Predicting Premature Birth During Pregnancy Using Machine Learning: A Systematic Review

Authors

  • Anggrita Sari Graduate Program Doctoral Student, Sultan Idris Education University, Malaysia
  • Muhammad Modi Lakulu Lecturer Faculty of Computing and Meta Technology, Sultan Idris Education University, Malaysia
  • Ismail Yusuf Panessai Lecturer Faculty of Computing and Meta Technology, Sultan Idris Education University, Malaysia

Keywords:

Artificial Intelligence, Machine Learning, Maternal, Pregnancy, Preterm Birth

Abstract

: Artificial intelligence is widely developed in the health sector, and machine learning has been increasingly used in healthcare to make predictions, assign diagnoses and as a method of prioritizing actions. machine learning methods have become a feature of several tools in the field of obstetrics and child care. Is to identify the applicability and performance of machine learning methods used to identify preterm labor during pregnancy the main precision metric used is the AUC. the machine learning method with the best results was the prediction of prematurity the SVM classifier algorithm method is the best method for predicting the incidence of premature birth with an accuracy level of 0.997, recall of 0.995, and specificity of 1.0, for identifying a diagnosis of premature birth which is quite good. good. accurately. These results are similar to the results of Rawashdeh et al.'s research on a data mining-based intelligence system using the Naïve Bayes, Decision Tree, K-NN, RF, And NN algorithms with results obtained with an accuracy of 0.95, recall of 1.0, and specificity of 0.94 using rf. To prevent preterm birth, it is critical to support research in this area and develop machine learning-based solutions with broad clinical applicability. It is also advised that future research compare ml with a traditional approach using the same data to comprehend its value in filling the current gap. This comprehensive review makes a substantial contribution to the specialized literature on women's health and artificial intelligence.

Downloads

Download data is not yet available.

References

E. Nsugbe, O. Obajemu, O. W. Samuel, and I. Sanusi, “Enhancing care strategies for preterm pregnancies by using a prediction machine to aid clinical care decisions,” Machine Learning With Applications, vol. 6, p. 100110, Dec. 2021, doi: 10.1016/j.mlwa.2021.100110.

J. Cresswell and W. H. Organization, Trends in maternal mortality 2000 to 2020: estimates by WHO, UNICEF, UNFPA, World Bank Group and UNDESA/Population Division. World Health Organization, 2023.

R. Surendiran, R. Aarthi, M. Thangamani, S. Sugavanam, and R. Sarumathy, “A Systematic Review using Machine Learning Algorithms for Predicting Preterm Birth,” International Journal of Engineering Trends and Technology, vol. 70, no. 5, pp. 46–59, May 2022, doi: 10.14445/22315381/ijett-v70i5p207.

K.-S. Lee, E. S. Kim, D. Kim, I. Song, and K. H. Ahn, “Association of Gastroesophageal Reflux Disease with Preterm Birth: Machine Learning Analysis,” Journal of Korean Medical Science, vol. 36, no. 43, Jan. 2021, doi: 10.3346/jkms.2021.36.e282.

T. Włodarczyk et al., “Machine Learning Methods for Preterm Birth Prediction: A review,” Electronics, vol. 10, no. 5, p. 586, Mar. 2021, doi: 10.3390/electronics10050586.

D. Despotović, A. Zec, K. G. Mladenović, N. Radin, and T. Lončar-Turukalo, “A Machine Learning Approach for an Early Prediction of Preterm Delivery,” 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY), Sep. 2018, doi: 10.1109/sisy.2018.8524818.

R. Pari, M. Sandhya, and S. Sankar, “Risk factors based classification for accurate prediction of the Preterm Birth,” 2017 International Conference on Inventive Computing and Informatics (ICICI), Nov. 2017, doi: 10.1109/icici.2017.8365380.

Kementrian Kesehatan Republik INdonesia, “Hasil Utama RISKESDAS Tahun 2020,” 2018. Accessed: Nov. 19, 2023. [Online]. Available: https://kesmas.kemkes.go.id/assets/upload/dir_519d41d8cd98f00/files/Hasil-riskesdas-2018_1274.pdf

Dinas Kesehatan Pemerintah Provinsi Kalimantan Selatan., “PROFIL KESEHATAN KALSEL TAHUN 2018.” Accessed: Nov. 19, 2023. [Online]. Available: https://drive.google.com/file/d/135Boo4b0G7yBAR_ghPDzl6U7LkzGcJ9S/view

T. Solehati et al., “Intervensi selama kehamilan untuk mencegah kelahiran prematur: Systematic literature review,” Holistik, vol. 14, no. 2, pp. 210–218, Jul. 2020, doi: 10.33024/hjk.v14i2.2685.

G. Bloom, Y. Katsuma, K. D. Rao, S. Makimoto, J. D.-C. Yin, and G. M. Leung, “Next steps towards universal health coverage call for global leadership,” The BMJ, p. l2107, May 2019, doi: 10.1136/bmj.l2107.

B. M. Farrant, S. W. White, and C. Shepherd, “Trends and predictors of extreme preterm birth: Western Australian population-based cohort study,” PLOS ONE, vol. 14, no. 3, p. e0214445, Mar. 2019, doi: 10.1371/journal.pone.0214445.

A. Muzakir and R. A. Wulandari, “Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Decision Tree,” Scientific Journal of Informatics, vol. 3, no. 1, pp. 19–26, Jun. 2016, doi: 10.15294/sji.v3i1.4610.

A. Muzakir and R. A. Wulandari, “Model Data Mining sebagai Prediksi Penyakit Hipertensi Kehamilan dengan Teknik Decision Tree,” Scientific Journal of Informatics, vol. 3, no. 1, pp. 19–26, Jun. 2016, doi: 10.15294/sji.v3i1.4610.

I. Atienza-Navarro, P. Alves-Martínez, S. P. Lubián‐López, and M. García-Alloza, “Germinal Matrix-Intraventricular hemorrhage of the preterm newborn and Preclinical models: Inflammatory considerations,” International Journal of Molecular Sciences, vol. 21, no. 21, p. 8343, Nov. 2020, doi: 10.3390/ijms21218343.

P. Barrett et al., “Stillbirth is associated with increased risk of long-term maternal renal disease: a nationwide cohort study,” American Journal of Obstetrics and Gynecology, vol. 223, no. 3, p. 427.e1-427.e14, Sep. 2020, doi: 10.1016/j.ajog.2020.02.031.

D. Puspitasari, K. Ramanda, A. Supriyatna, M. Wahyudi, E. D. Sikumbang, and S. H. Sukmana, “Comparison of data mining algorithms using artificial neural networks (ANN) and naive bayes for preterm birth prediction,” Journal of Physics: Conference Series, vol. 1641, no. 1, p. 012068, Nov. 2020, doi: 10.1088/1742-6596/1641/1/012068.

H. Sufriyana, Y. W. Wu, and E. C. Y. Su, “Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia,” EBioMedicine, vol. 54, p. 102710, Apr. 2020, doi: 10.1016/j.ebiom.2020.102710.

V. Berghella, Maternal-Fetal Evidence Based Guidelines. CRC Press, 2021.

A. M. Oprescu, G. Miró-Amarante, L. García‐Díaz, L. M. Beltrán, V. E. Rey, and M. C. Romero-Ternero, “Artificial Intelligence in Pregnancy: A scoping review,” IEEE Access, vol. 8, pp. 181450–181484, Jan. 2020, doi: 10.1109/access.2020.3028333.

I. Abuelezz et al., “Contribution of Artificial Intelligence in Pregnancy: A Scoping review,” in Studies in health technology and informatics, 2022. doi: 10.3233/shti210927.

A. Bertini, R. Salas, S. Chabert, L. Sobrevía, and F. Pardo, “Using machine learning to predict complications in pregnancy: A Systematic review,” Frontiers in Bioengineering and Biotechnology, vol. 9, Jan. 2022, doi: 10.3389/fbioe.2021.780389.

A. Koivu et al., “Adaptive risk prediction system with incremental and transfer learning,” Computers in Biology and Medicine, vol. 138, p. 104886, Nov. 2021, doi: 10.1016/j.compbiomed.2021.104886.

M. Wainberg, D. Merico, A. Delong, and B. J. Frey, “Deep learning in biomedicine,” Nature Biotechnology, vol. 36, no. 9, pp. 829–838, Oct. 2018, doi: 10.1038/nbt.4233.

C. Gao, S. S. Osmundson, D. R. V. Edwards, G. P. Jackson, B. Malin, and Y. Chen, “Deep learning predicts extreme preterm birth from electronic health records,” Journal of Biomedical Informatics, vol. 100, p. 103334, Dec. 2019, doi: 10.1016/j.jbi.2019.103334.

K. Y. Ngiam and I. W. Khor, “Big data and machine learning algorithms for health-care delivery,” The Lancet Oncology, vol. 20, no. 5, pp. e262–e273, May 2019, doi: 10.1016/s1470-2045(19)30149-4.

J. Gao, C. Tao, D. Jie, and S. Lu, “What is AI software testing? and why,” 2019 IEEE International Conference …, 2019, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8705808/

A. Koivu and M. Sairanen, “Predicting risk of stillbirth and preterm pregnancies with machine learning,” Health Information Science and Systems, vol. 8, no. 1, Mar. 2020, doi: 10.1007/s13755-020-00105-9.

S. M. Leow et al., “Preterm birth prediction in asymptomatic women at mid-gestation using a panel of novel protein biomarkers: the Prediction of PreTerm Labor (PPeTaL) study,” American Journal of Obstetrics & Gynecology MFM, vol. 2, no. 2, p. 100084, May 2020, doi: 10.1016/j.ajogmf.2019.100084.

A. Ebrahimvandi, N. Hosseinichimeh, and Z. Kong, “Identifying the Early Signs of Preterm Birth from U.S. Birth Records Using Machine Learning Techniques,” Information, vol. 13, no. 7, p. 310, Jun. 2022, doi: 10.3390/info13070310.

R. AlSaad, Q. M. Malluhi, and S. Boughorbel, “PredictPTB: an interpretable preterm birth prediction model using attention-based recurrent neural networks,” BioData Mining, vol. 15, no. 1, Feb. 2022, doi: 10.1186/s13040-022-00289-8.

K.-S. Lee, I. Song, E. S. Kim, H.-I. Kim, and K. H. Ahn, “Association of preterm birth with medications: machine learning analysis using national health insurance data,” Archives of Gynecology and Obstetrics, vol. 305, no. 5, pp. 1369–1376, Jan. 2022, doi: 10.1007/s00404-022-06405-7.

Y. Yu et al., “Machine Learning Methods for Predicting Long-Term Mortality in Patients After Cardiac Surgery,” Frontiers in Cardiovascular Medicine, vol. 9, May 2022, doi: 10.3389/fcvm.2022.831390.

S. Park et al., “Prediction of preterm birth based on machine learning using bacterial risk score in cervicovaginal fluid,” American Journal of Reproductive Immunology, vol. 86, no. 3, May 2021, doi: 10.1111/aji.13435.

D. K. Degbedzui and M. E. Yüksel, “Accurate diagnosis of term–preterm births by spectral analysis of electrohysterography signals,” Computers in Biology and Medicine, vol. 119, p. 103677, Apr. 2020, doi: 10.1016/j.compbiomed.2020.103677.

C. Jiménez-Moreno, J. K. Aristizábal-Nieto, and O. Giraldo-Salazar, “Classification of facial expression of Post-Surgical pain in children,” Visión Electrónica, vol. 15, no. 1, pp. 7–16, Jan. 2021, doi: 10.14483/22484728.17425.

R. Rescinito, M. Ratti, A. B. Payedimarri, and M. Panella, “Prediction Models for Intrauterine growth Restriction Using Artificial Intelligence and Machine Learning: A Systematic Review and Meta-Analysis,” Healthcare, vol. 11, no. 11, p. 1617, Jun. 2023, doi: 10.3390/healthcare11111617.

A. Unnikrishnan, K. Chandrasekaran, and A. Shukla, “Data-Driven stillbirth prediction and analysis of risk factors in pregnancy,” in Advances in intelligent systems and computing, 2020, pp. 511–523. doi: 10.1007/978-981-15-7234-0_47.

S. M. A. I. Pollob, Md. M. Abedin, Md. T. Islam, M. N. Islam, and Md. Maniruzzaman, “Predicting risks of low birth weight in Bangladesh with machine learning,” PLOS ONE, vol. 17, no. 5, p. e0267190, May 2022, doi: 10.1371/journal.pone.0267190.

N. Santoso and S. Wulandari, “Hybrid support vector machine to preterm birth prediction,” IJEIS (Indonesian Journal of Electronics and Instrumentation System), vol. 8, no. 2, p. 191, Oct. 2018, doi: 10.22146/ijeis.35817.

H. Rawashdeh et al., “Intelligent system based on H. Rawashdeh et al., “Intelligent system based on data mining techniques for prediction of preterm birth for women with cervical cerclage,” Computational Biology and Chemistry, vol. 85, p. 107233, Apr. 2020, doi: 10.1016/j.compbiolchem.2020.107233.

N. S. Prema and M. P. Pushpalatha, “Prediction of preterm birth using data mining-a survey,” IIOAB Journal. iioab.org, 2019. [Online]. Available: https://www.iioab.org/IIOABJ_10.2_13-17.pdf

A. Esty, M. Frize, J. Gilchrist, and E. Bariciak, “Applying Data Preprocessing Methods to Predict Premature Birth,” 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul. 2018, doi: 10.1109/embc.2018.8513681.

R. Raja, I. Mukherjee, and B. K. Sarkar, “A Machine Learning-Based prediction Model for preterm birth in Rural India,” Journal of Healthcare Engineering, vol. 2021, pp. 1–11, Jun. 2021, doi: 10.1155/2021/6665573.

L. Chen, Y. Hao, and X. Hu, “Detection of preterm birth in electrohysterogram signals based on wavelet transform and stacked sparse autoencoder,” PLOS ONE, vol. 14, no. 4, p. e0214712, Apr. 2019, doi: 10.1371/journal.pone.0214712.

I. Song, E. Choi, E. S. Kim, Y. Hwang, K.-S. Lee, and K. H. Ahn, “Associations of Preterm Birth with Dental and Gastrointestinal Diseases: Machine Learning Analysis Using National Health Insurance Data,” International Journal of Environmental Research and Public Health, vol. 20, no. 3, p. 1732, Jan. 2023, doi: 10.3390/ijerph20031732.

N. Prema and M. Pushpalatha, “Machine Learning Approach for Preterm birth prediction based on maternal chronic conditions,” in Lecture notes in electrical engineering, 2019, pp. 581–588. doi: 10.1007/978-981-13-5802-9_52.

K. J. Rittenhouse et al., “Improving preterm newborn identification in low-resource settings with machine learning,” PLOS ONE, vol. 14, no. 2, p. e0198919, Feb. 2019, doi: 10.1371/journal.pone.0198919.

S. Barbounaki and V. Vivilaki, “Intelligent systems in obstetrics and midwifery: Applications of machine learning,” European Journal of Midwifery, vol. 5, pp. 1–12, Dec. 2021, doi: 10.18332/ejm/143166.

World Health Organization, “WHO recommendations on interventions to improve preterm birth outcomes,” 2020. Accessed: Nov. 19, 2023. [Online]. Available: https://www.who.int/publications/i/item/9789241508988

S. Herman and H. Tri joewono, Buku Acuan Persalinan Kurang Bulan (Prematur). Accessed: Nov. 20, 2023. [Online]. Available: https://repository.unair.ac.id/99328/1/Buku%20Acuan%20Persalinan%20Kurang%20Bulan%20%28Prematur%29.pdf

W. H. Organization, Born too soon: decade of action on preterm birth. World Health Organization, 2023.

K.-S. Lee et al., “Association of Preterm Birth with Depression and Particulate Matter: Machine Learning Analysis Using National Health Insurance Data,” Diagnostics, vol. 11, no. 3, p. 555, Mar. 2021, doi: 10.3390/diagnostics11030555.

E. Pereira, G. A. Tessema, M. Gissler, A. K. Regan, and G. Pereira, “Re-evaluation of gestational age as a predictor for subsequent preterm birth,” PLOS ONE, vol. 16, no. 1, p. e0245935, Jan. 2021, doi: 10.1371/journal.pone.0245935.

F. Jehan et al., “Multiomics characterization of preterm birth in low- and Middle-Income countries,” JAMA Network Open, vol. 3, no. 12, p. e2029655, Dec. 2020, doi: 10.1001/jamanetworkopen.2020.29655.

R. Ramakrishnan, S. Rao, and J. He, “Perinatal health predictors using artificial intelligence: A review,” Women’s Health, vol. 17, p. 174550652110461, Jan. 2021, doi: 10.1177/17455065211046132.

J. N. Robinson and E. R. Norwitz, “Preterm birth: Risk factors, interventions for risk reduction, and maternal prognosis,” Uptodate, no. 94, 2019, Accessed: Nov. 19, 2023. [Online]. Available: https://www.uptodate.com/contents/spontaneous-preterm-birth-overview-of-risk-factors-and-prognosi

K.-S. Lee and K. H. Ahn, “Artificial neural Network analysis of spontaneous preterm labor and birth and its major determinants,” Journal of Korean Medical Science, vol. 34, no. 16, Jan. 2019, doi: 10.3346/jkms.2019.34.e128.

S. Rani and M. Kumar, “Prediction of the mortality rate and framework for remote monitoring of pregnant women based on IoT,” Multimedia Tools and Applications, vol. 80, pp. 24555–24571, Apr. 2021, doi: 10.1007/s11042-021-10823-1.

Downloads

Published

23.02.2024

How to Cite

Sari, A. ., Lakulu, M. M. ., & Panessai, I. Y. . (2024). Predicting Premature Birth During Pregnancy Using Machine Learning: A Systematic Review. International Journal of Intelligent Systems and Applications in Engineering, 12(16s), 452–463. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4858

Issue

Section

Research Article