An Optimized CNN GNR Detector for Methane Gas Detection from HSI Raster Data Using Feature Variable


  • Sneha G. Venkateshalu Visvesvaraya Technological University, India
  • Santhosh Laxman Deshpande Visvesvaraya Technological University, India


CNN Component filter, Gradients, Feature variable, Recursive filter, GNR Detector


Methane gas is the Earth’s atmospheric second most significant greenhouse gas, so to reduce these emissions effective deep learning methods adopted. Methane source points and dimensions can be determined using airborne remote sensing AVIRIS-NG. The existing manual approaches, small pixel-footprint signal of the plumes causes them liable to human error and poorly scalable. The proposed Convolutional Neural Network (CNN) adapted from MATLAB toolbox to produce outcome of linear combinatorial pixel segmentation with accounting time. The target of the innovative is to segment the methane gas accurately considering minimization of the misclassification of plumes among terrain HSI raster data. Employing off-the-shelf CNN with available filters, the recursive filters applied to achieve long impulse response without having the reflectance to perform a long convolution. The SSIM metric evaluated the accuracy and the proposed approach produced outcome with the effectiveness of 98.21% precision, Recall of 96.89%, IOU of 93.93% and 98.36% F1-Score.


Download data is not yet available.


T.F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, and P.M. Midgley, “The climate change 2013: The physical science basis”, Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, pp. 1585, 2014.

S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell, E. J. Dlugokencky, P. Bergamaschi, D. Bergmann, D. R. Blake, L. Bruhwiler, “Three decades of global methane sources and sinks”, Nature geoscience, Vol. 6, No. 10, pp. 813-823, 2013.

C. Frankenberg, U. Platt, and T. Wagner,“Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: Model studies for ch4 and co2retrieval from near infrared spectra of SCIAMQACHYonboardENVISAT”, Atmospheric Chemistry and Physics, Vol. 5, No. 1, pp. 9-22, 2005.

C. Frankenberg, A. K. Thorpe, D. R. Thompson, G. Hulley, E. A. Kort, N. Vance, J. Borchardt, T. Krings, K. Gerilowski, C. Sweeney, and et al.,“Airborne methane remote measurements reveal heavy-tail flux distribution in four corners region”, Proceedings of the national academy of sciences, Vol. 113, No. 35, pp. 9734-9739, 2016.

D. Thompson, I. Leifer, H. Bovensmann, M. Eastwood, M. Fladeland, C. Frankenberg, K. Gerilowski, R. Green, S. Kratwurst, T. Krings, and et al.,“Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane”, Atmospheric Measurement Techniques, Vol. 8, No. 10, pp. 4383-4397, 2015.

A. K. Thorpe, C. Frankenberg, D. R. Thompson, R. M. Duren, A. D. Aubrey, B. D. Bue, R. O. Green, K. Gerilowski, T. Krings, J. Borchardt, and et al.,“Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG”, Atmospheric Measurement Techniques, Vol. 10, No. 10, pp. 3833-3850, 2017.

A. K. Thorpe, D. A. Roberts, E. S. Bradley, C. C. Funk, P. E. Dennison, and I. Leifer,“High resolution mapping of methane emissions from marine and terrestrial sources using a clustertuned matched filter technique and imaging spectrometry”, Remote Sensing of Environment, Vol. 134, pp. 305–318, 2013.

Y. Chen, X. Zhao, and X. Jia,“Spectral–spatial classification of hyperspectral data based on deep belief network”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 6, pp. 2381–2392, 2015.

S. T. Monteiro, Y. Minekawa, Y. Kosugi, T. Akazawa, and K. Oda,“Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 62, No. 1, pp. 2-12, 2007.

J. Xia, P. Du, X. He, and J. Chanussot,“Hyperspectral remote sensing image classification based on rotation forest. IEEE Geoscience and Remote Sensing Letters”, Vol. 11, No. 1, pp. 239-243, 2013.

Q. Cheng, P. K. Varshney, and M. K. Arora,“Logistic regression for feature selection and soft classification of remote sensing data”, IEEE Geoscience and Remote Sensing Letters, Vol. 3, No. 4, pp. 491-494, 2006.

U. B. Gewali, S. T. Monteiro, and E. Saber,“Machine learning based hyperspectral image analysis: a survey”, Computer vision and pattern recognition, 2018.

M. Khodadadzadeh, J. Li, A. Plaza, and J. M. Bioucas-Dias,“A subspace-based multinomial logistic regression for hyperspectral image classification”, IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 12, pp. 2105-2109, 2014.

S. Kumar, C. Torres, O. Ulutan, A. Ayasse, D. Roberts, and B. S. Manjunath, “Deep Remote Sensing Methods for Methane Detection in Overhead Hyperspectral Imagery”, In: Proc. of IEEE Winter Conf. on Applications of Computer Vision (WACV), pp.1776-1785, 2020.

D. M. Tax and R. P. Duin,“Support vector data description”, Machine learning, Vol. 54, No. 1, pp. 45-66, 2004.

W. Sakla, A. Chan, J. Ji, and A. Sakla. Ansvdd-based algorithm for target detection in hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 8(2):384– 388, 2010.

C. A. Shah, P. K. Varshney, and M. K. Arora, “ICA mixture model algorithm for unsupervised classification of remote sensing imagery”, International Journal of Remote Sensing, Vol. 28, No. 8, pp.1711-1731, 2007.

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn. ´ In Proceedings of the IEEE international conference on computer vision, pages 2961–2969, 2017.

L. Hamlin, R. O. Green, P. Mouroulis, M. Eastwood, D. Wilson, M. Dudik, and C. Paine,“Imaging spectrometer science measurements for terrestrial ecology: AVIRIS and new developments”, In 2011 Aerospace conference, pp. 1-7, 2011.

R. O. Duda, P. E. Hart, D. G. Stork, John Wiley & Sons, “Pattern Classification”, 2000.

S. Prasad, L. M. Bruce, “Limitations of principal components analysis for hyperspectral target recognition”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 4, pp. 625–629, 2008.

A. M. Martinez, A. C. Kak, “PCA versus LDA”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 2, pp. 228-233, 2001.

W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, “Locality-preserving dimensionality reduction and classification for hyperspectral image analysis”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 4, pp. 1185-1198, 2012.

F. Wu, Z. Wang, Z. Zhang, Y. Yang, J. Luo, W. Zhu, and Y. Zhuang, “Weakly Semi-Supervised Deep Learning for Multi-Label Image Annotation”, IEEE Transactions on Big Data, Vol. 1, No. 3, pp. 109-122, 2015.

G. Licciardi, P. R. Marpu, J. Chanussot, J. A. Benediktsson, “Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles”, IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 3, pp. 447-451, 2012.

A. Villa, J. A.Benediktsson, J. Chanussot, and C. Jutten, “Hyperspectral image classification with Independent component discriminant analysis”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 12, pp. 4865-4876, 2011.

J. S. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, “Investigation of the random forest framework for classification of hyperspectral data”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 3, pp. 492-501, 2005.

B. Schölkopf and A. J. Smola, “Learning with Kernels”, The MIT Press, 2018.

Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi,“Deep feature extraction and classification of hyperspectral images based on convolutional neural networks”, IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 10, pp. 6232-6251, 2016.

S. Venkateshalu and S. Deshpande, “Performance Optimization of Short Video Using Convolutional Neural Network for IOT Applications”, In: Proc. of the International conference on Paradigms of Communication, Computing and Data Sciences. Algorithms for Intelligent Systems. Springer, Singapore, pp. 743-754, 2022.




How to Cite

Venkateshalu , S. G. ., & Deshpande , S. L. . (2023). An Optimized CNN GNR Detector for Methane Gas Detection from HSI Raster Data Using Feature Variable. International Journal of Intelligent Systems and Applications in Engineering, 12(2), 635–643. Retrieved from



Research Article