An Overall Survey of Brain Tumor Detection with Improved Machine Learning and Deep Learning Techniques
Keywords:
Segmentation, Feature Extraction, Validation, DiseaseAbstract
Cancer ID plays the crucial role in identifying the type of therapy, treatment progress, success rate, and disease advancement. CNN were the pivotal class at deep learning, particularly in recognizing visual imagery. CNNs train through convolution & maxpooling layers. ELM were the type for trainind mechanisms with hidden layers, applied at multiple domains like classification & regression.Gliomas, which is the common as well as violent brain cancers, significantly impact patient survival. Therefore, effective treatment planning is vital for enhancing life time for oncological patients. MRI which is very often used for identifying tumor. However, extensive information generated with MRI impedes traditional filtering within proper timeframe, by limits of the application in identifying the quality in terms of medical data. Hence, there is a need for reliable and automated segmentation methods.
Downloads
References
Methil, Aryan. (2021). Brain Tumor Detection using Deep Learning and Image Processing. 100-108. 10.1109/ICAIS50930.2021.9395823.
Amin, J., Sharif, M., Haldorai, A. et al. Brain tumor detection and classification using machine learning: a comprehensive survey. Complex Intell. Syst. (2021).
Gurunathan, A., Krishnan, B. A Hybrid CNN-GLCM Classifier For Detection And Grade Classification Of Brain Tumor. Brain Imaging and Behavior (2022).
Brain Tumor Detection using Convolutional Neural Network By Poornimasre Jegannathan in Turkish Journal of Computer and Mathematics Education Vol.12 No.11 (2021), 686-692.
Yadav, S.S., Jadhav, S.M. Deep convolutional neural network based medical image classification for disease diagnosis. J Big Data 6, 113 (2019).
Ranjbarzadeh, R., Bagherian Kasgari, A., Jafarzadeh Ghoushchi, S. et al. Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci Rep 11, 10930 (2021). https://doi.org/10.1038/s41598-021-90428-8
Yang, G.; Raschke, F.; Barrick, T.R.; Howe, F.A. Manifold Learning in MR spectroscopy using nonlineardimensionality reduction and unsupervised clustering. Magn. Reson. Med. 2015, 74, 868–878.
Yang, G.; Raschke, F.; Barrick, T.R.; Howe, F.A. Classification of brain tumour 1 h mr spectra: Extractingfeatures by metabolite quantification or nonlinear manifold learning? In Proceedings of the 2014 IEEE 11thInternational Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April–2 May 2014; pp. 1039–1042.
Yang, G.; Nawaz, T.; Barrick, T.R.; Howe, F.A.; Slabaugh, G. Discrete wavelet transform-based whole-spectraland subspectral analysis for improved brain tumor clustering using single voxel MR spectroscopy.IEEE Trans. Biomed. Eng. 2015, 62, 2860–2866.
10. Kleihues, P.; Burger, P.C.; Scheithauer, B.W. The new WHO classification of brain tumours. Brain Pathol. 1993,3, 255–268.
Von Deimling, A. Gliomas; Springer: Berlin, Germany, 2009; Volume 171.
Mittal, M.; Goyal, L.M.; Kaur, S.; Kaur, I.; Verma, A.; Hemanth, D.J. Deep learning based enhanced tumorsegmentation approach for MR brain images. Appl. Soft Comput. 2019, 78, 346–354.
Bauer, S.;Wiest, R.; Nolte, L.-P.; Reyes, M. A survey of MRI-based medical image analysis for brain tumorstudies. Phys. Med. Biol. 2013, 58, R97.
Reza, S.; Iftekharuddin, K.M. Improved brain tumor tissue segmentation using texture features. In Proceedingsof the MICCAI BraTS (Brain Tumor Segmentation Challenge), Boston, MA, USA, 14 September 2014; pp. 27–30.
Goetz, M.;Weber, C.; Bloecher, J.; Stieltjes, B.; Meinzer, H.-P.; Maier-Hein, K. Extremely randomized treesbased brain tumor segmentation. In Proceedings of the BRATS Challenge-MICCAI, Boston, MA, USA,14 September 2014; pp. 6–11.
Kleesiek, J.; Biller, A.; Urban, G.; Kothe, U.; Bendszus, M.; Hamprecht, F. Ilastik for multi-modal brain tumorsegmentation. In Proceedings of the MICCAI BraTS (Brain Tumor Segmentation Challenge), Boston, MA,USA, 14 September 2014; pp. 12–17.
Ruan, S.; Lebonvallet, S.; Merabet, A.; Constans, J.-M. Tumor segmentation from a multispectral MRI imagesby using support vector machine classification. In Proceedings of the 2007 4th IEEE International Symposiumon Biomedical Imaging: From Nano to Macro, Arlington, VA, USA, 12–15 April 2007; pp. 1236–1239.
Li, H.; Song, M.; Fan, Y. Segmentation of brain tumors in multi-parametric MR images via robust statisticinformation propagation. In Asian Conference on Computer Vision; Springer: Berlin, Germany, 2010; pp. 606–617.
Li, H.; Fan, Y. Label propagation with robust initialization for brain tumor segmentation. In Proceedings ofthe 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, 2–5 May 2012;pp. 1715–1718.
Meier, R.; Bauer, S.; Slotboom, J.;Wiest, R.; Reyes, M. Appearance-and context-sensitive features for braintumor segmentation. In Proceedings of the MICCAI BRATS Chall., Boston, MA, USA, 14 September 2014;pp. 20–26.
Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection andsemantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Columbus, OH, USA, 24–27 June 2014; pp. 580–587.
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.In Advances in Neural Information Processing Systems; NIPS: Pasadena, CA, USA, 2012; pp. 1097–1105.
Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedingsof the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;pp. 3431–3440.
Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.; Su, Z.; Du, D.; Torr, P.H. Conditional random fieldsas recurrent neural networks. In Proceedings of the IEEE International Conference on Computer Vision,Santiago, Chile, 7–13 December 2015; pp. 1529–1537.
Liu, Z.; Li, X.; Luo, P.; Loy, C.-C.; Tang, X. Semantic image segmentation via deep parsing network.In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December2015; pp. 1377–1385.
Wang, G.; Zuluaga, M.A.; Pratt, R.; Aertsen, M.; Doel, T.; Klusmann, M.; Ourselin, S. Slic-Seg: A minimallyinteractive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views.Med. Image Anal. 2016, 34, 137–147.
Top, A.; Hamarneh, G.; Abugharbieh, R. Active learning for interactive3Dimage segmentation. In InternationalConference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin, Germany, 2011;
Rother, C.; Kolmogorov, V.; Blake, A. Grabcut: Interactive foreground extraction using iterated graph cuts.ACM Trans. Graph. 2004, 23, 309–314.
Vaidhya, K.; Thirunavukkarasu, S.; Alex, V.; Krishnamurthi, G. Multi-modal brain tumor segmentation usingstacked denoising autoencoders. BrainLes 2015, 2015, 181–194.
Agn, M.; Puonti, O.; Law, I.; Rosenschöld, P.M.A.; van Leemput, K. Brain tumor segmentation by a generativemodel with a prior on tumor shape. In Proceedings of the Multimodal Brain Tumor Image SegmentationChall., Munich, Germany, 5–9 October 2015; pp. 1–4.
Zikic, D.; Ioannou, Y.; Brown, M.; Criminisi, A. Segmentation of brain tumor tissues with convolutionalneural networks. In Proceedings of the MICCAI-BRATS, Boston, MA, USA, 14–18 September 2014; pp. 36–39.
Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Larochelle, H. Brain tumorsegmentation with deep neural networks. Med. Image Anal. 2017, 35, 18–31.
Dvoˇrák, P.; Menze, B. Local structure prediction with convolutional neural networks for multimodal braintumor segmentation. In International MICCAIWorkshop on Medical Computer Vision; Springer: Berlin, Germany,2015; pp. 59–71.
Havaei, M.; Dutil, F.; Pal, C.; Larochelle, H.; Jodoin, P.-M. A convolutional neural network approach to braintumor segmentation. BrainLes 2015, 2015, 195–208.
Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Deep convolutional neural networks for the segmentation ofgliomas in multi-sequence MRI. BrainLes 2015, 2015, 131–143.
Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Glocker, B. E_cientmulti-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal.2017, 36, 61–78.
Yi, D.; Zhou, M.; Chen, Z.; Gevaert, O. 3-D convolutional neural networks for glioblastoma segmentation.arXiv 2016, arXiv:1611.04534.
Salman, O.H.; Rasid, M.F.A.; Saripan, M.I.; Subramaniam, S.K. Multi-sources data fusion framework forremote triage prioritization in telehealth. J. Med. Syst. 2014, 38, 103. .
Alanazi, H.O.; Jalab, H.A.; Gazi, M.A.; Zaidan, B.B.; Zaidan, A.A. Securing electronic medicalrecords transmissions over unsecured communications: An overview for better medical governance.J. Med. Plants Res. 2010, 4, 2059–2074.
Alanazi, H.O.; Zaidan, A.A.; Zaidan, B.B.; Kiah, M.L.M.; Al-Bakri, S.H. Meeting the security requirementsof electronic medical records in the ERA of high-speed computing. J. Med. Syst. 2015, 39, 165.
Kiah, M.L.M.; Nabi, M.S.; Zaidan, B.B.; Zaidan, A.A. An enhanced security solution for electronic medicalrecords based on AES hybrid technique with SOAP/XML and SHA-1. J. Med. Syst. 2013, 37, 9971.
Kiah, M.L.M.; Zaidan, B.B.; Zaidan, A.A.; Nabi, M.; Ibraheem, R. MIRASS: Medical informatics researchactivity support system using information mashup network. J. Med. Syst. 2014, 38, 37.
MKiah, L.M.; Haiqi, A.; Zaidan, B.B.; Zaidan, A.A. Open source EMR software: Profiling, insights andhands-on analysis. Comput. Methods Programs Biomed. 2014, 117, 360–382.
Kiah, M.L.M.; Al-Bakri, S.H.; Zaidan, A.A.; Zaidan, B.B.; Hussain, M. Design and develop a video conferencingframework for real-time telemedicine applications using secure group-based communication architecture.J. Med. Syst. 2014, 38, 133.
Nabi, M.S.A.; Kiah, M.L.M.; Zaidan, B.B.; Zaidan, A.A.; Alam, G.M. Suitability of SOAP protocol in securingtransmissions of EMR database. Int. J. Pharmacol. 2010, 6, 959–964.
Zaidan, B.B.; Zaidan, A.A.; Kiah, M.L.M. Impact of data privacy and confidentiality on developingtelemedicine applications: A review participates opinion and expert concerns. Int. J. Pharmacol. 2011, 7,382–387.
Zaidan, B.B.; Haiqi, A.; Zaidan, A.A.; Abdulnabi, M.; Kiah, M.L.M.; Muzamel, H. A security framework fornationwide health information exchange based on telehealth strategy. J. Med. Syst. 2015, 39, 51.
Zaidan, A.A.; Zaidan, B.B.; Kadhem, Z.; Larbani, M.; Lakulu, M.B.; Hashim, M. Challenges, alternatives,and paths to sustainability: Better public health promotion using social networking pages as key tools.J. Med. Syst. 2015, 39, 7.
Topaz, M. Developing a Tool to Support Decisions on Patient Prioritization at Admission to Home Health Care; Penn:Philadelphia, PA, USA, 2014.
Chan, M.; EstèVe, D.; Fourniols, J.-Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status andfuture challenges. Artif. Intell. Med. 2012, 56, 137–156.
CFernandes, M.B.;Wuerz, R.; Clark, S.; Djurdjev, O.; Group, M.O.R. How reliable is emergency departmenttriage? Ann. Emerg. Med. 1999, 34, 141–147.
Li, S.-H.; Cheng, K.-A.; Lu, W.-H.; Lin, T.-C. Developing an active emergency medical service system basedon WiMAX technology. J. Med. Syst. 2012, 36, 3177–3193.
53. Lin, C.-F. Mobile telemedicine: A survey study. J. Med. Syst. 2012, 36, 511–520. [CrossRef]
Wang, X.; Gui, Q.; Liu, B.; Jin, Z.; Chen, Y. Enabling smart personalized healthcare: A hybrid mobile-cloudapproach for ECG telemonitoring. IEEE J. Biomed. Heal. Inform. 2013, 18, 739–745.
Wei, H.; Li, H.; Tan, J. Body sensor network based context-aware QRS detection. J. Signal Process. Syst. 2012,67, 93–103.
Culley, J.M.; Svendsen, E.; Craig, J.; Tavakoli, A. A validation study of 5 triage systems using data from the2005 Graniteville, South Carolina, chlorine spill. J. Emerg. Nurs. 2014, 40, 453–460.
Mazomenos, E.B.; Biswas, D.; Acharyya, A.; Chen, T.; Maharatna, K.; Rosengarten, J.; Curzen, N. Alow-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J. Biomed. Heal.informatics 2013, 17, 459–469.
Seising, R.; Tabacchi, M.E. Fuzziness and Medicine: Philosophical Reflections and Application Systems in HealthCare: A Companion Volume to Sadegh-Zadeh’s Handbook of Analytical Philosophy of Medicine; Springer: Berlin,Germany, 2013; Volume 302.
Klimova, B. Mobile health devices for aging population groups: A review study. In International Conferenceon Mobile Web and Information Systems; Springer: Berlin, Germany, 2016; pp. 295–301.
Chung, Y.-F.; Liu, C.-H. Design of a wireless sensor network platform for tele-homecare. Sensors 2013, 13,17156–17175.
Sun, J.; Guo, Y.;Wang, X.; Zeng, Q. mHealth for aging China: Opportunities and challenges. Aging Dis. 2016,7, 53.
Parekh, A.K.; Goodman, R.A.; Gordon, C.; Koh, H.K.; HHS InteragencyWorkgroup on Multiple ChronicConditions. Managing multiple chronic conditions: A strategic framework for improving health outcomesand quality of life. Public Health Rep. 2011, 126, 460–471.
Palozzi, G.; Binci, D.; Appolloni, A. E-health and co-production: Critical drivers for chronic diseasesmanagement. In Service Business Model Innovation in Healthcare and Hospital Management; Springer: Berlin,Germany, 2017; pp. 269–296.
Sparks, R.; Celler, B.; Okugami, C.; Jayasena, R.; Varnfield, M. Telehealth monitoring of patients in thecommunity. J. Intell. Syst. 2016, 25, 37–53.
Touati, F.; Tabish, R. U-healthcare system: State-of-the-art review and challenges. J. Med. Syst. 2013, 37, 9949.
Kalid, N.; Zaidan, A.A.; Zaidan, B.B.; Salman, O.H.; Hashim, M.; Muzammil, H. Based real time remotehealth monitoring systems: A review on patients prioritization and related‘ big data’ using body sensorsinformation and communication technology. J. Med. Syst. 2018, 42, 30.
Banerjee, S.; Mitra, S.; Masulli, F.; Rovetta, S. Brain Tumor Detection and Classification from Multi-SequenceMRI: Study Using ConvNets. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018;pp. 170–179.
Zhou, Y.; Li, Z.; Zhu, H.; Chen, C.; Gao, M.; Xu, K.; Xu, J. Holistic Brain Tumor Screening and ClassificationBased on DenseNet and Recurrent Neural Network. In International MICCAI Brainlesion Workshop; Springer:Berlin, Germany, 2018; pp. 208–217.
Abiwinanda, N.; Hanif, M.; Hesaputra, S.T.; Handayani, A.; Mengko, T.R. Brain tumor classification usingconvolutional neural network. In World Congress on Medical Physics and Biomedical Engineering; Springer:Berlin, Germany, 2018; pp. 183–189.
Alberts, E.; Tetteh, G.; Trebeschi, S.; Bieth, M.; Valentinitsch, A.; Wiestler, B.; Menze, B.H. Multi-modal imageclassification using low-dimensional texture features for genomic brain tumor recognition. In Graphs inBiomedical Image Analysis, Computational Anatomy and Imaging Genetics; Springer: Berlin, Germany, 2017;pp. 201–209.
Ari, A.; Hanbay, D. Deep learning based brain tumor classification and detection system. Turk. J. Electr. Eng.Comput. Sci. 2018, 26, 2275–2286.
Iqbal, S.; Khan, M.U.G.; Saba, T.; Rehman, A. Computer-assisted brain tumor type discrimination usingmagnetic resonance imaging features. Biomed. Eng. Lett. 2018, 8, 5–28.
Ishikawa, Y.;Washiya, K.; Aoki, K.; Nagahashi, H. Brain tumor classification of microscopy images usingdeep residual learning. SPIE BioPhotonics Australas. 2016, 10013, 100132Y.
Mohsen, H.; El-Dahshan, E.-S.A.; El-Horbaty, E.-S.M.; Salem, A.-B.M. Classification using deep learningneural networks for brain tumors. Futur. Comput. Inform. J. 2018, 3, 68–71.
Paul, J.S.; Plassard, A.J.; Landman, B.A.; Fabbri, D. Deep learning for brain tumor classification. In MedicalImaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging; Krol, A., Gimi, B., Eds.;SPIE: Bellingham, WA, USA, 2017; Volume 10137, p. 1013710.
Xu, Y.; Jia, Z.; Ai, Y.; Zhang, F.; Lai, M.; Eric, I.; Chang, C. Deep convolutional activation features forlarge scale brain tumor histopathology image classification and segmentation. In Proceedings of the 2015IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia,19–24 April 2015; pp. 947–951.
Ahmed, K.B.; Hall, L.O.; Goldgof, D.B.; Liu, R.; Gatenby, R.A. Fine-tuning convolutional deep featuresfor MRI based brain tumor classification. In Proceedings of the Medical Imaging 2017: Computer-AidedDiagnosis, Orlando, FL, USA, 3 March 2017; Volume 10134, p. 101342E.
Deepa, A.R.; Emmanuel,W.R.S. An e_cient detection of brain tumor using fused feature adaptive fireflybackpropagation neural network. Multimed. Tools Appl. 2019, 78, 11799–11814.
Ismael, M.R. Hybrid Model-Statistical Features and Deep Neural Network for Brain Tumor Classification in MRIImages;Western Michigan University: Kalamazoo, MI, USA, 2018.
Liu, R.; Hall, L.O.; Goldgof, D.B.; Zhou, M.; Gatenby, R.A.; Ahmed, K.B. Exploring deep features frombrain tumor magnetic resonance images via transfer learning. In Proceedings of the 2016 International JointConference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 235–242.
Ladefoged, C.N.; Marner, L.; Hindsholm, A.; Law, I.; Højgaard, L.; Andersen, F.L. Deep learning basedattenuation correction of PET/MRI in pediatric brain tumor patients: Evaluation in a clinical setting.Front. Neurosci. 2018, 2, 1005.
Fabelo, H.; Halicek, M.; Ortega, S.; Shahedi, M.; Szolna, A.; Piñeiro, J.F.; Márquez, M. Deep learning-basedframework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain.Sensors 2019, 19, 920.
Suter, Y.; Jungo, A.; Rebsamen, M.; Knecht, U.; Herrmann, E.; Wiest, R.; Reyes, M. Deep Learning versusClassical Regression for Brain Tumor Patient Survival Prediction. In International MICCAI BrainlesionWorkshop; Springer: Berlin, Germany, 2018; pp. 429–440.
Li, Y.; Shen, L. Deep learning based multimodal brain tumor diagnosis. In International MICCAI BrainlesionWorkshop; Springer: Berlin, Germany, 2017; pp. 149–158.
Nie, D.; Zhang, H.; Adeli, E.; Liu, L.; Shen, D. 3D deep learning for multi-modal imaging-guided survival timeprediction of brain tumor patients. In International Conference on Medical Image Computing and Computer-AssistedIntervention; Springer: Berlin, Germany, 2016; pp. 212–220.
Amin, J.; Sharif, M.; Raza, M.; Yasmin, M. Detection of Brain Tumor based on Features Fusion and MachineLearning. J. Ambient. Intell. Humaniz. Comput. 2018.
Chato, L.; Latifi, S. Machine learning and deep learning techniques to predict overall survival of brain tumorpatients using MRI images. In Proceedings of the 2017 IEEE 17th International Conference on Bioinformaticsand Bioengineering (BIBE),Washington, DC, USA, 23–25 October 2017; pp. 9–14.
Amarapur, B. Computer-aided diagnosis applied to MRI images of brain tumor using cognition basedmodified level set and optimized ANN classifier. Multimed. Tools Appl. 2018.
Benson, E.; Pound, M.P.; French, A.P.; Jackson, A.S.; Pridmore, T.P. Deep Hourglass for Brain TumorSegmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 419–428.
Zhou, C.; Chen, S.; Ding, C.; Tao, D. Learning contextual and attentive information for brain tumorsegmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 497–507.
McKinley, R.; Jungo, A.; Wiest, R.; Reyes, M. Pooling-free fully convolutional networks with dense skipconnections for semantic segmentation, with application to brain tumor segmentation. In InternationalMICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2017; pp. 169–177.
Kim, G. Brain tumor segmentation using deep fully convolutional neural networks. In International MICCAIBrainlesion Workshop; Springer: Berlin, Germany, 2017; pp. 344–357.
Hu, Y.; Xia, Y. 3D deep neural network-based brain tumor segmentation using multimodality magneticresonance sequences. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2017;pp. 423–434.
Natarajan, A.; Kumarasamy, S. E_cient Segmentation of Brain Tumor Using FL-SNM with a MetaheuristicApproach to Optimization. J. Med. Syst. 2019, 43, 25.
Mlynarski, P.; Delingette, H.; Criminisi, A.; Ayache, N. Deep learning with mixed supervision for braintumor segmentation. J. Med. Imaging 2019, 6, 34002.
Afshar, P.; Mohammadi, A.; Plataniotis, K.N. Brain tumor type classification via capsule networks.In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece,7–10 October 2018; pp. 3129–3133.
Amiri, S.; Mahjoub, M.A.; Rekik, I. Bayesian Network and Structured Random Forest Cooperative DeepLearning for Automatic Multi-label Brain Tumor Segmentation. ICAART 2018, 2, 183–190.
Chang, P.D. Fully convolutional deep residual neural networks for brain tumor segmentation. In InternationalWorkshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; Springer: Berlin,Germany, 2016; pp. 108–118.
Isensee, F.; Kickingereder, P.; Bonekamp, D.; Bendszus, M.; Wick, W.; Schlemmer, H.P.; Maier-Hein, K. Braintumor segmentation using large receptive field deep convolutional neural networks. In Bildverarbeitung fürdie Medizin 2017; Springer: Berlin, Germany, 2017; pp. 86–91.
Kumar, S.; Negi, A.; Singh, J.N. Semantic Segmentation Using Deep Learning for Brain Tumor MRI via FullyConvolution Neural Networks. In Information and Communication Technology for Intelligent Systems; Springer:Berlin, Germany, 2019; pp. 11–19.
Wang, G.; Li, W.; Ourselin, S.; Vercauteren, T. Automatic brain tumor segmentation using convolutionalneural networks with test-time augmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin,Germany, 2018; pp. 61–72.
Jiang, Y.; Hou, J.; Xiao, X.; Deng, H. A Brain Tumor Segmentation New Method Based on StatisticalThresholding and Multiscale CNN. In International Conference on Intelligent Computing; Springer:Berlin, Germany, 2018; pp. 235–245.
Liu, D.; Zhang, D.; Song, Y.; Zhang, F.; O’Donnell, L.J.; Cai, W. 3d large kernel anisotropic network for braintumor segmentation. In Proceedings of the International Conference on Neural Information Processing,Siem Reap, Cambodia, 13–16 December 2018; pp. 444–454.
Rezaei, M.; Yang, H.; Meinel, C. voxel-GAN: Adversarial Framework for Learning Imbalanced Brain TumorSegmentation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 321–333.
Shen, H.; Wang, R.; Zhang, J.; McKenna, S.J. Boundary-aware fully convolutional network for braintumor segmentation. In Proceedings of the International Conference on Medical Image Computing andComputer-Assisted Intervention, Quebec City, QC, Canada, 11–13 September 2017; pp. 433–441.
Shreyas, V.; Pankajakshan, V. A deep learning architecture for brain tumor segmentation in MRI images.In Proceedings of the 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP),Luton, UK, 16–18 October 2017; pp. 1–6.
Tustison, N.J.; Shrinidhi, K.L.;Wintermark, M.; Durst, C.R.; Kandel, B.M.; Gee, J.C.; Avants, B.B. Optimalsymmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation(simplified) with ANTsR. Neuroinformatics 2015, 13, 209–225.
Zhao, L.; Jia, K. Deep feature learning with discrimination mechanism for brain tumor segmentation anddiagnosis. In Proceedings of the 2015 International Conference on Intelligent Information Hiding andMultimedia Signal Processing (IIH-MSP), Adelaide, SA, Australia, 23–25 September 2015; pp. 306–309.
Thillaikkarasi, R.; Saravanan, S. An Enhancement of Deep Learning Algorithm for Brain Tumor Segmentation
Using Kernel Based CNN with M-SVM. J. Med. Syst. 2019, 43, 84. [CrossRef]
Deng, W.; Shi, Q.; Luo, K.; Yang, Y.; Ning, N. Brain Tumor Segmentation Based on Improved ConvolutionalNeural Network in Combination with Non-quantifiable Local Texture Feature. J. Med. Syst. 2019, 43, 152.
Mok, T.C.W.; Chung, A.C.S. Learning data augmentation for brain tumor segmentation with coarse-to-finegenerative adversarial networks. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany,2018; pp. 70–80.
Sharma, A.; Kumar, S.; Singh, S.N. Brain tumor segmentation using DE embedded OTSU method and neuralnetwork. Multidimens. Syst. Signal Process. 2019, 30, 1263–1291.
Xiao, Z.; Huang, R.; Ding, Y.; Lan, T.; Dong, R.; Qin, Z.; Wang, W. A deep learning-based segmentationmethod for brain tumor in MR images. In Proceedings of the 2016 IEEE 6th International Conference onComputational Advances in Bio and Medical Sciences (ICCABS), Atlanta, GA, USA, 13–15 October 2016;pp. 1–6.
Kermi, A.; Mahmoudi, I.; Khadir, M.T. Deep Convolutional Neural Networks Using U-Net for AutomaticBrain Tumor Segmentation in Multimodal MRI Volumes. In International MICCAI Brainlesion Workshop;Springer: Berlin, Germany, 2018; pp. 37–48.
Yao, H.; Zhou, X.; Zhang, X. Automatic Segmentation of Brain Tumor Using 3D SE-Inception Networkswith Residual Connections. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018;pp. 346–357.
Dai, L.; Li, T.; Shu, H.; Zhong, L.; Shen, H.; Zhu, H. Automatic Brain Tumor Segmentation with Domain
Adaptation. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany, 2018; pp. 380–392.
Carver, E.; Liu, C.; Zong, W.; Dai, Z.; Snyder, J.M.; Lee, J.; Wen, N. Automatic Brain Tumor Segmentationand Overall Survival Prediction Using Machine Learning Algorithms. In International MICCAI BrainlesionWorkshop; Springer: Berlin, Germany, 2018; pp. 406–418.
Wang, G.; Li,W.; Ourselin, S.; Vercauteren, T. Automatic brain tumor segmentation using cascaded anisotropicconvolutional neural networks. In International MICCAI Brainlesion Workshop; Springer: Berlin, Germany,2017; pp. 178–190.
Sedlar, S. Brain tumor segmentation using a multi-path CNN based method. In International MICCAIBrainlesion Workshop; Springer: Berlin, Germany, 2017; pp. 403–422.
Kapás, Z.; Lefkovits, L.; Iclanzan, D.; Gy˝orfi, Á.; Iantovics, B.L.; Lefkovits, S.; Szilágyi, L. Automatic braintumor segmentation in multispectral MRI volumes using a random forest approach. In Pacific-Rim Symposiumon Image and Video Technology; Springer: Berlin, Germany, 2017; pp. 137–149.
Kumar, G.A.; Sridevi, P.V. Intensity Inhomogeneity Correction for Magnetic Resonance Imaging ofAutomatic Brain Tumor Segmentation. In Microelectronics, Electromagnetics and Telecommunications; Springer:Berlin, Germany, 2019; pp. 703–711.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal unless they receive approval for doing so from the Editor-In-Chief.
IJISAE open access articles are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. This license lets the audience to give appropriate credit, provide a link to the license, and indicate if changes were made and if they remix, transform, or build upon the material, they must distribute contributions under the same license as the original.