An Efficient Pre-Processing Framework for Segmenting Region of Interest from Knee Osteoarthritis X-Ray Images

Authors

  • Ravindra D. Kale Ph.D. Scholar, Computer Science & Engineering, G H Raisoni University, Amravati, India
  • Sarika Khandelwal Associate Professor, Department of Computer Science & Engineering, G H Raisoni College of Engineering, Nagpur, India

Keywords:

Pre-processing, image processing, ambiguous, osteoarthritis, region of interest, Kellgren and Lawrence grade, Kaggle dataset.

Abstract

Pre-processing is primary and essential element of most of the image processing applications especially in classification and prediction problems. Especially in medical applications where images are prone to different noises and poor contrast, even a good descriptor would make the classifier ambiguous. The article presents an efficient pre-processing approach to eliminate the soft tissues from the hard tissues and provide a distinguishable knee gap to identify the grade of Osteoarthritis. Also, the simple statistical approach provide a generalized solution to extract the region of interest required for Kellgren and Lawrence grade classification of the Kaggle dataset images with 5 levels of grade. The proposed framework has the ability to obtain segmented region of interest with better accuracy required for classification.

Downloads

Download data is not yet available.

References

Oka, H., Muraki, S., Akune, T., Mabuchi, A., Suzuki, T., Yoshida, H., Yamamoto, S., Nakamura, K., Yoshimura, N., Kawaguchi, H.: Fully automatic quantification of knee osteoarthritis severity on plain radiographs. Osteoarthritis and Cartilage 16(11), 1300{1306 (2008)

Shamir, L., Ling, S.M., Scott, W., Hochberg, M., Ferrucci, L., Goldberg, I.G.: Early detection of radiographic knee osteoarthritis using computer-aided analysis. Osteoarthritis and Cartilage 17(10), 1307{1312 (2009)

Shamir, L., Ling, S.M., Scott Jr, W.W., Bos, A., Orlov, N., Macura, T.J., Eckley, D.M., Ferrucci, L., Goldberg, I.G.: Knee X-ray image analysis method for automated detection of osteoarthritis. IEEE Transactions on Biomedical Engineering 56(2), 407{415 (2009)

Shamir, L., Orlov, N., Eckley, D.M., Macura, T., Johnston, J., Goldberg, I.G.: Wndchrm{an open source utility for biological image analysis. Source code for biology and medicine 3(1), 13 (2008).

Kellgren, J.H.; Lawrance, J.S. Radiological Assessment of Osteo-Arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502.

Gan, H. S., Tan, T. S., Abdul, K., Ahmad, H., Khairil, A. S., Abdul, K. R., Weng, K. T., Liang, X. W. & Kashif, T. C. 2014. Medical image visual appearance improvement using bihistogrambezier curve contrast enhancement: data from the osteoarthritis initiative. The Scientific World Journal.

Dougherty, Geoff. 2009. Digital Image Processing for Medical Applications. Cambridge University Press.

Dar, S. U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., & Çukur, T. 2019. Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Transactions on Medical Imaging 38(10): 2375-2388.

Gan, H. S., Tan, T. S, Abdul, K. R., Abdul, K., Ahmad, H., Khairil, A. S., Liang, X. W. & Weng, K. T. 2014. Medical image contrast enhancement using spline concept: data from the osteoarthritis initiative. Journal of Medical Imaging and Health Informatics4: 511-20.

Mohammed, A.S.; Hasanaath, A.A.; Latif, G.; Bashar, A. Knee Osteoarthritis Detection and Severity Classification Using Residual Neural Networks on Preprocessed X-ray Images. Diagnostics 2023, 13, 1380.

Khalid, A.; Senan, E.M.; Al-Wagih, K.; Ali Al-Azzam, M.M.; Alkhraisha, Z.M. Hybrid Techniques of X-ray Analysis to Predict Knee Osteoarthritis Grades Based on Fusion Features of CNN and Handcrafted. Diagnostics 2023, 13, 1609.

Ahmed, S.M.; Mstafa, R.J. Identifying Severity Grading of Knee Osteoarthritis from X-ray Images Using an Efficient Mixture of Deep Learning and Machine Learning Models. Diagnostics 2022, 12, 2939.

Junru Zhong, Yongcheng Yao, Donal Cahill, Fan Xiao, Siyue li, Jack Lee, Kevin Ki-Wai Ho, Michael Tim-Yun Ong, James Griffith and Weitian, “Unsupervised domain adaptation for automated knee osteoarthritis phenotype classification,” Quantitative Imaging in Medicine and Surgery, 2023, 13(11), 7444-7458.

Cueva, J.H.; Castillo, D.; Espinós-Morató, H.; Durán, D.; Díaz, P.; Lakshminarayanan, V. Detection and Classification of Knee Osteoarthritis. Diagnostics 2022, 12, 2362.

Md. Rezaul Karim, Jiao Jiao, till Dohmen, Michael Cochez, Oya bayan, Dietrich Rebholz-Schuhmann and Stefen Decker, “DeepKneeExplainer: Explainable Knee Osteoarthritis Diagnosis from Radiographs and Magnetic resonance Imaging,” IEEE Access, Vol. 9, 2021, pp. 39757-39780.

Kevin Thomas, Lukasz Kidzinski, Eni Halilaj, Scott Flemming, Guhan Venkatraman, Edwin H. G. Oei, Garry Gold and Scott Delp, “Automated Classification of radiographic knee Osteoarthritis Severity Using Deep Neural Networks,” Radiology, Artificial Intelligence, 2020, vol. 2(2):e190065.

Fabi Prezja, Juha Paloneva, Ilkka Polonen, Esko Niinimaki and Sami Ayramo, “Deepfake Knee osteoarthritis X-rays from generative adversial neural networks deceive medical experts and offer augmentation potential to automatic classification, Scientific Reports, 2022, 12:18573.

Kellgren, J. H. & Lawrence, J. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16, 494 (1957).

Tiwari, S. Knee Osteoarthritis Dataset with Severity Grading. Kaggle.Availableonline:https://www.kaggle.com/datasets/shashwatwork/knee-osteoarthritis-dataset-with severity?resource=download&select=auto_test

Downloads

Published

24.03.2024

How to Cite

Kale, R. D. ., & Khandelwal , S. . (2024). An Efficient Pre-Processing Framework for Segmenting Region of Interest from Knee Osteoarthritis X-Ray Images. International Journal of Intelligent Systems and Applications in Engineering, 12(18s), 638–645. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5012

Issue

Section

Research Article