Blockchain-based Solution for Securing Job Card Data Integrity and Payment System using Bi-Quad Merkle Tree

Authors

  • S. Jenifa Sabeena Research Scholar, Department of Computer Science and Engineering, Manonmaniam Sundaranar University, Tirunelveli.
  • S. Antelin Vijila Assistant Professor, Department of Computer Science and Engineering,Manonmaniam Sundaranar University, Tirunelveli.

Keywords:

Blockchain, Merkle Tree, DES, RSA

Abstract

Numerous individuals use cloud - based applications to store and analyse data for a variety of purposes. Because of the untrustworthy verification procedure of data integrity, the user that uploads information to a public cloud has less security. Data authentication, in particular, is critical in storing outsourced digital material and protecting it from tampering by internal or external enemies.  The scheme must be equipped with cryptographic algorithms to encrypt data in order to offer privacy features like information confidentiality and authentication. This research provides a blockchain-based secured data management and trusted payment submission framework for the end users. This paper proposed a new form of merkle tree with the name Bi-Quad merkle tree with Moulded RSA and DES (MRDES) encryption algorithm. The proposed model   reduces the computation overhead and time complexity of the transactions management process.  The proposed model generates a block, which depends on its spatial and temporal information instead of   number of transactions per block threshold. This concept helps the concern to localize the tampered or modified block easily. The data integrity is effectively achieved by the Moulded RSA and DES (MRDES) encryption algorithm. The performance of this proposed blockchain scheme is analgised with the help job card details and the results shows that the proposed scheme is significantly better in terms of latency, computation overhead. The proposed merkle tree generations verification time is compared to the traditional merkle tree based blockchain scheme.

Downloads

Download data is not yet available.

References

M. Li and P. P. C. Lee, ‘‘STAIR codes,’’ ACM Trans. Storage, vol. 10, no. 4, pp. 1–30, Oct. 2014.

J. Toutouh, A. Muñoz, and S. Nesmachnow, ‘‘Evolution oriented monitoring oriented to security properties for cloud applications,’’ in Proc. 13th Int. Conf. Availability, Rel. Secur., Hamburg, Germany, Aug. 2018, pp. 1–7.

M. Antonio, M. Antonio, and G. Javier, ‘‘Dynamic security properties monitoring architecture for cloud computing,’’ in Security Engineering for Cloud Computing: Approaches and Tools. Pennsylvania, PA, USA: IGI Gobal, 2012, pp. 1–18.

Y. Yuan, J. Zhang, W. Xu, and Z. Li, ‘‘Identity-based public data integrity verification scheme in cloud storage system via blockchain,’’ J. Supercomput., vol. 78, no. 6, pp. 8509–8530, Apr. 2022.

G. Xie, Y. Liu, G. Xin, and Q. Yang, ‘‘Blockchain-based cloud data integrity verification scheme with high efficiency,’’ Secur. Commun. Netw., vol. 2021, pp. 1–15, Apr. 2021.

S. Cao, G. Zhang, P. Liu, X. Zhang, and F. Neri, ‘‘Cloud-assisted secure eHealth systems for tamper-proofing EHR via blockchain,’’ Inf. Sci., vol. 485, pp. 427–440, Jun. 2019.

Bistarelli, S.; Mazzante, G.; Micheletti, M.; Mostarda, L.; Tiezzi, F. Analysis of Ethereum Smart Contracts and Opcodes. In Advanced Information Networking and Applications; Barolli, L., Takizawa, M., Xhafa, F., Enokido, T., Eds.; Advances in Intelligent Systems and Computing; AINA 2019; Springer: Cham, Germany, 2019; Volume 926

Huh, S.; Cho, S.; Kim, S. Managing IoT Devices using Blockchain Platform. In Proceedings of the 2017 19th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Republic of Korea, 19–22 February 2017.

Hlaing, K.M.; Nyaung, D.E. Electricity Billing System using Ethereum and Firebase. In Proceedings of the 2019 International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar, 6–7 November 2019; pp. 217–221

Wood, G. Ethereum: A secure decentralized generalized transaction ledger. EthereumProj. Yellow Pap. 2014, 151, 1–32.

Pee, S.J.; Nans, J.H.; Jans, J.W. A simple blockchain-based peer-to-peer water trading system leveraging smart contracts. In Proceedings of the International Conference on Internet Computing (ICOMP), Las Vegas, NV, USA, 26 April 2019; The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), pp. 63–68.

Gür, A.Ö.; Öksüzer, ¸S.;Karaarslan, E. Blockchain Based Metering and Billing System Proposal with Privacy Protection for the Electric Network. In Proceedings of the 2019 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), Istanbul, Turkey, 25–26 April 2019; pp. 204–208.

Albrecht, S.; Reichert, S.; Schmid, J.; Struker, J.; Neumann, D.; Fridgen, G. Dynamics of Blockchain Implementation-A Case Study from the Energy Sector. In Proceedings of the 51st Hawaii International Conference on System Sciences, Hilton Waikoloa Village, HI, USA, 3–6 January 2018.

Adeyemi, A.; Yan, M.; Shahidehpour, M.; Botero, C.; Guerra, A.V.; Gurung, N.; Paaso, A. Blockchain technology applications in power distribution systems. Electr. J. 2020, 33, 106817.

Ma, Z.; Jiang, M.; Gao, H.; Wang, Z. Blockchain for digital rights management. Future Gener. Comput. Syst. 2018, 89, 746–764

Li, X., Wang, Z., Leung, V. C., Ji, H., Liu, Y., & Zhang, H. (2021). Blockchain-empowered data-driven networks: A survey and outlook. ACM Computing Surveys (CSUR), 54(3), 1-38.

Rahman, M. A., Rahim, M. A., Rahman, M. M., Moustafa, N., Razzak, I., Ahmad, T., &Patwary, M. N. (2022). A secure and intelligent framework for vehicle health monitoring exploiting big-data analytics. IEEE Transactions on Intelligent Transportation Systems, 23(10), 19727-19742.

Zhang, W., Bai, Y., &Feng, J. (2022). Tiia: A blockchain-enabled threat intelligence integrity audit scheme for iiot. Future Generation Computer Systems, 132, 254-265.

Appasani, B., Mishra, S. K., Jha, A. V., Mishra, S. K., Enescu, F. M., Sorlei, I. S., ... &Bizon, N. (2022). Blockchain-enabled smart grid applications: architecture, challenges, and solutions. Sustainability, 14(14), 8801.

D. Tapscott and A. Tapscott, Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World. New York, NY, USA: Random House, 2016.

T. M. Fernández-Caramés and P. Fraga-Lamas, ‘‘Design of a fog computing, blockchain and IoT-based continuous glucose monitoring system for crowdsourcing mHealth,’’ in Proc. 5th Int. Electron. Conf. Sensors Appl., Nov. 2018, pp. 1–6.

World Economic Forum. (Sep. 2015). Deep Shift Technology Tipping Points and Societal Impact. Survey Report. Accessed: Jul. 2018. [Online]. Available: http://www3.weforum.org/docs/WEF_GAC15_Technological_Tipping_Points_report_2015.pdf

Y. Ren, Y. Leng, J. Qi, P. K. Sharma, and A. Tolba, ‘‘Multiple cloud storage mechanism based on blockchain in smart homes,’’ Future Gener. Comput. Syst., vol. 115, pp. 304–313, Feb. 2021.

Y. Ren, F. Zhu, P. K. Sharma, T. Wang, J. Wang, O. Alfarraj, and A. Tolba, ‘‘Data query mechanism based on hash computing power of blockchain in Internet of Things,’’ Sensors, vol. 20, no. 1, p. 207, Dec. 2020.

Zhao. Q, S. Chen, Z. Liu, T. Baker, and Y. Zhang, ‘‘Blockchain-based privacy-preserving remote data integrity checking scheme for IoT information systems,’’ Inf. Process. Manage., vol. 57, no. 6, 2020, Art. no. 102355, doi: 10.1016/j.ipm.2020.102355.

Yu Y, Li Y, Tian J, Liu J (2018) Blockchain-based solutions to security and privacy issues in the internet of things. IEEE WirelCommun 25(6):12–18

H. Wang, Q. Wang, and D. He, ‘‘Blockchain-based private provable data possession,’’ IEEE Trans. Dependable Secure Comput., vol. 18, no. 5, pp. 2379–2389, Oct. 2019.

P. Wei, D. Wang, Y. Zhao, S. K. S. Tyagi, and N. Kumar, ‘‘Blockchaindatabased cloud data integrity protection mechanism,’’ Future Gener. Comput. Syst., vol. 102, pp. 902–911, Jan. 2020

Gul, M.J.J.; Paul, A. IoT Geography Chain: Blockchain-Based Solution for Logistics Ecosystem. In The Fifth International Conference on Safety and Security with IoT; Springer: Cham, Germany, 2023; pp. 191–194.

Bhadoria, R.S.; Das, A.P.; Bashar, A.; Zikria, M. Implementing Blockchain-Based Traceable Certificates as Sustainable Technology in Democratic Elections. Electronics 2022, 11, 3359.

Butt, G.Q.; Sayed, T.A.; Riaz, R.; Rizvi, S.S.; Paul, A. Secure Healthcare Record Sharing Mechanism with Blockchain. Appl. Sci. 2022, 12, 2307

Shrestha, A.K.; Vassileva, J. Blockchain-Based Research Data Sharing Framework for Incentivizing the Data Owners. In International Conference on Blockchain; Springer: Cham, Switzerland, 2018; pp. 259–266.

Zhang, Z.; Zhao, L. A Design of Digital Rights Management Mechanism Based on Blockchain Technology. In International Conference on Blockchain; Springer: Cham, Switzerland, 2018; pp. 32–46.

Wu, A.; Zhang, Y.; Zheng, X.; Guo, R.; Zhao, Q.; Zheng, D. Efficient and privacy-preserving traceable attribute-based encryption in blockchain. Ann. Telecommun. 2019, 74, 401–411.

Bisht, D.; Singh, R.; Gehlot, A.; Akram, S.V.; Singh, A.; Montero, E.C.; Priyadarshi, N.; Twala, B. Imperative Role of Integrating Digitalization in the Firms Finance: A Technological Perspective. Electronics 2022, 11, 3252

Zhu, L.; Wu, Y.; Gai, K.; Choo, K.K.R. Controllable and trustworthy blockchain-based cloud data management. Future Gener. Comput. Syst. 2019, 91, 527–535.

Li, J.; Wu, J.; Chen, L. Block-secure: Blockchain based scheme for secure P2P cloud storage. Inf. Sci. 2018, 465, 219–231.

Flecha-Barrio, M.D., Palomo, J., Figueroa-Domecq, C., Segovia-Perez, M. (2020). Blockchain Implementation in Hotel Management. In: Neidhardt, J., Wörndl, W. (eds) Information and Communication Technologies in Tourism 2020. Springer, Cham. https://doi.org/10.1007/978-3-030-36737-4_21

Prashant. MY., Deepak. NP.,Abhijeet. RP.,Rushikesh. VK., William. P., 2023. Integrated identity and auditing management using blockchain mechanism, Measurement: Sensors, 27, 2023, https://doi.org/10.1016/j.measen.2023.100732.

S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma and J. He, “BlocHIE: A BLOCkchain-Based Platform for Healthcare Information Exchange,” 2018 IEEE International Conference on Smart Computing (SMARTCOMP), Taormina, Italy, 2018, pp. 49-56.

Amir Latif, R. M., Hussain, K., Jhanjhi, N. Z., Nayyar, A., &Rizwan, O. (2020). A remix IDE: smart contract-based framework for the healthcare sector by using Blockchain technology. Multimedia Tools and Applications. doi:10.1007/s11042-020-10087-1

J. R. Shaikh, G. Iliev, “Blockchain based confidentiality and integrity preserving scheme for enhancing e-commerce security” In 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN), pp. 155-158, 2018

Hong, H.; Sun, Z. A flexible attribute-based data access management scheme for sensor-cloud system. J. Syst. Archit. 2021, 119, 102234.

Suratkar, S.; Shirole, M.; Bhirud, S. Cryptocurrency Wallet: A Review. In Proceedings of the 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 22–23 April 2020; pp. 1–7.

Thapliyal, H. Internet of Things-Based Consumer Electronics: Reviewing Existing Consumer Electronic Devices, Systems, and Platforms and Exploring New Research Paradigms. IEEE Consum. Electron. Mag. 2018, 7, 66–67

Caldarola, F.; d’Atri, G.; Zanardo, E. Neural Fairness Blockchain Protocol Using an Elliptic Curves Lottery. Mathematics 2022, 10, 3040.

Hamledari, H.; Fischer, M. Role of blockchain-enabled smart contracts in automating construction progress payments. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2021, 13, 04520038.

N. Kshetri, ‘‘Can blockchain strengthen the Internet of Things?’’ IT Prof., vol. 19, no. 4, pp. 68–72, 2017

Google’s Certificate Transparency. Accessed: Nov. 2018. [Online]. Available: https://www.certificate-transparency.org

T. M. Chen and S. Abu-Nimeh, ‘‘Lessons from Stuxnet,’’ Computer, vol. 44, no. 4, pp. 91–93, Apr. 2011.

Xia, Q.I.; Sifah, E.B.; Asamoah, K.O.; Gao, J.; Du, X.; Guizani, M. MeDShare: Trust-less medical data sharing among cloud service providers via blockchain. IEEE Access 2017, 5, 14757–14767.

Hammi, M.T.; Hammi, B.; Bellot, P.; Serhrouchni, A. Bubbles of Trust: A decentralized blockchain-based authentication system for IoT. Comput. Secur. 2018, 78, 126–142.

Gao, X.; Zhang, W.; Zhao, B.; Zhang, J.; Wang, J.; Gao, Y. Product Authentication Technology Integrating Blockchain and Traceability Structure. Electronics 2022, 11, 3314.

Chen, Y.; Li, H.; Li, K.; Zhang, J. An improved P2P file system scheme based on IPFS and Blockchain. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 2652–2657.

Liang, W.; Tang, M.; Long, J.; Peng, X.; Xu, J.; Li, K.C. A Secure Fabric Blockchain-based Data Transmission Technique for Industrial Internet-of-Things. IEEE Trans. Ind. Inform. 2019, 15, 358–3592.

Steichen, M.; FizPontiveros, B.; Norvill, R.; Shbair, W. Blockchain-Based, Decentralized Access Control for IPFS. In Proceedings of the 2018 IEEE International Conference on Blockchain (Blockchain-2018), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1499–1506.

Gaby, G.; Chandra, L.; Enderson, T. Towards Secure Interoperability between Heterogeneous Blockchains Using Smart Contracts. In Proceedings of the Future Technologies Conference (FTC), Vancouver, BC, Canada, 15–16 November 2017; pp. 73–81.

J. Li, H. Yan, and Y. Zhang, ‘‘Efficient identity-based provable multicopy data possession in multi-cloud storage,’’ IEEE Trans. Cloud Comput., vol. 10, no. 1, pp. 356–365, Mar. 2019, DOI: 10.1109/TCC.2019. 2929045.

M. Long, Y. Li, and F. Peng, ‘‘Integrity verification for multiple data copies in cloud storage based on spatiotemporal chaos,’’ Int. J. Bifurcation Chaos, vol. 27, no. 4, Apr. 2017, Art. no. 1750054.

K. He, C. Huang, J. Shi, X. Hu, and X. Fan, ‘‘Enabling decentralized and dynamic data integrity verification for secure cloud storage via Tmerkle hash tree based blockchain”, Mobile Inf. Syst., vol. 2021, pp. 1–17, Nov. 2021.

Z. Liu, L. Ren, Y. Feng, S. Wang and J. Wei, "Data Integrity Audit Scheme Based on Quad Merkle Tree and Blockchain," in IEEE Access, vol. 11, pp. 59263-59273, 2023, doi: 10.1109/ACCESS.2023.3240066.

Jenifa Sabeena.S, & Antelin Vijila. S, (2023). Moulded RSA and DES (MRDES) Algorithm for Data Security. International Journal on Recent and Innovation Trends in Computing and Communication, 11(2), 154–162. https://doi.org/10.17762/ijritcc.v11i2.6140

Dhanikonda, S.R., Sowjanya, P., Ramanaiah, M.L., Joshi, R., Krishna Mohan, B.H., Dhabliya, D., Raja, N. K. An Efficient Deep Learning Model with Interrelated Tagging Prototype with Segmentation for Telugu Optical Character Recognition (2022) Scientific Programming, 2022, art. no. 1059004,

Venu, S., Kotti, J., Pankajam, A., Dhabliya, D., Rao, G.N., Bansal, R., Gupta, A., Sammy, F. Secure Big Data Processing in Multihoming Networks with AI-Enabled IoT (2022) Wireless Communications and Mobile Computing, 2022, art. no. 3893875,

Downloads

Published

12.01.2024

How to Cite

Sabeena, S. J. ., & Vijila, S. A. . (2024). Blockchain-based Solution for Securing Job Card Data Integrity and Payment System using Bi-Quad Merkle Tree. International Journal of Intelligent Systems and Applications in Engineering, 12(12s), 314–328. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4518

Issue

Section

Research Article