Improving Accuracy: Comparative Analysis of Machine Learning Models for Prostate Cancer Prediction


  • Saul Beltozar- Clemente Dirección de cursos básicos, Universidad Científica del Sur, Lima, Perú
  • Enrique Diaz- Vega Departamento de Ciencias, Universidad Privada del Norte, Lima, Perú
  • Isaac Conde Ramos Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima, Perú
  • Raul Tejeda Navarrete Departamento de Ciencias, Universidad Tecnológica del Perú, Lima, Perú


Accuracy, comparative, machine learning, prostate cancer


Among the different types of cancer affecting men is prostate cancer, which ranks second in mortality after lung cancer, a worrying reality. Nowadays, Machine Learning (ML) models have contributed to different areas, being their contribution to the medical field one of the most outstanding. This study aims to compare the accuracy of ML models in the prediction of prostate cancer. Gradient Boosting (GB), Random Forest (RF), Decision Tree (DT) and Adaptive Boosting (AdaBoost) models were analyzed. In addition, DT, RF, K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB) and Logistic regression (LR) models were used to identify the base model for algorithm optimization. The study was divided into several stages, such as the description of the models and the analysis of the data set, among others. On the other hand, the metrics of sensitivity, precision, specificity, accuracy, and F1 count were used to contrast the algorithms. The training results positioned the GB algorithm as the most accurate algorithm for prostate cancer detection with 83.33% accuracy, 98.02% precision and 95.24% sensitivity.


Download data is not yet available.


H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA Cancer J Clin, vol. 71, no. 3, pp. 209–249, May 2021, doi: 10.3322/caac.21660.

World Health Organization, “Cáncer.” Accessed: Sep. 24, 2023. [Online]. Available:

Pan American Health Organization, “Día Mundial contra el Cáncer 2023: Por unos cuidados más justos - OPS/OMS | Organización Panamericana de la Salud.” Accessed: Sep. 24, 2023. [Online]. Available:

F. Yang et al., “Global patterns of cancer transitions: A modelling study,” Int J Cancer, Nov. 2023, doi: 10.1002/IJC.34650.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA Cancer J Clin, vol. 68, no. 6, pp. 394–424, Nov. 2018, doi: 10.3322/caac.21492.

S. Mahjoub and A. Heidenreich, “Oligometastatic prostate cancer: definition and the role of local and systemic therapy: a narrative review,” Transl Androl Urol, vol. 10, no. 7, pp. 3167–3175, Jul. 2021, doi: 10.21037/TAU-20-1033.

J. J. Tosoian, M. A. Gorin, A. E. Ross, K. J. Pienta, P. T. Tran, and E. M. Schaeffer, “Oligometastatic prostate cancer: Definitions, clinical outcomes, and treatment considerations,” Nat Rev Urol, vol. 14, no. 1, pp. 15–25, Jan. 2017, doi: 10.1038/NRUROL.2016.175.

F. Algaba, “Consideraciones anatomopatológicas a la definición de cáncer de próstata indolente y clínicamente insignificante,” Arch Esp Urol, vol. 67, no. 5, pp. 393–399, 2014.

F. Khani et al., “Evolution of structural rearrangements in prostate cancer intracranial metastases,” NPJ Precis Oncol, vol. 7, no. 1, Dec. 2023, doi: 10.1038/S41698-023-00435-3.

L. A. Mucci, K. M. Wilson, M. A. Preston, and E. L. Giovannucci, “Is Vasectomy a Cause of Prostate Cancer?,” J Natl Cancer Inst, vol. 112, no. 1, pp. 5–6, Jan. 2020, doi: 10.1093/JNCI/DJZ102.

H. J. Chang et al., “A matched case-control study in Taiwan to evaluate potential risk factors for prostate cancer,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/S41598-023-31434-W.

M. Leapman, S. B. Jazayeri, M. Katsigeorgis, A. Hobbs, and D. B. Samadi, “Patient-perceived Causes of Prostate Cancer: Result of an Internet-based Survey,” Urology, vol. 99, pp. 69–75, Jan. 2017, doi: 10.1016/J.UROLOGY.2016.09.046.

A. B. Porcaro et al., “Endogenous testosterone density associates with predictors of tumor upgrading and disease progression in the low through favorable intermediate prostate cancer risk categories: analysis of risk factors and clinical implications,” African Journal of Urology, vol. 29, no. 1, Jun. 2023, doi: 10.1186/S12301-023-00366-2.

G. S. Dite, E. Spaeth, N. M. Murphy, and R. Allman, “Development and validation of a simple prostate cancer risk prediction model based on age, family history, and polygenic risk,” Prostate, vol. 83, no. 10, pp. 962–969, Jul. 2023, doi: 10.1002/PROS.24537.

K. Hemminki, X. Li, A. Försti, and C. Eng, “Are population level familial risks and germline genetics meeting each other?,” Hered Cancer Clin Pract, vol. 21, no. 1, Dec. 2023, doi: 10.1186/S13053-023-00247-3.

M. Oderda et al., “Predictors of Prostate Cancer at Fusion Biopsy: The Role of Positive Family History, Hypertension, Diabetes, and Body Mass Index,” Current Oncology, vol. 30, no. 5, pp. 4957–4965, May 2023, doi: 10.3390/CURRONCOL30050374.

N. Sayegh et al., “Race and Treatment Outcomes in Patients With Metastatic Castration-Sensitive Prostate Cancer: A Secondary Analysis of the SWOG 1216 Phase 3 Trial,” JAMA Netw Open, vol. 6, no. 8, p. e2326546, Aug. 2023, doi: 10.1001/JAMANETWORKOPEN.2023.26546.

A. C. Powell, C. T. Lugo, J. T. Pickerell, J. W. Long, B. A. Loy, and A. J. Mirhadi, “An assessment of the association between patient race and prior authorization program determinations in the context of radiation therapy,” Healthcare, vol. 11, no. 3, Sep. 2023, doi: 10.1016/J.HJDSI.2023.100704.

S. A. Kaplan, “Benign Prostatic Hyperplasia,” Journal of Urology, vol. 210, no. 2, pp. 360–362, Aug. 2023, doi: 10.1097/JU.0000000000003522.

M. J. Arnold, A. Gaillardetz, and J. Ohiokpehai, “Benign Prostatic Hyperplasia: Rapid Evidence Review,” Am Fam Physician, vol. 107, no. 6, pp. 613–622, Jun. 2023.

J. Shi et al., “Low-dose antimony exposure promotes prostate cancer proliferation by inhibiting ferroptosis via activation of the Nrf2-SLC7A11-GPX4 pathway,” Chemosphere, vol. 339, Oct. 2023, doi: 10.1016/J.CHEMOSPHERE.2023.139716.

O. Bede-Ojimadu et al., “Cadmium exposure and the risk of prostate cancer among Nigerian men: Effect modification by zinc status,” Journal of Trace Elements in Medicine and Biology, vol. 78, Jul. 2023, doi: 10.1016/J.JTEMB.2023.127168.

L. Depotte et al., “Association between overweight, obesity, and quality of life of patients receiving an anticancer treatment for prostate cancer: a systematic literature review,” Health Qual Life Outcomes, vol. 21, no. 1, Dec. 2023, doi: 10.1186/S12955-023-02093-2.

A. Luciani, C. Falci, F. Petrelli, and G. Colloca, “Prostate Cancer in Older Adults with Frailty,” Frailty in Older Adults with Cancer, pp. 357–370, Jan. 2022, doi: 10.1007/978-3-030-89162-6_20.

International Agency for Research on Cancer, “Prostate Source: Globocan 2020 Number of new cases in 2020, both sexes, all ages,” 2020, Accessed: Sep. 24, 2023. [Online]. Available:

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA Cancer J Clin, vol. 68, no. 6, pp. 394–424, Nov. 2018, doi: 10.3322/caac.21492.

F. Hohman, K. Wongsuphasawat, M. B. Kery, and K. Patel, “Understanding and Visualizing Data Iteration in Machine Learning,” Conference on Human Factors in Computing Systems - Proceedings, Apr. 2020, doi: 10.1145/3313831.3376177.

X. Borrat, L. A. Celi, and C. Ferrando, “Técnicas Big data para el uso secundario de datos clínicos para la creación de conocimiento medico. La solución MIMIC,” Rev Esp Anestesiol Reanim, vol. 66, no. 10, pp. 555–558, Dec. 2019, doi: 10.1016/J.REDAR.2019.07.004.

P. Samuel, Reshmy A. K., S. Rajesh, Kanipriya M., and Karthika R. A., “AI-Based Big Data Algorithms and Machine Learning Techniques for Managing Data in E-Governance,” AI, IoT, and Blockchain Breakthroughs in E-Governance, pp. 19–35, May 2023, doi: 10.4018/978-1-6684-7697-0.CH002.

Z. Amiri, A. Heidari, N. J. Navimipour, M. Unal, and A. Mousavi, “Adventures in data analysis: a systematic review of Deep Learning techniques for pattern recognition in cyber-physical-social systems,” Multimed Tools Appl, 2023, doi: 10.1007/S11042-023-16382-X.

A. Afzal et al., “Use of modern algorithms for multi-parameter optimization and intelligent modelling of sustainable battery performance,” J Energy Storage, vol. 73, Dec. 2023, doi: 10.1016/J.EST.2023.108910.

I. Popchev and D. Orozova, “Algorithms for Machine Learning with Orange System,” International journal of online and biomedical engineering, vol. 19, no. 4, pp. 109–123, 2023, doi: 10.3991/IJOE.V19I04.36897.

M. Terra, M. Baklola, S. Ali, and K. El-Bastawisy, “Opportunities, applications, challenges and ethical implications of artificial intelligence in psychiatry: a narrative review,” Egypt J Neurol Psychiatr Neurosurg, vol. 59, no. 1, Jun. 2023, doi: 10.1186/S41983-023-00681-Z.

X. Qiao et al., “MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer,” Cancers (Basel), vol. 15, no. 18, p. 4536, Sep. 2023, doi: 10.3390/cancers15184536.

X. Deng et al., “Machine learning model for the prediction of prostate cancer in patients with low prostate-specific antigen levels: A multicenter retrospective analysis,” Front Oncol, vol. 12, p. 985940, Aug. 2022, doi: 10.3389/fonc.2022.985940.

R. Li, J. Zhu, W. De Zhong, and Z. Jia, “Comprehensive Evaluation of Machine Learning Models and Gene Expression Signatures for Prostate Cancer Prognosis Using Large Population Cohorts,” Cancer Res, vol. 82, no. 9, pp. 1832–1843, May 2022, doi: 10.1158/0008-5472.CAN-21-3074.

S. J. Hectors et al., “Magnetic Resonance Imaging Radiomics-Based Machine Learning Prediction of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions,” Journal of Magnetic Resonance Imaging, vol. 54, no. 5, pp. 1466–1473, Nov. 2021, doi: 10.1002/jmri.27692.

M. M. Hassan et al., “A comparative assessment of machine learning algorithms with the Least Absolute Shrinkage and Selection Operator for breast cancer detection and prediction,” Decision Analytics Journal, vol. 7, p. 100245, Jun. 2023, doi: 10.1016/j.dajour.2023.100245.

N. Al Mudawi and A. Alazeb, “A Model for Predicting Cervical Cancer Using Machine Learning Algorithms,” Sensors 2022, Vol. 22, Page 4132, vol. 22, no. 11, p. 4132, May 2022, doi: 10.3390/S22114132.

U. K. Lilhore et al., “Hybrid Model for Detection of Cervical Cancer Using Causal Analysis and Machine Learning Techniques,” Comput Math Methods Med, vol. 2022, 2022, doi: 10.1155/2022/4688327.

M. S. Al-Batah, M. Alzyoud, R. Alazaidah, M. Toubat, H. Alzoubi, and A. Olaiyat, “EARLY PREDICTION OF CERVICAL CANCER USING MACHINE LEARNING TECHNIQUES,” Jordanian Journal of Computers and Information Technology, vol. 8, no. 4, pp. 357–369, Dec. 2022, doi: 10.5455/JJCIT.71-1661691447.

S. K. Suman and N. Hooda, “Predicting risk of Cervical Cancer : A case study of machine learning,” Journal of Statistics and Management Systems, vol. 22, no. 4, pp. 689–696, May 2019, doi: 10.1080/09720510.2019.1611227.

R. Alsmariy, G. Healy, and H. Abdelhafez, “Predicting Cervical Cancer using Machine Learning Methods,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 7, pp. 173–184, 2020, doi: 10.14569/IJACSA.2020.0110723.




How to Cite

Clemente, S. B.-., Vega, E. D.-., Ramos, I. C. ., & Navarrete, R. T. . (2023). Improving Accuracy: Comparative Analysis of Machine Learning Models for Prostate Cancer Prediction. International Journal of Intelligent Systems and Applications in Engineering, 12(2), 654–664. Retrieved from



Research Article