A New Correction Factor-based Strategy with DWT-SVD for Contrast Enhancement in Digital Mammograms

Authors

  • Dharmendra Kumar Research Scholar, Dr. APJ Abdul Kalam Technical University, Lucknow, India, KIET Group of Institutions, Ghaziabad, India
  • Anil Kumar Solanki Bundelkhand Institute of Engineering and Technology, Jhansi, India
  • Anil Kumar Ahlawat KIET Group of Institutions, Ghaziabad, India

Keywords:

Mammograms, Contrast Enhancement, Discrete Wavelet Transform, Adaptive Gamma Correction, Singular Value Decomposition

Abstract

Globally, breast cancer stands as the second most prevalent disease affecting women. Mammography, utilizing low-dose X-rays, remains a highly effective modality for the early detection of cancer. Challenges such as uneven illumination and machine-imposed limitations contribute to low-contrast mammogram images, potentially impacting the accuracy of diagnoses. Due to the inherently narrow intensity range in mammography images, distinguishing between cancerous and non-cancerous tissues becomes challenging. This paper introduces a novel approach that combines Adaptive Gamma Correction with a two-way Discrete Wavelet Transform-Singular Value Decomposition (DWT-SVD) to enhance the visual clarity of the resulting images while preserving crucial clinical information. The introduction of a new correction adjustment factor enhances the singular value of the image, resulting in a significantly improved contrast-enhanced output. Experimental validation is conducted using mini-MIAS dataset, assessing the proposed technique with quantitative parameters such as Structural Similarity Index Measurement (SSIM), Pearson Correlation Coefficient (PCC), Peak to Signal Noise Ratio (PSNR), Contrast Improvement Index (CII), Mean Absolute Error (MAE), and Average Mean Brightness Error (AMBE). The obtained average values, including scores of 0.929, 0.998, 22.875, 1.136, 14.457, and 14.138, respectively, demonstrate promising results compared to conventional methods. Furthermore, comparison with the state-of-the-art techniques shows improved results, showcasing significant advancements in local information preservation and contrast enhancement in mammography images.

Downloads

Download data is not yet available.

References

R. Mousa, Q. Munib, and A. Moussa, “Breast cancer diagnosis system based on wavelet analysis and fuzzy-neural,” Expert Syst. Appl., vol. 28, no. 4, pp. 713–723, 2005, doi: 10.1016/j.eswa.2004.12.028.

X. Gao, Y. Wang, X. Li, and D. Tao, “On combining morphological component analysis and concentric morphology model for mammographic mass detection,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 2, pp. 266–273, 2010, doi: 10.1109/TITB.2009.2036167.

V. Bhateja, M. Misra, and S. Urooj, “Human visual system based unsharp masking for enhancement of mammographic images,” J. Comput. Sci., vol. 21, pp. 387–393, 2017, doi: 10.1016/j.jocs.2016.07.015.

T. Chaira, “Intuitionistic fuzzy approach for enhancement of low contrast mammogram images,” Int. J. Imaging Syst. Technol., vol. 30, no. 4, pp. 1162–1172, 2020, doi: 10.1002/ima.22437.

L. Sun et al., “Breast mass classification based on supervised contrastive learning and multi-view consistency penalty on mammography,” IET Biometrics, vol. 11, no. 6, pp. 588–600, 2022, doi: 10.1049/bme2.12076.

K. Akila, L. S. Jayashree, and A. Vasuki, “Mammographic image enhancement using indirect contrast enhancement techniques – A comparative study,” Procedia - Procedia Comput. Sci., vol. 47, pp. 255–261, 2015, doi: 10.1016/j.procs.2015.03.205.

J. Y. Kim, L. S. Kim, and S. H. Hwang, “An advanced contrast enhancement using partially overlapped sub-block histogram equalization,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 4, pp. 475–484, 2001, doi: 10.1109/76.915354.

E. D. Pisano et al., “Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms,” J. Digit. Imaging, vol. 11, no. 4, pp. 193–200, 1998, doi: 10.1007/BF03178082.

Y. T. Kim, “Contrast enhancement using brightness preserving bi-histogram equalization,” IEEE Trans. Consum. Electron., vol. 43, no. 1, pp. 1–8, 1997, doi: 10.1109/30.580378.

Z. Yao, Z. Lai, and C. Wang, “Image Enhancement Based on Equal Area Dualistic Sub-image and Non-parametric Modified Histogram Equalization Method,” Proc. - 2016 9th Int. Symp. Comput. Intell. Des. Isc. 2016, vol. 1, no. 1, pp. 447–450, 2016, doi: 10.1109/ISCID.2016.1110.

S. Der Chen and A. R. Ramli, “Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation,” IEEE Trans. Consum. Electron., vol. 49, no. 4, pp. 1301–1309, 2003, doi: 10.1109/TCE.2003.1261233.

S. Saravanan and R. Karthigaivel, “A fuzzy and spline based dynamic histogram equalization for contrast enhancement of brain images,” Int. J. Imaging Syst. Technol., vol. 31, no. 2, pp. 802–827, 2021, doi: 10.1002/ima.22483.

M. Sundaram, K. Ramar, N. Arumugam, and G. Prabin, “Histogram based contrast enhancement for mammogram images,” 2011 - Int. Conf. Signal Process. Commun. Comput. Netw. Technol. ICSCCN-2011, no. Icsccn, pp. 842–846, 2011, doi: 10.1109/ICSCCN.2011.6024667.

M. Sundaram, K. Ramar, N. Arumugam, and G. Prabin, “Histogram modified local contrast enhancement for mammogram images,” Appl. Soft Comput. J., vol. 11, no. 8, pp. 5809–5816, 2011, doi: 10.1016/j.asoc.2011.05.003.

K. Panetta, Y. Zhou, S. Agaian, and H. Jia, “Nonlinear unsharp masking for mammogram enhancement,” IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 6, pp. 918–928, 2011, doi: 10.1109/TITB.2011.2164259.

S. C. Huang, F. C. Cheng, and Y. S. Chiu, “Efficient contrast enhancement using adaptive gamma correction with weighting distribution,” IEEE Trans. Image Process., vol. 22, no. 3, pp. 1032–1041, 2013, doi: 10.1109/TIP.2012.2226047.

S. Rahman, M. M. Rahman, M. Abdullah-Al-Wadud, G. D. Al-Quaderi, and M. Shoyaib, “An adaptive gamma correction for image enhancement,” Eurasip J. Image Video Process., vol. 2016, no. 1, pp. 1–13, 2016, doi: 10.1186/s13640-016-0138-1.

M. Kim and M. G. Chung, “Recursively separated and weighted histogram equalization for brightness preservation and contrast enhancement,” IEEE Trans. Consum. Electron., vol. 54, no. 3, pp. 1389–1397, 2008, doi: 10.1109/TCE.2008.4637632.

S. Jenifer, S. Parasuraman, and A. Kadirvelu, “Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm,” Appl. Soft Comput. J., vol. 42, pp. 167–177, 2016, doi: 10.1016/j.asoc.2016.01.039.

V. Magudeeswaran and K. Balasubramanian, “Fuzzy weighted histogram equalisation for contrast enhancement of mammogram images,” Int. J. Biomed. Eng. Technol., vol. 28, no. 3, pp. 232–242, 2018, doi: 10.1504/IJBET.2018.095217.

C. Zhao, Z. Wang, H. Li, X. Wu, S. Qiao, and J. Sun, “A new approach for medical image enhancement based on luminance-level modulation and gradient modulation,” Biomed. Signal Process. Control, vol. 48, pp. 189–196, 2019, doi: 10.1016/j.bspc.2018.10.008.

H. Demirel, C. Ozcinar, and G. Anbarjafari, “Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition,” IEEE Geosci. Remote Sens. Lett., vol. 7, no. 2, pp. 333–337, 2009.

F. Kallel and A. Ben Hamida, “A New Adaptive Gamma Correction Based Algorithm Using DWT-SVD for Non-Contrast CT Image Enhancement,” IEEE Trans. Nanobioscience, vol. 16, no. 8, pp. 666–675, Dec. 2017, doi: 10.1109/TNB.2017.2771350.

A. K. Bhandari, A. Kumar, G. K. Singh, and V. Soni, “Dark satellite image enhancement using knee transfer function and gamma correction based on DWT–SVD,” Multidimens. Syst. Signal Process., vol. 27, no. 2, pp. 453–476, 2016, doi: 10.1007/s11045-014-0310-7.

M. Zhou, K. Jin, S. Wang, J. Ye, and D. Qian, “Color Retinal Image Enhancement Based on Luminosity and Contrast Adjustment,” IEEE Trans. Biomed. Eng., vol. 65, no. 3, pp. 521–527, 2018, doi: 10.1109/TBME.2017.2700627.

B. Gupta and M. Tiwari, “Color retinal image enhancement using luminosity and quantile based contrast enhancement,” Multidimens. Syst. Signal Process., 2019, doi: 10.1007/s11045-019-00630-1.

G. Palanisamy, P. Ponnusamy, and V. P. Gopi, “An improved luminosity and contrast enhancement framework for feature preservation in color fundus images,” Signal, Image Video Process., vol. 13, no. 4, pp. 719–726, 2019, doi: 10.1007/s11760-018-1401-y.

A. Gandhamal, S. Talbar, S. Gajre, A. F. M. Hani, and D. Kumar, “Local gray level S-curve transformation – A generalized contrast enhancement technique for medical images,” Comput. Biol. Med., vol. 83, pp. 120–133, 2017, doi: 10.1016/j.compbiomed.2017.03.001.

H. El Malali, A. Assir, V. Bhateja, A. Mouhsen, and M. Harmouchi, “A Contrast Enhancement Model for X-Ray Mammograms Using Modified Local s-Curve Transformation Based on Multi-Objective Optimization,” IEEE Sens. J., vol. 21, no. 10, pp. 11543–11554, 2021, doi: 10.1109/JSEN.2020.3028273.

M. Pawar and S. Talbar, “Local entropy maximization based image fusion for contrast enhancement of mammogram,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 2, pp. 150–160, 2021, doi: 10.1016/j.jksuci.2018.02.008.

A. A. Siddiqi, A. Khawaja, and A. Hashmi, “A novel fuzzy blend scheme for image enhancement of CT scans bearing liver cancer,” Comput. Methods Biomech. Biomed. Eng. Imaging Vis., vol. 00, no. 00, pp. 1–6, 2021, doi: 10.1080/21681163.2021.1899853.

P. Kandhway, A. K. Bhandari, and A. Singh, “A novel reformed histogram equalization based medical image contrast enhancement using krill herd optimization,” Biomed. Signal Process. Control, vol. 56, p. 101677, 2020, doi: 10.1016/j.bspc.2019.101677.

D. P. Tripathi, K. Praghash, and U. R. Jena, “Differential Mean Deviation Factor based Contrast Enhancement Technique Using DWT-SVD for Non-Contrast CT Scan Images,” vol. 12, no. 10, pp. 1685–1692, 2021.

A. Khmag, A. R. Ramli, and N. Kamarudin, “Clustering-based natural image denoising using dictionary learning approach in wavelet domain,” Soft Computing, vol. 23, no. 17. pp. 8013–8027, 2019, doi: 10.1007/s00500-018-3438-9.

A. Khmag, “Digital image noise removal based on collaborative filtering approach and singular value decomposition,” Multimed. Tools Appl., 2022, doi: 10.1007/s11042-022-12774-7.

P. S. J.-D. Mammo and undefined 1994, “The mammographic image analysis society digital mammogram database,” ci.nii.ac.jp, Accessed: Feb. 01, 2021. [Online]. Available: https://ci.nii.ac.jp/naid/10005112488/.

U. K. Acharya and S. Kumar, “Directed searching optimized texture based adaptive gamma correction (DSOTAGC) technique for medical image enhancement,” Multimed. Tools Appl., vol. 83, no. 3, pp. 6943–6962, 2023, doi: 10.1007/s11042-023-15953-2.

S. Z. Ramadan, “Methods Used in Computer-Aided Diagnosis for Breast Cancer Detection Using Mammograms: A Review,” J. Healthc. Eng., vol. 2020, 2020, doi: 10.1155/2020/9162464.

Downloads

Published

23.02.2024

How to Cite

Kumar, D. ., Solanki, A. K. ., & Ahlawat, A. K. . (2024). A New Correction Factor-based Strategy with DWT-SVD for Contrast Enhancement in Digital Mammograms . International Journal of Intelligent Systems and Applications in Engineering, 12(17s), 338–352. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/4880

Issue

Section

Research Article

Most read articles by the same author(s)