Convolutional Arabic Handwriting Recognition System Based BLSTM-CTC Using WBS Decoder


  • Mouhcine Rabi IMIS Laboratory, Faculty of Applied Sciences, Ait Melloul, Ibn Zohr University, Morocco
  • Mustapha Amrouche IRF-SIC Laboratory, Faculty of Sciences, Agadir, Ibn Zohr University Morocco


Arabic handwriting recognition (AHR), Bi-Dimensional Long Short-Term Memory (BLSTM), Convolutional Neural Networks (CNN), Connectionist Temporal Classification (CTC), Word Beam Search (WBS)


Arabic handwriting recognition (AHR) poses major challenges for pattern recognition due to the cursive script and visual similarity of Arabic characters. While deep learning demonstrates promise, architectural enhancements may further improve performance. This study presents an offline AHR approach using a convolutional neural network (CNN) with bidirectional long short-term memory (BLSTM) and connectionist temporal classification (CTC). By enhancing temporal modelling and context representations without segmentation requirements, this BLSTM-CTC-CNN framework with an integrated Word Beam Search (WBS) decoder achieved 94.58% accuracy on the IFN/ENIT database. Results highlight improved efficiency over prior works. This demonstrates continued advancement in sophisticated deep learning techniques for accurate AHR through specialized modelling of Arabic script cursive properties and decoding constraints. This research represents an advancement in the continuous development of progressively intricate and precise systems for handwriting recognition.


Download data is not yet available.


Porwal, U., Fornés, A. & Shafait, F. Advances in handwriting recognition. IJDAR 25, 241–243 (2022).

M. M. Al-Taee, S. B. H. Neji and M. Frikha, "Handwritten Recognition: A survey," 2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS), Genova, Italy, 2020, pp. 199-205, doi: 10.1109/IPAS50080.2020.9334936.

Alrobah, N., Albahli, S. Arabic Handwritten Recognition Using Deep Learning: A Survey. Arab J Sci Eng 47, 9943–9963 (2022).

Altwaijry, N., Al-Turaiki, I. Arabic handwriting recognition system using convolutional neural network. Neural Comput & Applic 33, 2249–2261 (2021).

R. Raj and A. Kos, "A Comprehensive Study of Optical Character Recognition," 2022 29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES), Wrocław, Poland, 2022, pp. 151-154, doi: 10.23919/MIXDES55591.2022.9837974.

De Oliveira, L.L., Vargas, D.S., Alexandre, A.M.A. et al. Evaluating and mitigating the impact of OCR errors on information retrieval. Int J Digit Libr 24, 45–62 (2023).

Ravi, S., Chauhan, S., Yadlapallii, S.H., Jagruth, K., Manikandan, V.M. (2022). A Novel Educational Video Retrieval System Based on the Textual Information. In: Abraham, A., et al. Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition. Lecture Notes in Networks and Systems, vol 417. Springer, Cham.

Monteiro G, Camelo L, Aquino G, Fernandes RdA, Gomes R, Printes A, Torné I, Silva H, Oliveira J, Figueiredo C. A Comprehensive Framework for Industrial Sticker Information Recognition Using Advanced OCR and Object Detection Techniques. Applied Sciences. 2023; 13(12):7320.

Akhtar, Zainab; Lee, Jong Weon;Attique Khan, Muhammad;Sharif, Muhammad;Ali Khan, Sajid;Riaz, Naveed Less. « Optical character recognition (OCR) using partial least square (PLS) based feature reduction: an application to artificial intelligence for biometric identification » Journal of enterprise information management, 24 Apr 2023, Vol. ahead-of-print, Issue ahead-of-print, pages 767 – 789. ISSN: 17410398. DOI: 10.1108/JEIM-02-2020-0076

S. Tangkawanit, J. Pooksook, J. Ieamsaard and P. Sornkhom, "OCR Application for Cancer Care," 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Chiang Mai, Thailand, 2022, pp. 489-493, doi: 0.23919/APSIPAASC55919.2022.9980078

Daniela Gifu, AI-backed OCR in Healthcare, Procedia Computer Science, Volume 207, 2022, Pages 1134-1143, ISSN 1877-0509,

Yuan, S. et al. MCIC: Multimodal Conversational Intent Classification for E-commerce Customer Service. In: Lu, W., Huang, S., Hong, Y., Zhou, X. (eds) Natural Language Processing and Chinese Computing. NLPCC 2022. Lecture Notes in Computer Science(), vol 13551. Springer, Cham.

Sandeep Dwarkanath Pande, Pramod Pandurang Jadhav, Rahul Joshi, Amol Dattatray Sawant, Vaibhav Muddebihalkar, Suresh Rathod, Madhuri Navnath Gurav, Soumitra Das, -Digitization of handwritten Devanagari text using CNN transfer learning – A better customer service support, Neuroscience Informatics, Volume 2, Issue 3, 2022, 100016,ISSN 2772-5286,

Faizullah, S.; Ayub, M.S.; Hussain, S.; Khan, M.A. A Survey of OCR in Arabic Language: Applications, Techniques, and Challenges. Appl. Sci. 2023, 13, 4584.

Imane Guellil, Houda Saâdane, Faical Azouaou, Billel Gueni, Damien Nouvel, Arabic natural language processing: An overview, Journal of King Saud University - Computer and Information Sciences, Volume 33, Issue 5, 2021, Pages 497-507, ISSN 1319-1578,

Alghyaline, S. (2023). Arabic Optical Character Recognition: A Review. CMES-Computer Modeling in Engineering & Sciences, 135(3), 1825–1861

E. Chammas, C. Mokbel and L. Likforman-Sulem, "Arabic handwritten document preprocessing and recognition," 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 2015, pp. 451-455, doi: 10.1109/ICDAR.2015.7333802

H. Boukerma and N. Farah, "Preprocessing Algorithms for Arabic Handwriting Recognition Systems," 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT), Kuala Lumpur, Malaysia, 2012, pp. 318-323, doi: 10.1109/ACSAT.2012.59

Sahlol, A.T., Suen, C.Y., Elbasyoni, M.R., Sallam, A.A. (2014). Investigating of Preprocessing Techniques and Novel Features in Recognition of Handwritten Arabic Characters. In: El Gayar, N., Schwenker, F., Suen, C. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2014. Lecture Notes in Computer Science(), vol 8774. Springer, Cham.

Amlan Kundu, Yang He, Paramvir Bahl, Recognition of handwritten word: First and second order hidden Markov model based approach, Pattern Recognition, Volume 22, Issue 3, 1989, Pages 283-297, ISSN 0031-3203,

Gilloux, M. (1994). Hidden Markov Models in Handwriting Recognition. In: Impedovo, S. (eds) Fundamentals in Handwriting Recognition. NATO ASI Series, vol 124. Springer, Berlin, Heidelberg.

Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8, 53 (2021).

Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN COMPUT. SCI.2, 420 (2021).

O. Morillot, L. Likforman-Sulem and E. Grosicki, "Comparative Study of HMM and BLSTM Segmentation-Free Approaches for the Recognition of Handwritten Text-Lines," 2013 12th International Conference on Document Analysis and Recognition, Washington, DC, USA, 2013, pp. 783-787, doi: 10.1109/ICDAR.2013.160

Wang, Xin ; Takaki, Shinji ; Yamagishi, Junichi. / A Comparative Study of the Performance of HMM, DNN, and RNN based Speech Synthesis Systems Trained on Very Large Speaker-Dependent Corpora. Proceedings of 9th ISCA Speech Synthesis Workshop. 2016. pp. 125-128

Yong Yu, Xiaosheng Si, Changhua Hu, Jianxun Zhang; A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput 2019; 31 (7): 1235–1270. doi:

Firat Kizilirmak, Berrin Yanikoglu. CNN-BiLSTM model for English Handwriting Recognition: Comprehensive Evaluation on the IAM Dataset. Computer Vision and Pattern Recognition

Gader, T.; Chibani, I. and Echi, A. (2023). Arabic Handwriting off-Line Recognition Using ConvLSTM-CTC. In Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods - ICPRAM; ISBN 978-989-758-626-2; ISSN 2184-4313, SciTePress, pages 529-533. DOI: 10.5220/0011794700003411

[29] M. Geetha, R. C. Suganthe, S. K. Nivetha, S. Hariprasath, S. Gowtham and C. S. Deepak, "A Hybrid Deep Learning Based Character Identification Model Using CNN, LSTM, And CTC To Recognize Handwritten English Characters And Numerals," 2022 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 2022, pp. 1-6, doi: 10.1109/ICCCI54379.2022.9740746.

Bisht, M., Gupta, R. Offline Handwritten Devanagari Word Recognition Using CNN-RNN-CTC. SN COMPUT. SCI. 4, 88 (2023).

Mars, A., Dabbabi, K., Zrigui, S., Zrigui, M. (2023). Combination of DE-GAN with CNN-LSTM for Arabic OCR on Images with Colorful Backgrounds. In: Nguyen, N.T., et al. Advances in Computational Collective Intelligence. ICCCI 2023. Communications in Computer and Information Science, vol 1864. Springer, Cham.

Xiaohui Huang, Lisheng Qiao, Wentao Yu, Jing Li, Yanzhou Ma. « End-to-End Sequence Labeling via Convolutional Recurrent Neural Network with a Connectionist Temporal Classification Layer » International Journal of Computational Intelligence Systems 2020 10.2991/ijcis.d.200316.001

Gilloux, M. (1994). Hidden Markov Models in Handwriting Recognition. In: Impedovo, S. (eds) Fundamentals in Handwriting Recognition. NATO ASI Series, vol 124. Springer, Berlin, Heidelberg.

Roman Bertolami, Horst Bunke. Hidden Markov model-based ensemble methods for offline handwritten text line recognition, Pattern Recognition, Volume 41, Issue 11, 2008, Pages 3452-3460, ISSN 0031-3203,

Plötz, T., Fink, G.A. Markov models for offline handwriting recognition: a survey. IJDAR 12, 269–298 (2009).

Mor, B., Garhwal, S. & Kumar, A. A Systematic Review of Hidden Markov Models and Their Applications. Arch Computat Methods Eng 28, 1429–1448 (2021).

Núria Cirera; Alicia Fornés; Josep Lladós. Hidden Markov model topology optimization for handwriting recognition. Published in: 2015 13th International Conference on Document Analysis and Recognition (ICDAR) IEEE. DOI: 10.1109/ICDAR.2015.7333837

Rabi Mouhcine, Amrouch Mustapha, Mahani Zouhir. Recognition of cursive Arabic handwritten text using embedded training based on HMMs, Journal of Electrical Systems and Information Technology, Volume 5, Issue 2, 2018, Pages 245-251,ISSN,2314-7172,

Natarajan, P., Saleem, S., Prasad, R., MacRostie, E., Subramanian, K. (2008). Multi-lingual Offline Handwriting Recognition Using Hidden Markov Models: A Script-Independent Approach. In: Doermann, D., Jaeger, S. (eds) Arabic and Chinese Handwriting Recognition. SACH 2006. Lecture Notes in Computer Science, vol 4768. Springer, Berlin, Heidelberg.

Adrià Giménez, Ihab Khoury, Jesús Andrés-Ferrer, Alfons Juan. Handwriting word recognition using windowed Bernoulli HMMs, Pattern Recognition Letters, Volume 35, 2014, Pages 149-156, ISSN 0167-8655,

Frinken, V., Peter, T., Fischer, A., Bunke, H., Do, TMT., Artieres, T. (2009). Improved Handwriting Recognition by Combining Two Forms of Hidden Markov Models and a Recurrent Neural Network. In: Jiang, X., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2009. Lecture Notes in Computer Science, vol 5702. Springer, Berlin, Heidelberg.

Y. Bengio, Y. LeCun, C. Nohl and C. Burges, "LeRec: A NN/HMM Hybrid for On-Line Handwriting Recognition," in Neural Computation, vol. 7, no. 6, pp. 1289-1303, Nov. 1995, doi: 10.1162/neco.1995.7.6.1289

Rabi, M., Amrouch, M., Mahani, Z. (2018). Hybrid HMM/MLP Models for Recognizing Unconstrained Cursive Arabic Handwritten Advanced Information Technology, Services and Systems. AIT2S 2017. Lecture Notes in Networks and Systems, vol 25. Springer, Cham.

Rabi, M. Amrouch,M and Mahani.Z A Survey of Contextual Handwritten Recognition Systems based HMMs for Cursive Arabic and Latin Script. International Journal of Computer Applications 160(2):31-37, February 2017. publisher = {Foundation of Computer Science (FCS), NY, USA} Doi :10.5120/ijca2017912982

V. Marti and H. Bunke, "Handwritten sentence recognition," Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, Barcelona, Spain, 2000, pp. 463-466 vol.3, doi: 10.1109/ICPR.2000.903584

Marti and H. Bunke. Using a statistical language model to improve the performance of an hmm-based cursive handwriting recognition system. International Journal of Pattern Recognition and Artificial IntelligenceVol. 15, No. 01, pp. 65-90 (2001)SPECIAL ISSUE: Hidden Markov Models in Vision; Edited by H. Bunke and T. Caelli

Wassim Swaileh, Yann Soullard, Thierry Paquet. A unified multilingual handwriting recognition system using multigrams sub-lexical units. Pattern Recognition Letters, 2019, 121, pp.68-76.10.1016/j.patrec.2018.07.027. hal-02075654

Lalita Kumari, Sukhdeep Singh, Vaibhav Varish Singh Rathore, Anuj Sharma. Lexicon and attention based handwritten text recognition system. Machine Graphics & Vision 2022 Pages: 75—92 DOI: 10.22630/MGV.2022.31.1.4

Mustapha Amrouch, Mouhcine Rabi & Youssef Es-Saady . Convolutional Feature Learning and CNN Based HMM for Arabic Handwriting Recognition Image and Signal Processing: 8th International Conference, ICISP 2018, Cherbourg, France, July 2-4, 2018, Proceedings Jul 2018 Pages 265–274

Porwal, U., Fornés, A. & Shafait, F. Advances in handwriting recognition. International Journal on Document Analysis and Recognition (IJDAR) volume 25, pages241–243 (2022)

Savita Ahlawat, Amit Choudhary , Anand Nayyar, Saurabh Singh and Byungun Yoon. Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN) Sensors 2020, 20, 3344; doi:10.3390/s20123344

A. A. Rangari, S. Das and R. D, "Cursive Handwriting Recognition Using CNN with VGG-16," 2023 International Conference on Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), Chennai, India, 2023, pp. 1-6, doi: 10.1109/ICECONF57129.2023.10083561

Chahi, A., El-merabet, Y., Ruichek, Y. et al. An effective DeepWINet CNN model for off-line text-independent writer identification. Pattern Anal Applic 26, 1539–1556 (2023).

Mamouni El Mamoun An Effective Combination of Convolutional Neural Network and Support Vector Machine Classifier for Arabic Handwritten Recognition. Aut. Control Comp. Sci. 57, 267–275 (2023).

M. M. Al-Taee, S. B. H. Neji and M. Frikha, "Handwritten Recognition: A survey," 2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS), Genova, Italy, 2020, pp. 199-205, doi: 10.1109/IPAS50080.2020.9334936

Albattah, W.; Albahli, S. Intelligent Arabic Handwriting Recognition Using Different Standalone and Hybrid CNN Architectures. Appl. Sci. 2022, 12, 10155.

Islam, M. et al. (2023). Efficient Approach to Using CNN-Based Pre-trained Models in Bangla Handwritten Digit Recognition. In: Smys, S., Tavares, J.M.R.S., Shi, F. (eds) Computational Vision and Bio-Inspired Computing. Advances in Intelligent Systems and Computing, vol 1439. Springer, Singapore.

Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data 8, 53 (2021).

Chen, Y., Zhang, H., Liu, CL. (2023). Improved Learning for Online Handwritten Chinese Text Recognition with Convolutional Prototype Network. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14190. Springer, Cham.

D. Teng, D. Fan, F. Bai and Y. Pan, "End-to-End Model Based on Bidirectional LSTM and CTC for Online Handwritten Mongolian Word Recognition," 2022 12th International Conference on Information Science and Technology (ICIST), Kaifeng, China, 2022, pp. 271-275, doi: 10.1109/ICIST55546.2022.9926844

F. Kreß et al., "Hardware-aware Workload Distribution for AI-based Online Handwriting Recognition in a Sensor Pen," 2022 11th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 2022, pp. 1-4, doi: 10.1109/MECO55406.2022.9797131

Alwajih, F., Badr, E., & Abdou, S. (2022). Transformer-based Models for Arabic Online Handwriting Recognition. International Journal of Advanced Computer Science and Applications, 13(5). DOI :10.14569/IJACSA.2022.01305102

S. Wu, Y. Li and Z. Wang, "Improving CTC-based Handwritten Chinese Text Recognition with Cross-Modality Knowledge Distillation and Feature Aggregation," 2023 IEEE International Conference on Multimedia and Expo (ICME), Brisbane, Australia, 2023, pp. 792-797, doi: 10.1109/ICME55011.2023.00141

M. B, S. S, T. M. V. K and V. Ramanan P, "Offline Recognition Of Handwritten Text Using Combination Of Neural Networks," 2023 8th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2023, pp. 865-870, doi: 10.1109/ICCES57224.2023.10192850

M. S. Akter, H. Shahriar, A. Cuzzocrea, N. Ahmed and C. Leung, "Handwritten Word Recognition using Deep Learning Approach: A Novel Way of Generating Handwritten Words," 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 2022, pp. 5414-5423, doi: 10.1109/BigData55660.2022.10021025

Sehr Zia, N., Naeem, M.F., Raza, S.M.K. et al. A convolutional recursive deep architecture for unconstrained Urdu handwriting recognition. Neural Comput & Applic 34, 1635–1648 (2022).

Boualam, M.; Elfakir, Y.; Khaissidi, G.; Mrabti, M. Arabic Handwriting Word Recognition Based on Convolutional Recurrent Neural Network. In WITS 2020, Proceeding of the 6th International Conference on Wireless Technologies, Embedded, and Intelligent Systems, Fez, Morocco, 14–16 October 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 877–885

R. E. Shtaiwi, G. A. Abandah and S. A. Sawalhah, "End-to-End Machine Learning Solution for Recognizing Handwritten Arabic Documents," 2022 13th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 2022, pp. 180-185, doi: 10.1109/ICICS55353.2022.9811155

Mohammad Fasha, Bassam Hammo, Nadim Obeid and Jabir AlWidian, “A Hybrid Deep Learning Model for Arabic Text Recognition” International Journal of Advanced Computer Science and Applications(IJACSA), 11(8), 2020.

Khaled, M. Moneb and Alzebdeh, Ala' and Lataifeh, Mohammad and Lulu, Leena and Elnagar, Ashraf M., A Hybrid Deep Learning Approach for Arabic Handwritten Recognition: Exploring the Complexities of the Arabic Language. Rochester: New York, NY, USA, 2023. Available at SSRN:

S. Watanabe, T. Hori, S. Kim, J. R. Hershey and T. Hayashi, "Hybrid CTC/Attention Architecture for End-to-End Speech Recognition," in IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 8, pp. 1240-1253, Dec. 2017, doi: 10.1109/JSTSP.2017.2763455

Müller, M., Stüker, S., Waibel, A. (2017). Language Adaptive Multilingual CTC Speech Recognition. In: Karpov, A., Potapova, R., Mporas, I. (eds) Speech and Computer. SPECOM 2017. Lecture Notes in Computer Science(), vol 10458. Springer, Cham.

Kürzinger, L., Winkelbauer, D., Li, L., Watzel, T., Rigoll, G. (2020). CTC-Segmentation of Large Corpora for German End-to-End Speech Recognition. In: Karpov, A., Potapova, R. (eds) Speech and Computer. SPECOM 2020. Lecture Notes in Computer Science(), vol 12335. Springer, Cham.

Deshmukh, A.M. 2020. Comparison of Hidden Markov Model and Recurrent Neural Network in Automatic Speech Recognition. European Journal of Engineering and Technology Research. 5, 8 (Aug. 2020), 958–965. DOI:

Y. Zhang and X. Lu, "A Speech Recognition Acoustic Model Based on LSTM -CTC," 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China, 2018, pp. 1052-1055, doi: 10.1109/ICCT.2018.8599961

T. Raissi, W. Zhou, S. Berger, R. Schlüter and H. Ney, "HMM vs. CTC for Automatic Speech Recognition: Comparison Based on Full-Sum Training from Scratch," 2022 IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar, 2023, pp. 287-294, doi: 10.1109/SLT54892.2023.10022967

Parres, D., Paredes, R. (2023). Fine-Tuning Vision Encoder–Decoder Transformers for Handwriting Text Recognition on Historical Documents. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14190. Springer, Cham.

Barrere, K., Soullard, Y., Lemaitre, A., Coüasnon, B. (2022). A Light Transformer-Based Architecture for Handwritten Text Recognition. In: Uchida, S., Barney, E., Eglin, V. (eds) Document Analysis Systems. DAS 2022. Lecture Notes in Computer Science, vol 13237. Springer, Cham.

A. Mostafa et al., "OCFormer: A Transformer-Based Model For Arabic Handwritten Text Recognition," 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, 2021, pp. 182-186, doi: 10.1109/MIUCC52538.2021.9447608

Saleh Momeni, Bagher BabaAli. A Transformer-based Approach for Arabic Offline Handwritten Text Recognition. Computer Vision and Pattern Recognition 2023.

Yongping Dan , Zongnan Zhu, Weishou Jin, and Zhuo Li. PF-ViT: Parallel and Fast Vision Transformer for Offline Handwritten Chinese Character Recognition. Computational Intelligence and Neuroscience Volume 2022, Article ID 8255763, 11 pages.

Geng, S.; Zhu, Z.; Wang, Z.; Dan, Y.; Li, H. LW-ViT: The Lightweight Vision Transformer Model Applied in Offline Handwritten Chinese Character Recognition. Electronics 2023, 12, 1693.

Marwa Dhiaf, Ahmed Cheikh Rouhou, Yousri Kessentini, Sinda Ben Salem. MSdocTr-Lite: A lite transformer for full page multi-script handwriting recognition, Pattern Recognition Letters, Volume 169, 2023, Pages 28-34, ISSN 0167-8655,

Ganai, A.F., Khurshid, F. (2023). Handwritten Urdu Recognition Using BERT with Vision Transformers. In: Parah, S.A., Hurrah, N.N., Khan, E. (eds) Intelligent Multimedia Signal Processing for Smart Ecosystems. Springer, Cham.

Riaz, N., Arbab, H., Maqsood, A. et al. Conv-transformer architecture for unconstrained off-line Urdu handwriting recognition. IJDAR 25, 373–384 (2022).

Kaur, S., Bawa, S., Kumar, R. (2023). Evaluating Generative Adversarial Networks for Gurumukhi Handwritten Character Recognition (CR). In: Sisodia, D.S., Garg, L., Pachori, R.B., Tanveer, M. (eds) Machine Intelligence Techniques for Data Analysis and Signal Processing. Lecture Notes in Electrical Engineering, vol 997. Springer, Singapore.

Jha, G., Cecotti, H. Data augmentation for handwritten digit recognition using generative adversarial networks. Multimed Tools Appl 79, 35055–35068 (2020).

Li, J., Song, G. & Zhang, M. Occluded offline handwritten Chinese character recognition using deep convolutional generative adversarial network and improved GoogLeNet. Neural Comput & Applic 32, 4805–4819 (2020).

Yeleussinov, A.; Amirgaliyev, Y.; Cherikbayeva, L. Improving OCR Accuracy for Kazakh Handwriting Recognition Using GAN Models. Appl. Sci. 2023, 13, 5677.

Alwaqfi, Y.; Mohamad, M.; Al-Taani, A. Generative Adversarial Network for an Improved Arabic Handwritten Characters Recognition. Int. J. Adv. Soft Comput. Its Appl. 2022, 14, 177–195. DOI: 10.15849/IJASCA.220328.12

Eltay M, Zidouri A, Ahmad I, Elarian Y. 2022. Generative adversarial network based adaptive data augmentation for handwritten Arabic text recognition. PeerJ Computer Science 8:e861

Mustapha, I.B., Hasan, S., Nabus, H. et al. Conditional Deep Convolutional Generative Adversarial Networks for Isolated Handwritten Arabic Character Generation. Arab J Sci Eng 47, 1309–1320 (2022).

Sana Khamekhem Jemni, Mohamed Ali Souibgui, Yousri Kessentini, Alicia Fornés, Enhance to read better: A Multi-Task Adversarial Network for Handwritten Document Image Enhancement, Pattern Recognition, Volume 123, 2022, 108370, ISSN 0031-3203,

M. Pechwitz, S. Snoussi Maddouri, V. Märgner, N. Ellouze , H. Amiri, "IFN/ENIT-DATABASE OF HANDWRITTEN ARABIC WORDS" , in the 7th Colloque International Francophone sur l'Ecrit et le Document , CIFED 2002, Oct. 21-23, 2002, Hammamet, Tunis, (2002)

Eltay, M., Zidouri, A., Ahmad, I., Elarian, Y. (2021). Improving Handwritten Arabic Text Recognition Using an Adaptive Data-Augmentation Algorithm. In: Barney Smith, E.H., Pal, U. (eds) Document Analysis and Recognition – ICDAR 2021 Workshops. ICDAR 2021. Lecture Notes in Computer Science(), vol 12916. Springer, Cham.

Heil, R., Breznik, E. (2023). A Study of Augmentation Methods for Handwritten Stenography Recognition. In: Pertusa, A., Gallego, A.J., Sánchez, J.A., Domingues, I. (eds) Pattern Recognition and Image Analysis. IbPRIA 2023. Lecture Notes in Computer Science, vol 14062. Springer, Cham.

M. Elleuch, R. Maalej and M. Kherallah, “A new design based-SVM of the CNN classifier architecture with dropout for offline Arabic handwritten recognition,” Procedia Computer Science, vol. 80, pp. 1712– 1723, 2016

Chen, HJ., Fathoni, H., Wang, ZY., Lien, KY., Yang, CT. (2023). A Real-Time Streaming Application for License Plate Recognition Using OpenALPR. In: Deng, DJ., Chao, HC., Chen, JC. (eds) Smart Grid and Internet of Things. SGIoT 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 497. Springer, Cham.

H. Scheidl, S. Fiel, R. Sablatnig, Word beam search: A connectionist tem- poral classification decoding algorithm, in: 2018 16th International Confer- ence on Frontiers in Handwriting Recognition (ICFHR), IEEE, 2018, pp. 253–258




How to Cite

Rabi, M. ., & Amrouche, M. . (2024). Convolutional Arabic Handwriting Recognition System Based BLSTM-CTC Using WBS Decoder. International Journal of Intelligent Systems and Applications in Engineering, 12(16s), 535–548. Retrieved from



Research Article