A Systematic Review of Automated Lymph Node Detection Methods in Head and Neck Cancer: Clinical Significance, Performance, and Challenges

Authors

  • Nasira Mahjabeen Ph. D Scholar, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur ‐ 522503, Andhra Pradesh, India.
  • Veerraju Gampala Designation: Associate Professor Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur ‐ 522503, Andhra Pradesh, India.

Keywords:

clinicians, Lymph, implementation, algorithms, magnetic resonance imaging (MRI), benchmark

Abstract

This systematic review investigates the role of automated lymph node detection methods, particularly within the context of head and neck cancer diagnosis and treatment. Lymph node metastasis is a crucial factor in the staging and management of head and neck cancer patients, and the accuracy of lymph node assessment significantly influences treatment decisions and patient outcomes. Automated methods, especially those based on deep learning, have emerged as potential game-changers in enhancing the precision and efficiency of lymph node evaluation in medical imaging. Following PRISMA guidelines, this review presents a meticulous selection and analysis of relevant studies from peer-reviewed journals. It evaluates the clinical significance, performance metrics, limitations, and challenges of automated lymph node detection methods. Clinical relevance is a central theme, emphasizing these methods' critical role in aiding clinicians in lymph node assessment, influencing treatment planning, and improving patient care. Performance evaluation indicates that deep learning techniques, especially convolutional neural networks (CNNs), exhibit impressive accuracy across various imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). However, the review also highlights persistent challenges, including high computational demands, false positives/negatives, and the need for seamless integration into clinical workflows. Standardization efforts through benchmark datasets and evaluation metrics are essential for future advancements. Addressing computational resource constraints, refining algorithms, and ensuring practical clinical implementation is essential for fully realizing the potential of automated lymph node detection in the management of head and neck cancer. This review serves as a comprehensive resource for researchers and clinicians seeking to navigate this evolving landscape.

Downloads

Download data is not yet available.

References

[Heerkens HD, van Vulpen M, et al. Recommendations for MRI-based contouring of gross tumor volume and organs at risk for radiation therapy of pancreatic cancer. Pract Radiat Oncol. 2017;7(2):126-136. doi:10.1016/j.prro.2016.10.006.

Chong VFH, Fan YF, Khoo JBK. MRI features of cervical nodal necrosis in metastatic disease. Brain Lang. 1996;51(2):103-109. doi:10.1016/s0009-9260(96)80265-0.

Torresin A, et al. Review of potential improvements using MRI in the radiotherapy workflow. Z Med Phys. 2015;25(3):210–220. doi:10.1016/j.zemedi.2014.11.003.

Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys. 2019;29(2):102–127. doi:10.1016/j.zemedi.2018.11.002.

Paulson ES, et al. Consensus opinion on MRI simulation for external beam radiation treatment planning. Radiotherapy and Oncology. 2016;121(2):187–192. doi:10.1016/j.radonc.2016.09.018.

Minovi A, Hertel A, Ural A, Hofmann E, Draf W, Bockmuehl U. Is PET superior to MRI in the pretherapeutic evaluation of head and neck squamous cell carcinoma? Kulak Burun Bogaz Ihtis Derg. 2007;17(6):324-328. [Online]. Available: [Scopus link].

Polomska AK, Proulx ST. Imaging technology of the lymphatic system. Adv Drug Deliv Rev. 2021;170:294-311. doi:10.1016/j.addr.2020.08.013.

Malagi AV, et al. IVIM-DKI with parametric reconstruction method for lymph node evaluation and characterization in lymphoma: A preliminary study comparison with FDG-PET/CT. Results in Engineering. 2023;17:100928. doi:10.1016/j.rineng.2023.100928.

Ferjaoui R, et al. Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images. Comput Methods Programs Biomed. 2021;209:106320. doi:10.1016/j.cmpb.2021.106320.

Barkur S, Notingher I, Rakha E. Intra-operative assessment of sentinel lymph nodes for breast cancer surgery: An update. Surg Oncol. 2022;40:101678. doi:10.1016/j.suronc.2021.101678.

Vogl T, Bisdas S. Lymph node staging. Topics in Magnetic Resonance Imaging. 2007;18(4):303-316. doi:10.1097/RMR.0b013e3181570c5b.

Tekchandani H, et al. Computer-aided diagnosis system for cervical lymph nodes in CT images using deep learning. Biomed Signal Process Control. 2022;71. doi:10.1016/j.bspc.2021.103158.

Payabvash S, Meric K, Cayci Z. Differentiation of benign from malignant cervical lymph nodes in patients with head and neck cancer using PET/CT imaging. Clin Imaging. 2016;40(1):101–105. doi:10.1016/j.clinimag.2015.09.001.

Mendenhall WM, et al. Diagnostic evaluation of squamous cell carcinoma metastatic to cervical lymph nodes from an unknown head and neck primary site. Head Neck. 1998;20(8):739-744. doi:10.1002/(SICI)1097-0347(199812)20:8<739::AID-HED13>3.0.CO;2-0.

Meeuwis J, et al. 18FDG SUV in the primary tumor and lymph node metastases is not predictive for development of distant metastases in high-risk head and neck cancer patients. Oral Oncol. 2015;51(5):536–540. doi:10.1016/j.oraloncology.2015.02.002.

Wendl CM, et al. High resolution contrast-enhanced ultrasound and 3-tesla dynamic contrast-enhanced magnetic resonance imaging for the preoperative characterization of cervical lymph nodes: First results. Clin Hemorheol Microcirc. 2012;52(2–4):153–166. doi:10.3233/CH-2012-1593.

Salzillo TC, et al. Advances in Imaging for HPV-Related Oropharyngeal Cancer: Applications to Radiation Oncology. Semin Radiat Oncol. 2021;31(4):371–388. doi:10.1016/j.semradonc.2021.05.001.

Zhong NN, et al. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol. 2023;95:52–74. doi:10.1016/j.semcancer.2023.07.002.

Lee SJ, et al. Changes in treatment intent and target definition for preoperative radiotherapy after 18F-Fluorodeoxyglucose positron emission tomography in rectal cancer: A Meta-analysis. Eur J Radiol. 2021;145:110061. doi:10.1016/j.ejrad.2021.110061.

Abdel Razek AA, Poptani H. MR spectroscopy of head and neck cancer. Eur J Radiol. 2013;82(6):982–989. doi:10.1016/j.ejrad.2013.01.025.

Jensen K, et al. Imaging for Target Delineation in Head and Neck Cancer Radiotherapy. Semin Nucl Med. 2021;51(1):59–67. doi:10.1053/j.semnuclmed.2020.07.010.

Jiang H, et al. A review of intelligent diagnosis methods of imaging gland cancer based on machine learning. Virtual Reality & Intelligent Hardware. 2023;5(4):293–316. doi:10.1016/j.vrih.2022.09.002.

Lopci E, Kobe C, Gnanasegaran G, Adam JA, de Geus-Oei LF. ‘PET/CT Variants and Pitfalls in Lung Cancer and Mesothelioma.’ Semin Nucl Med. 2021;51(5):458–473. doi:10.1053/j.semnuclmed.2021.04.002.

Morawitz J, et al. PSMA PET/CT vs. CT alone in newly diagnosed biochemical recurrence of prostate cancer after radical prostatectomy: Comparison of detection rates and therapeutic implications. Eur J Radiol. 2021;136:109556. doi:10.1016/j.ejrad.2021.109556.

Poellmann MJ, et al. Circulating tumor cell abundance in head and neck squamous cell carcinoma decreases with successful chemoradiation and cetuximab treatment. Cancer Lett. 2023

A. Minovi, A. Hertel, A. Ural, E. Hofmann, W. Draf, and U. Bockmuehl, “Is PET superior to MRI in the pretherapeutic evaluation of head and neck squamous cell carcinoma?,” Kulak Burun Bogaz Ihtis Derg, vol. 17, no. 6, pp. 324 – 328, 2007, [Online].

[26] De Bree R, Mehta DM, Snow GB, Quak JJ. Diagnostic value of biopsies in identifying the cervical lymph node level of metastasis in squamous cell carcinoma of the head and neck. Otolaryngol Head Neck Surg. 2000;123(2):202-206. doi:10.1067/mhn.2000.106226.

Sommer K, et al. Value of 18F-FDG-PET/CT for staging and restaging of squamous cell carcinoma of the oral cavity and oropharynx with contrast-enhanced CT and follow-up in comparison to CECT and PET/CT – A retrospective analysis. Clin Imaging. 2018;50:294-301. doi:10.1016/j.clinimag.2018.04.014.

Rohde M, Nielsen AL, Pareek M, Johansen J, Sørensen JA. Observer variation in the interpretation of 18F-FDG PET/CT for lymphoma staging. J Nucl Med. 2014;55(6): 961-966. doi:10.2967/jnumed.113.128488.

Castaldi P, et al. Diffusion-weighted imaging in cervical lymph nodes: Differentiating malignant from benign lesions. Eur J Radiol. 2016;85(5):951-958. doi:10.1016/j.ejrad.2016.02.006.

Abikhzer G, et al. Imaging appearance of cervical lymph nodes in pediatric patients with lymphoma: a pictorial essay. Insights Imaging. 2016;7(5): 699-710. doi:10.1007/s13244-016-0506-8.

Dammann F, et al. 18F-FDG-PET/CT in staging, response evaluation, and surveillance of small cell lung cancer. Oncotarget. 2018;9(53):30058-30074. doi:10.18632/oncotarget.25757.

Ai H, et al. Whole-tumor MRI histogram analyses of hepatocellular carcinoma: Correlations with Ki-67 labeling index. J Magn Reson Imaging. 2016;44(6):1586-1594. doi:10.1002/jmri.25253.

Miles KA. Tumour angiogenesis and its relation to contrast enhancement on computed tomography: A review. Eur J Radiol. 1999;30(3): 198-205. doi:10.1016/S0720-048X(98)00159-7.

Yuh WT, et al. Tumor angiogenesis: Dynamic MR imaging. Radiology. 1996;198(3): 791-798. doi:10.1148/radiology.198.3.8628877.

Sourbron S, et al. Technical aspects of MR perfusion. Eur J Radiol. 2010;76(3): 304-313. doi:10.1016/j.ejrad.2010.02.015.

Ng SH, et al. Textural analysis of pretreatment 18F-FDG PET/CT for the prognostic prediction of thymic epithelial tumors. Clin Nucl Med. 2017;42(6): e281-e285. doi:10.1097/RLU.0000000000001641.

Wu W, et al. Preliminary study of computer-aided diagnosis for breast ultrasound: Classification of malignant and benign tumors. J Ultrasound Med. 2018;37(3): 639-645. doi:10.1002/jum.14507.

Galbán CJ, et al. Prospective analysis of parametric response map-derived MRI biomarkers: Identification of early and distinct glioma response patterns not predicted by standard radiographic assessment. Clin Cancer Res. 2011;17(14):4751-4760. doi:10.1158/1078-0432.CCR-10-3324.

Liu L, et al. Utility of MR and PET imaging for stereotactic biopsy in modern management of brain metastases. Br J Neurosurg. 2020;34(5):514-522. doi:10.1080/02688697.2019.1693083.

Sartoretti T, et al. Pet imaging of the head and neck: A review. Journal of Clinical Medicine. 2019;8(7): 945. doi:10.3390/jcm8070945.

Komori T, et al. Staging accuracy of cervical cancer by magnetic resonance imaging: Comparison with positron emission tomography/computed tomography and histopathology. J Obstet Gynaecol Res. 2017;43(11):1726-1735. doi:10.1111/jog.13407.

Han Q, et al. Texture analysis in preoperative magnetic resonance imaging predicts the primary site of origin in patients with brain metastases. Front Oncol. 2021;11:628517. doi:10.3389/fonc.2021.628517.

Zhu Y, et al. DCE and DW-MRI in evaluation of the grade of pancreatic neuroendocrine tumors: Correlation with histopathology. Cancer Imaging. 2019;19(1):69. doi:10.1186/s40644-019-0260-5.

Lu Y, et al. Dynamic contrast-enhanced magnetic resonance imaging for differentiating between benign and malignant ovarian tumors: A systematic review and meta-analysis. J Ovarian Res. 2020;13(1): 111. doi:10.1186/s13048-020-00725-2.

Taghipour M, et al. Diagnostic accuracy of dynamic contrast-enhanced magnetic resonance imaging in detecting breast cancer: A systematic review and meta-analysis. J Breast Imaging. 2020;2(4): 300-312. doi:10.1093/jbi/wbaa045.

Lin Y, et al. Predictive value of texture analysis on contrast-enhanced magnetic resonance imaging in patients with clear cell renal cell carcinoma receiving antiangiogenic therapy. Cancer Manag Res. 2019;11: 6027-6036. doi:10.2147/CMAR.S195249.

Kubota K, et al. 18F-FDG PET for semiquantitative evaluation of acute allograft rejection in a rat cardiac transplantation model: A comparative study with 99mTc-MIBI. J Nucl Med. 2004;45(1): 78-85.

Huang B, et al. PET/MRI in lung cancer: A potential roadmap to personalized medicine. Clin Transl Imaging. 2019;7(6): 453-465. doi:10.

Lopci E, et al. 18F-FDG PET/CT in the assessment of pulmonary solitary nodules in a tuberculosis-endemic area: Does it make the difference? Clin Nucl Med. 2016;41(7): 497-505. doi:10.1097/RLU.0000000000001231.

Vorster M, et al. PET kinetic analysis—compartmental model. PET Clin. 2017;12(2): 189-199. doi:10.1016/j.cpet.2016.12.001.

Yen RF, et al. Whole-body 18F-FDG PET in recurrent or metastatic nasopharyngeal carcinoma. J Nucl Med. 2005;46(5): 770-774.

Lambin P, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4): 441-446. doi:10.1016/j.ejca.2011.11.036.

Tan S, et al. Imaging as a biomarker for tumor response to therapy. Biomark Res. 2016;4: 10. doi:10.1186/s40364-016-0074-5.

O’Connor JPB, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14(3): 169-186. doi:10.1038/nrclinonc.2016.162.

Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4): 441-446. doi:10.1016/j.ejca.2011.11.036.

Zhang B, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma. Clin Cancer Res. 2017;23(15): 4259-4269. doi:10.1158/1078-0432.CCR-16-2910.

Lambin P, et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12): 749-762. doi:10.1038/nrclinonc.2017.141.

Suh HB, et al. Radiomics in lung cancer: Quality of radiomic features and imaging parameters. PLoS ONE. 2016;11(3): e0162283. doi:10.1371/journal.pone.0162283.

Parmar C, et al. Radiomic feature clusters and prognostic signatures specific for lung and head & neck cancer. Sci Rep. 2015;5: 11044. doi:10.1038/srep11044.

Wu W, et al. Radiomics-based classification of hepatocellular carcinoma and hepatic haemangioma on precontrast magnetic resonance images. BMC Med Imaging. 2019;19(1): 23. doi:10.1186/s12880-019-0330-3.

Kickingereder P, et al. Radiomic profiling of glioblastoma: Identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology. 2016;280(3): 880-889. doi:10.1148/radiol.2016160845.

Sun R, et al. Radiation pneumonitis assessed by radiographic imaging and pulmonary function testing following stereotactic body radiotherapy in stage I non-small cell lung cancer patients. J Thorac Dis. 2017;9(10): 3243-3250. doi:10.21037/jtd.2017.09.49.

Goh V, et al. Radiomics: Images are more than pictures, they are data. Radiology. 2017;285(2): 344-352. doi:10.1148/radiol.2017161718.

Huang YQ, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol. 2016;34(18): 2157-2164. doi:10.1200/JCO.2015.65.9128.

Coroller TP, et al. CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015;114(3): 345-350. doi:10.1016/j.radonc.2015.02.015.

Downloads

Published

12.01.2024

How to Cite

Mahjabeen, N. ., & Gampala, V. . (2024). A Systematic Review of Automated Lymph Node Detection Methods in Head and Neck Cancer: Clinical Significance, Performance, and Challenges. International Journal of Intelligent Systems and Applications in Engineering, 12(12s), 672 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4551

Issue

Section

Research Article