A Clustering Approach for Information Retrieval Using A Quantum-Based Computation Technique


  • Rupam Bhagawati M.TECH, Dept. of Computer Science and Engineering, Presidency University, Bangalore, Karnataka, India
  • Thiruselvan Subramanian Ph.D, Dept. of Computer Science and Engineering, Presidency University, Bangalore, Karnataka, India


Quantum Information Processing, Quantum Algorithm, Clustering, Quantum computation Technique, Information Retrieval


Today’s era of the internet and digitalization requires information of various forms. Information in any configuration is predominant in performing various tasks like management and retrieval. Static information is mostly present in documents and to perform retrieval, browsing, and managing this kind of information, we have many strategies available in classical form. Many classical forms can also be categorized from high level to low level. To some extent, the realm of Quantum Computing is also employed for the task and many contemporary researchers state efficient algorithms for the task. Relevant information per the user’s need is the most prominent goal of an Information System. Documents play an important role in information in this regard as well as keeping uncertainty on the relevancy of correct information as per the requirement. Documents are representations of all kinds of information related to numerous fields like academia, media, law, engineering, geography, and many more. A huge collection of information representation is scattered everywhere throughout the logical world of the internet. The collection is a blender of all types of documents from different fields and semantics. Searching and sorting complete relevant documents from this gigantic blender according to information need is an onerous task to an extent. Grouping the same information in clusters brings a change to the relevancy rate of the required information. Quantum mechanics track towards Quantum information processing provides a realm for clustering of information in the form of acquaintances. Using quantum computation in the realm of quantum mechanics, an algorithm is proposed for the task which will lead to the grouping of information by considering the microscopic properties of each and every acquaintance.


Download data is not yet available.


Croft, W.B. The Importance of Interaction for Information Retrieval. in SIGIR. 2019.

Singhal, A., Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 2001. 24(4): p. 35-43.

Clarke, J. and F.K. Wilhelm, Superconducting quantum bits. Nature, 2008. 453(7198): p. 1031-1042.

Devoret, M.H. and R.J. Schoelkopf, Superconducting circuits for quantum information: an outlook. Science, 2013. 339(6124): p. 1169-1174.

Lachance-Quirion, D., Y. Tabuchi, A. Gloppe, K. Usami, and Y. Nakamura, Hybrid quantum systems based on magnonics. Applied Physics Express, 2019. 12(7): p. 070101.

Zoller, P., T. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J.I. Cirac, D. Deutsch, and J. Eisert, Quantum information processing and communication: Strategic report on current status, visions and goals for research in Europe. The European Physical Journal D-Atomic, Molecular, Optical Plasma Physics, 2005. 36: p. 203-228.

Zeilinger, A., Experiment and the foundations of quantum physics. Reviews of Modern Physics, 1999. 71(2): p. S288.

Gebhart, V., R. Santagati, A.A. Gentile, E.M. Gauger, D. Craig, N. Ares, L. Banchi, F. Marquardt, L. Pezzè, and C. Bonato, Learning quantum systems. Nature Reviews Physics, 2023. 5(3): p. 141-156.

Córcoles, A.D., A. Kandala, A. Javadi-Abhari, D.T. McClure, A.W. Cross, K. Temme, P.D. Nation, M. Steffen, and J.M. Gambetta, Challenges and opportunities of near-term quantum computing systems. arXiv preprint arXiv:.02894, 2019.

Li, T. and Z.-Q. Yin, Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Science Bulletin, 2016. 61(2): p. 163-171.

Bouwmeester, D. and A. Zeilinger, The physics of quantum information: basic concepts. 2000: Springer.

Nielsen, M.A. and I. Chuang, Quantum computation and quantum information. 2002, American Association of Physics Teachers.

Horodecki, R., P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement. Reviews of modern physics, 2009. 81(2): p. 865.

Bub, J., Quantum entanglement and information. 2001.

Lehn-Schiøler, T., A. Hegde, D. Erdogmus, and J.C. Principe, Vector quantization using information theoretic concepts. Natural Computing, 2005. 4: p. 39-51.

Preskill, J., Quantum computing in the NISQ era and beyond. Quantum, 2018. 2: p. 79.

Dirac, P.A.M. A new notation for quantum mechanics. in Mathematical Proceedings of the Cambridge Philosophical Society. 1939. Cambridge University Press.

Shah, N. and S. Mahajan, Document clustering: a detailed review. International Journal of Applied Information Systems, 2012. 4(5): p. 30-38.

Velden, T., K.W. Boyack, J. Gläser, R. Koopman, A. Scharnhorst, and S. Wang, Comparison of topic extraction approaches and their results. Scientometrics, 2017. 111: p. 1169-1221.

Baghel, R. and R. Dhir, A frequent concepts based document clustering algorithm. International Journal of Computer Applications, 2010. 4(5): p. 6-12.

James, D.A., The application of classical information retrieval techniques to spoken documents. 1995, Citeseer.

Lashkari, A.H., F. Mahdavi, and V. Ghomi. A boolean model in information retrieval for search engines. in 2009 International Conference on Information Management and Engineering. 2009. IEEE.

Shahmirzadi, O., A. Lugowski, and K. Younge. Text similarity in vector space models: a comparative study. in 2019 18th IEEE international conference on machine learning and applications (ICMLA). 2019. IEEE.

Li, Y., Probabilistic models for aggregating crowdsourced annotations. 2019, University of Melbourne, Parkville, Victoria, Australia.

Frinta, K. and P.P.A. Indriati, Pencarian Berita Berbahasa Indonesia Menggunakan Metode BM25. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2019. 2548: p. 964X.

Mirjalili, S., H. Faris, and I. Aljarah, Evolutionary machine learning techniques. 2019: Springer.

Yang, S., G. Huang, B. Ofoghi, and J. Yearwood, Short text similarity measurement using context‐aware weighted biterms. Concurrency Computation: Practice Experience, 2022. 34(8): p. e5765.

Gringoli, F., M. Schulz, J. Link, and M. Hollick. Free your CSI: A channel state information extraction platform for modern Wi-Fi chipsets. in Proceedings of the 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization. 2019.

Dervakos, E., G. Filandrianos, K. Thomas, A. Mandalios, C. Zerva, and G. Stamou. Semantic Enrichment of Pretrained Embedding Output for Unsupervised IR. in AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering. 2021.

Gao, C., G. Bian, Y. Dong, X. Yuan, and H. Liu. Infrared Image Captioning Based on Unsupervised Learning and Reinforcement Learning. in 2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE). 2022. IEEE.

Goswami, M. and B. Purkayastha, A Fuzzy Based Approach for Empirical Analysis of Unstructured Data. Journal of Computational Theoretical Nanoscience, 2020. 17(9-10): p. 4375-4379.

Liu, C., Y.-H. Liu, J. Liu, and R. Bierig, Search interface design and evaluation. Foundations Trends® in Information Retrieval, 2021. 15(3-4): p. 243-416.

Abualigah, L.M.Q., Feature selection and enhanced krill herd algorithm for text document clustering. 2019.

Benabdellah, A.C., A. Benghabrit, and I. Bouhaddou, A survey of clustering algorithms for an industrial context. Procedia computer science, 2019. 148: p. 291-302.

Li, L., Q. Lin, and Z. Ming, A survey of artificial immune algorithms for multi-objective optimization. Neurocomputing, 2022. 489: p. 211-229.

Huleihel, W., A. Mazumdar, M. Médard, and S. Pal, Same-cluster querying for overlapping clusters. Advances in Neural Information Processing Systems, 2019. 32.

Bhagawati, R. Clusters Analyzer Algorithm for Informative Acquaintances-Quantum Clustering Algorithm. in 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). 2020. IEEE.

Hu, X., L. Leydesdorff, and R. Rousseau, Exponential growth in the number of items in the WoS. ISSI Newsletter, 2020. 16(2): p. 32-38.

Verma, R.M. and S. Srinivasagopalan. Clustering for security challenges. in Proceedings of the ACM International Workshop on Security and Privacy Analytics. 2019.

Afzali, M. and S. Kumar. Text document clustering: issues and challenges. in 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon). 2019. IEEE.

Sirichanya, C. and K. Kraisak, Semantic data mining in the information age: A systematic review. International Journal of Intelligent Systems, 2021. 36(8): p. 3880-3916.

Zheng, Z., X. Li, M. Tang, F. Xie, and M.R. Lyu, Web service QoS prediction via collaborative filtering: A survey. IEEE Transactions on Services Computing, 2020. 15(4): p. 2455-2472.

Bhagawati, R., S.R. Laskar, and B. Swain. Documents clustering using quantum clustering algorithm. in 2016 International Conference on Microelectronics, Computing and Communications (MicroCom). 2016. IEEE.

Ammar, H.A. and R. Adve. Power delay profile in coordinated distributed networks: User-centric v/s disjoint clustering. in 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP). 2019. IEEE.

Zamani, H., S. Dumais, N. Craswell, P. Bennett, and G. Lueck. Generating clarifying questions for information retrieval. in Proceedings of the web conference 2020. 2020.

Eminagaoglu, M., A new similarity measure for vector space models in text classification and information retrieval. Journal of Information Science, 2022. 48(4): p. 463-476.

Meng, Y., Y. Zhang, J. Huang, Y. Zhang, and J. Han. Topic discovery via latent space clustering of pretrained language model representations. in Proceedings of the ACM Web Conference 2022. 2022.

Barshandeh, S., R. Dana, and P. Eskandarian, A learning automata-based hybrid MPA and JS algorithm for numerical optimization problems and its application on data clustering. Knowledge-Based Systems, 2022. 236: p. 107682.

Raut, A. and G. Bamnote, Soft clustering: An overview. IJCCT, 2010. 1(2-4 SPEC. ISSUE): p. 370-372.

Banerjee, A., S. Merugu, I.S. Dhillon, J. Ghosh, and J. Lafferty, Clustering with Bregman divergences. Journal of machine learning research, 2005. 6(10).

Murtagh, F., Hierarchical Clustering. 2011.

Li, T., A. Rezaeipanah, and E.M.T. El Din, An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement. Journal of King Saud University-Computer Information Sciences, 2022. 34(6): p. 3828-3842.

Ambroise, C., A. Dehman, P. Neuvial, G. Rigaill, and N. Vialaneix, Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics. Algorithms for Molecular Biology, 2019. 14(1): p. 22.

Ahmed, M., R. Seraj, and S.M.S. Islam, The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 2020. 9(8): p. 1295.

Khan, S.U., A.J. Awan, and G. Vall-Llosera, K-means clustering on noisy intermediate scale quantum computers. arXiv preprint arXiv:.12183, 2019.

Pistoia, M., S.F. Ahmad, A. Ajagekar, A. Buts, S. Chakrabarti, D. Herman, S. Hu, A. Jena, P. Minssen, and P. Niroula. Quantum Machine Learning for Finance ICCAD Special Session Paper. in 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD). 2021. IEEE.

Arthur, D. and P. Date, Balanced k-means clustering on an adiabatic quantum computer. Quantum Information Processing, 2021. 20: p. 1-30.

Parekh, R., A. Ricciardi, A. Darwish, and S. DiAdamo. Quantum algorithms and simulation for parallel and distributed quantum computing. in 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS). 2021. IEEE.

Steinbach, M., G. Karypis, and V. Kumar, A comparison of document clustering techniques. 2000.

Tsutsumi, Y., Schrodinger equation. Funkcialaj Ekvacioj, 1987. 30: p. 115-125.

Horn, D. and A. Gottlieb, The method of quantum clustering. Advances in neural information processing systems, 2001. 14.

Amati, G. and F. Crestani, Advances in Information Retrieval Theory: Third International Conference, ICTIR 2011, Bertinoro, Italy, September 12-14, 2011, Proceedings. Vol. 6931. 2011: Springer Science & Business Media.

Bernstein, D.H., E. Giladi, and K.R. Jones, Eigenstates of the gravitational Schrödinger equation. Modern Physics Letters A, 1998. 13(29): p. 2327-2336.

Ginter, F., H. Suominen, S. Pyysalo, and T. Salakoski, Combining hidden Markov models and latent semantic analysis for topic segmentation and labeling: Method and clinical application. International journal of medical informatics, 2009. 78(12): p. e1-e6.

Patil, R., Noise reduction using wavelet transform and singular vector decomposition. Procedia Computer Science, 2015. 54: p. 849-853.

Amari, S.-i., Backpropagation and stochastic gradient descent method. Neurocomputing, 1993. 5(4-5): p. 185-196.

Jain, A., A. Jain, N. Chauhan, V. Singh, and N. Thakur, Information retrieval using cosine and jaccard similarity measures in vector space model. Int. J. Comput. Appl, 2017. 164(6): p. 28-30.

Cai, D., X. He, and J. Han, Locally consistent concept factorization for document clustering. IEEE Transactions on Knowledge Data Engineering, 2010. 23(6): p. 902-913.




How to Cite

Bhagawati, R. ., & Subramanian, T. . (2024). A Clustering Approach for Information Retrieval Using A Quantum-Based Computation Technique. International Journal of Intelligent Systems and Applications in Engineering, 12(14s), 488–497. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4685



Research Article