jha, R.M. Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 2010, 53, 17–22.

Danana, B.; Choudhury, B.; Jha, R.M. Design of high gain microstrip antenna for THz wireless communication. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2014, 3, 711–716.

Bansal, A.; Gupta, R. A review on microstrip patch antenna and feeding techniques. Int. J. Inf. Technol. 2020, 12, 149–154.

Luo, Y.; Qin, K.; Ke, H.; Xu, B.; Xu, S.; Yang, G. Active Metamaterial Antenna with Beam Scanning Manipulation Based on a Digitally Modulated Array Factor Method. IEEE Trans. Antennas Propag. 2020, 69, 1198–1203.

Sawada, H.; Kanno, A.; Yamamoto, N.; Fujii, K.; Kasamatsu, A.; Ishizu, K.; Kojima, F.; Ogawa, H.; Hosako, I. High gain antenna characteristics for 300 GHz band fixed wireless communication systems. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium–Fall (PIERS–FALL), Singapore, 19–22 November 2017; pp. 1409–1412.

Alibakhshikenari, M.; Virdee, B.S.; Khalily, M.; See, C.H.; Abd-Alhameed, R.; Falcone, F.; Denidni, T.A.; Limiti, E. High-Gain On-Chip Antenna Design on Silicon Layer with Aperture Excitation for Terahertz Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1576–1580.

Jha, K.R.; Singh, G. Microstrip patch array antenna on photonic crystal substrate at terahertz frequency. Infrared Phys. Technol. 2012, 55, 32-39.

Downloads

Published

13.12.2023

How to Cite

Kumar Kusumanchi, T. P. S. ., Pappula, L. ., & Cheerla, S. . (2023). Design and Analysis of High-Gain Series fed Antenna Array Systems for Advanced Spaceborne Terahertz Applications. International Journal of Intelligent Systems and Applications in Engineering, 12(8s), 465–468. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4147

Issue

Section

Research Article

Similar Articles

You may also start an advanced similarity search for this article.