Need for Intelligent Software Cost Estimation and its Methods: A Comprehensive Overview

Authors

  • M. S. Rekha Research Scholar, Department of Computer Science and Engineering, B M S Institute of Technology & Management Yelahanka affiliated to Visvesvaraya Technological University, Belagavi-590018, Karnataka, India
  • Bharathi Malakreddy A. Professor, Department of Artificial Intelligence and Machine Learning, B M S Institute of Technology & Management, Yelahanka, Karnataka, India.,

Keywords:

Cost estimation, Project management, FPA, COCOMO

Abstract

Software cost estimation stands as a critical phase in the software development life cycle, impacting budgeting, resource allocation, and project planning. The dynamic and complex nature of software projects, along with the rapid evolution of technology, necessitates an intelligent approach to cost estimation. This paper presents a comprehensive overview of the need for intelligent software cost estimation and delves into various methods employed to achieve accuracy and efficiency in estimations. It examines traditional models, such as COCOMO and Function Point Analysis, alongside modern techniques that leverage machine learning and artificial intelligence to adapt to the complexities of software projects. By comparing the effectiveness, challenges, and applicability of each method, the paper highlights the evolution of cost estimation practices and the growing importance of incorporating intelligence into these processes. It concludes with insights into future directions, emphasizing the integration of predictive analytics and data-driven decision-making in improving the reliability and precision of software cost estimations. Through this overview, the paper aims to provide stakeholders with a deeper understanding of intelligent cost estimation methods, facilitating better planning and management of software projects.

Downloads

Download data is not yet available.

References

E. Matel, F. Vahdatikhaki, S. Hosseinyalamdary, T. Evers, and H. Voordijk, “An artificial neural network approach for cost estimation of engineering services,” Int. J. Constr. Manag., vol. 22, no. 7, pp. 1274–1287, 2022, doi: 10.1080/15623599.2019.1692400.

S. Durdyev, “Review of construction journals on causes of project cost overruns,” Eng. Constr. Archit. Manag., vol. 28, no. 4, pp. 1241–1260, 2020, doi: 10.1108/ECAM-02-2020-0137.

A. Jadhav, M. Kaur, and F. Akter, “Evolution of Software Development Effort and Cost Estimation Techniques: Five Decades Study Using Automated Text Mining Approach,” Math. Probl. Eng., vol. 2022, 2022, doi: 10.1155/2022/5782587.

C. Proudfoot, R. Gautam, J. Cristino, R. Agrawal, L. Thakur, and K. Tolley, “Model parameters influencing the cost-effectiveness of sacubitril/valsartan in heart failure: evidence from a systematic literature review,” Eur. J. Heal. Econ., no. 0123456789, 2022, doi: 10.1007/s10198-022-01485-3.

S. A. Butt et al., “A software-based cost estimation technique in scrum using a developer’s expertise,” Adv. Eng. Softw., vol. 171, no. May, 2022, doi: 10.1016/j.advengsoft.2022.103159.

C. Symons and M.C. Paulk, “Software Cost Estimation with Cocomo II,” Int. Conf. Emerg. Trends Electr. Electron. Sustain. Energy Syst. ICETEESES 2016, 2022.

C. A. Ul Hassan et al., “Optimizing Deep Learning Model for Software Cost Estimation Using Hybrid Meta-Heuristic Algorithmic Approach,” Comput. Intell. Neurosci., vol. 2022, 2022, doi: 10.1155/2022/3145956.

S. Rajper and Z. A. Shaikh, “Software development cost estimation: A survey,” Indian J. Sci. Technol., vol. 9, no. 31, pp. 177–205, 2016, doi: 10.17485/ijst/2016/v9i31/93058.

s.k.shrivastava, “Software Cost Estimation: Principles and Practices,” 2021.

L. X. b Yan Ji a, Zhen Kang a, Xiao Zhang b, “Model recovery for multi-input signal-output nonlinear systems based on the compressed sensing recovery theory,” J. Franklin Inst., vol. Volume 359, no. Issue 5, March 2022, pp. 2317–2339, 2022.

A. A. Fadhil, R. G. H. Alsarraj, and A. M. Altaie, “Software Cost Estimation Based on Dolphin Algorithm,” IEEE Access, vol. 8, pp. 75279–75287, 2020, doi: 10.1109/ACCESS.2020.2988867.

S. M. R. Chirra and H. Reza, “A Survey on Software Cost Estimation Techniques,” J. Softw. Eng. Appl., vol. 12, no. 06, pp. 226–248, 2019, doi: 10.4236/jsea.2019.126014.

G. R. Reddy and H. Reza, “A Survey on Software Cost Estimation Techniques,” J. Softw. Eng. Appl., vol. 12, no. 06, pp. 226–248, 2022, doi: 10.4236/jsea.2019.126014.

K. Bilal, K. Wahab, A. Muhammad, and J. Nazir, “A Survey on Software Cost Estimation Techniques,” Int. J. Data Sci. Adv. Anal., vol. 2, no. 2, pp. 1–5, 2020.

A. Sidani et al., “Recent tools and techniques of BIM-Based Augmented Reality: A systematic review,” J. Build. Eng., vol. 42, no. 0123456789, 2021, doi: 10.1016/j.jobe.2021.102500.

M. Grinberg and J. Maldacena, “Proper time to the black hole singularity from thermal one-point functions,” J. High Energy Phys., vol. 2021, no. 3, 2021, doi: 10.1007/JHEP03(2021)131.

J. Harnois-Déraps et al., “Cosmic shear cosmology beyond two-point statistics: A combined peak count and correlation function analysis of DES-Y1,” Mon. Not. R. Astron. Soc., vol. 506, no. 2, pp. 1623–1650, 2021, doi: 10.1093/mnras/stab1623.

M. Al-Azzawi, A.A.H., & Zubi, “Function Point Analysis for Software Quality Measurement,” Int. J. Comput. Appl. Technol. Res., vol. 183(4), 2021.

M. Ben-Daya, “A comprehensive survey of Function Point Analysis,” vol. 190(5), 2023.

A. Akhtar, B. Bakhtawar, and S. Akhtar, “Extreme Programming Vs Scrum: a Comparison of Agile Models,” Int. J. Technol. Innov. Manag., vol. 2, no. 2, pp. 80–96, 2022, doi: 10.54489/ijtim.v2i2.77.

B. Alsaadi and K. Saeedi, Data-driven effort estimation techniques of agile user stories: a systematic literature review, vol. 55, no. 7. Springer Netherlands, 2022. doi: 10.1007/s10462-021-10132-x.

S. Obaid Barraood, H. Mohd, and F. Baharom, “A Comparison Study of Software Testing Activities in Agile Methods,” Semant. Sch., no. February, 2021, [Online]. Available: http://www.kmice.cms.net.my/

L. Horváth, G. Rice, and Y. Zhao, “Change point analysis of covariance functions: A weighted cumulative sum approach,” J. Multivar. Anal., vol. 189, no. 2016, 2022, doi: 10.1016/j.jmva.2021.104877.

S. Stappert, J. Wilken, G. J. D. Calabuig, and M. Sippel, “Evaluation of Parametric Cost Estimation in the Preliminary Design Phase of Evaluation of Parametric Cost Estimation in the Preliminary Design Phase of Reusable Launch Vehicles,” no. July, 2022.

K. ae Jang and W. J. Kim, “A method of activity-based software maintenance cost estimation for package software,” J. Supercomput., vol. 77, no. 8, pp. 8151–8171, 2021, doi: 10.1007/s11227-020-03610-6.

R. Silhavy, P. Silhavy, and Z. Prokopova, “Using actors and use cases for software size estimation,” Electron., vol. 10, no. 5, pp. 1–21, 2021, doi: 10.3390/electronics10050592.

E. M. D. B. Fávero, R. Pereira, A. R. Pimentel, and D. Casanova, “Analogy-based Effort Estimation: A Systematic Mapping of Literature,” Infocomp, vol. 17, no. 2, pp. 7–22, 2018.

K. D. D. Willis et al., “JoinABLe: Learning Bottom-up Assembly of Parametric CAD Joints,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2022-June, pp. 15828–15839, 2022, doi: 10.1109/CVPR52688.2022.01539.

R. Khoshfetrat, H. Sarvari, D. W. M. Chan, and M. Rakhshanifar, “Critical risk factors for implementing building information modelling (BIM): a Delphi-based survey,” Int. J. Constr. Manag., vol. 22, no. 12, pp. 2375–2384, 2022, doi: 10.1080/15623599.2020.1788759.

U. K. Nath, A. K. Jagadev, P. K. Pattnaik, and S. K. Swain, “Effective Cost Estimation Using Agile Process,” J. Theor. Appl. Inf. Technol., vol. 100, no. 18, pp. 5209–5219, 2022.

F. Tahmasebinia, R. Jiang, S. Sepasgozar, J. Wei, Y. Ding, and H. Ma, “Implementation of BIM Energy Analysis and Monte Carlo Simulation for Estimating Building Energy Performance Based on Regression Approach: A Case Study,” Buildings, vol. 12, no. 4, 2022, doi: 10.3390/buildings12040449.

M. S. Islam, M. P. Nepal, M. Skitmore, and R. Drogemuller, “Risk induced contingency cost modeling for power plant projects,” Autom. Constr., vol. 123, 2021, doi: 10.1016/j.autcon.2020.103519.

T. Wahyono, Purwanto, E. Maria, and K. D. Hartomo, “Software Complexity Analysis of Integrated Accounting Information Systems for Cooperatives using the Use Case Point (UCP) Method,” in 2022 IEEE International Conference of Computer Science and Information Technology (ICOSNIKOM), 2022, pp. 1–6. doi: 10.1109/ICOSNIKOM56551.2022.10034924.

W. van Atteveldt, M. A. C. G. van der Velden, and M. Boukes, “The Validity of Sentiment Analysis: Comparing Manual Annotation, Crowd-Coding, Dictionary Approaches, and Machine Learning Algorithms,” Commun. Methods Meas., vol. 15, no. 2, pp. 121–140, 2021, doi: 10.1080/19312458.2020.1869198.

J. Zhou et al., “Predicting TBM penetration rate in hard rock condition: A comparative study among six XGB-based metaheuristic techniques,” Geosci. Front., vol. 12, no. 3, p. 101091, 2021, doi: 10.1016/j.gsf.2020.09.020.

N. A. Avais Jan, Assad Abbas, “Monitoring and Controlling Software Project Scope Using Agile EVM,” Wiley Online Libr., no. https://doi.org/10.1002/9781119821779.ch4, 2022.

A. N. Khan, N. Iqbal, A. Rizwan, R. Ahmad, and D. H. Kim, “An ensemble energy consumption forecasting model based on spatial-temporal clustering analysis in residential buildings,” Energies, vol. 14, no. 11, pp. 1–25, 2021, doi: 10.3390/en14113020.

M. Forgione and D. Piga, “Continuous-time system identification with neural networks: Model structures and fitting criteria,” Eur. J. Control, vol. 59, pp. 69–81, 2021, doi: 10.1016/j.ejcon.2021.01.008.

R. Wang, V. Asghari, C. M. Cheung, S. C. Hsu, and C. J. Lee, “Assessing effects of economic factors on construction cost estimation using deep neural networks,” Autom. Constr., vol. 134, no. February, 2022, doi: 10.1016/j.autcon.2021.104080.

N. Rankovic, D. Rankovic, M. Ivanovic, and L. Lazic, “A New Approach to Software Effort Estimation Using Different Artificial Neural Network Architectures and Taguchi Orthogonal Arrays,” IEEE Access, vol. 9, pp. 26926–26936, 2021, doi: 10.1109/ACCESS.2021.3057807.

A. H. Ibrahim and L. M. Elshwadfy, “Factors affecting the accuracy of construction project cost estimation in Egypt,” Jordan J. Civ. Eng., vol. 15, no. 3, pp. 329–344, 2021.

A. Singh and S. Kumar, “Picture fuzzy set and quality function deployment approach based novel framework for multi-criteria group decision making method,” Eng. Appl. Artif. Intell., vol. 104, no. July, p. 104395, 2021, doi: 10.1016/j.engappai.2021.104395.

[43] H. O. Schmidt, Construction Cost Estimating International. Routledge, 1977.

[44] F. Elghaish, S. Abrishami, M. R. Hosseini, and S. Abu-Samra, “Revolutionising cost structure for integrated project delivery: a BIM-based solution,” Eng. Constr. Archit. Manag., vol. 28, no. 4, pp. 1214–1240, 2021, doi: 10.1108/ECAM-04-2019-0222.

[45] A. Karimi and T. J. Gandomani, “Software development effort estimation modeling using a combination of fuzzy-neural network and differential evolution algorithm,” Int. J. Electr. Comput. Eng., vol. 11, no. 1, pp. 707–715, 2021, doi: 10.11591/ijece.v11i1.pp707-715.

M. A. Salam, “Analyzing manufacturing strategies and Industry 4.0 supplier performance relationships from a resource-based perspective,” Benchmarking, vol. 28, no. 5, pp. 1697–1716, 2022, doi: 10.1108/BIJ-12-2018-0428.

A. Kaur and K. Kaur, “A COSMIC function points based test effort estimation model for mobile applications,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 3, pp. 946–963, 2022, doi: 10.1016/j.jksuci.2019.03.001.

M. O. Sanni-Anibire, R. Mohamad Zin, and S. O. Olatunji, “Developing a preliminary cost estimation model for tall buildings based on machine learning,” Int. J. Manag. Sci. Eng. Manag., vol. 16, no. 2, pp. 134–142, 2021, doi:10.1080/17509653.2021.1905568.

T. A. Trunfio, A. Scala, A. Della Vecchia, A. Marra, and A. Borrelli, “Multiple Regression Model to Predict Length of Hospital Stay for Patients Undergoing Femur Fracture Surgery at ‘San Giovanni di Dio e Ruggi d’Aragona’ University Hospital,” IFMBE Proc., vol. 80, pp. 840–847, 2021, doi: 10.1007/978-3-030-64610-3_94.

B. Liu, Q. Zhao, Y. Jin, J. Shen, and C. Li, “Application of combined model of stepwise regression analysis and artificial neural network in data calibration of miniature air quality detector,” Sci. Rep., vol. 11, no. 1, pp. 1–12, 2021, doi: 10.1038/s41598-021-82871-4.

D. Lakens and A. R. Caldwell, “Simulation-Based Power Analysis for Factorial Analysis of Variance Designs,” Adv. Methods Pract. Psychol. Sci., vol. 4, no. 1, 2021, doi: 10.1177/2515245920951503.

X. Chen, J. D. Lee, H. Li, and Y. Yang, “Distributed Estimation for Principal Component Analysis: An Enlarged Eigenspace Analysis,” J. Am. Stat. Assoc., vol. 117, no. 540, pp. 1775–1786, 2022, doi: 10.1080/01621459.2021.1886937.

D. Guaman, S. Delgado, and J. Perez, “Classifying Model-View-Controller Software Applications Using Self-Organizing Maps,” IEEE Access, vol. 9, pp. 45201–45229, 2021, doi: 10.1109/ACCESS.2021.3066348.

D. Zhao et al., “k-means clustering and kNN classification based on negative databases,” Appl. Soft Comput., vol. 110, p. 107732, 2021, doi: 10.1016/j.asoc.2021.107732.

A. Saeed, W. H. Butt, F. Kazmi, and M. Arif, “Survey of software development effort estimation techniques,” ACM Int. Conf. Proceeding Ser., pp. 82–86, 2021, doi: 10.1145/3185089.3185140.

A. S. Filippetto, R. Lima, and J. L. V. Barbosa, “A risk prediction model for software project management based on similarity analysis of context histories,” Inf. Softw. Technol., vol. 131, no. March 2020, 2021, doi: 10.1016/j.infsof.2020.106497.

V. Jackins, S. Vimal, M. Kaliappan, and M. Y. Lee, “AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes,” J. Supercomput., vol. 77, no. 5, pp. 5198–5219, 2021, doi: 10.1007/s11227-020-03481-x.

M. Fan and A. Sharma, “Design and implementation of construction cost prediction model based on SVM and LSSVM in industries 4.0,” Int. J. Intell. Comput. Cybern., vol. 14, no. 2, pp. 145–157, Jan. 2021, doi: 10.1108/IJICC-10-2020-0142.

I. Wickramasinghe and H. Kalutarage, “Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation,” Soft Comput., vol. 25, no. 3, pp. 2277–2293, 2021, doi: 10.1007/s00500-020-05297-6.

D. D’Souza and H. D’Souza, “Bilingual adaptations in early development,” Trends Cogn. Sci., vol. 25, no. 9, pp. 727–729, 2021, doi: 10.1016/j.tics.2021.06.002.

B. Mor, S. Garhwal, and A. Kumar, “A Systematic Review of Hidden Markov Models and Their Applications,” Arch. Comput. Methods Eng., vol. 28, no. 3, pp. 1429–1448, 2021, doi: 10.1007/s11831-020-09422-4.

R. Glennie, T. Adam, V. Leos-Barajas, T. Michelot, T. Photopoulou, and B. T. McClintock, “Hidden Markov models: Pitfalls and opportunities in ecology,” Methods Ecol. Evol., vol. 14, no. 1, pp. 43–56, 2023, doi: 10.1111/2041-210X.13801.

A. G. Gad, Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review, vol. 29, no. 5. Springer Netherlands, 2022. doi: 10.1007/s11831-021-09694-4.

C. Kim, R. Batra, L. Chen, H. Tran, and R. Ramprasad, “Polymer design using genetic algorithm and machine learning,” Comput. Mater. Sci., vol. 186, pp. 1–15, 2021, doi: 10.1016/j.commatsci.2020.110067.

A. F. Güven, N. Yörükeren, and M. M. Samy, “Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches,” Energy, vol. 253, p. 124089, 2022, doi: https://doi.org/10.1016/j.energy.2022.124089.

C. Kahraman and E. Bolturk, Toward Humanoid Robots: The Role of Fuzzy Sets. 2021.

M. F. Ahmad, N. A. M. Isa, W. H. Lim, and K. M. Ang, “Differential evolution: A recent review based on state-of-the-art works,” Alexandria Eng. J., vol. 61, no. 5, pp. 3831–3872, 2022, doi: 10.1016/j.aej.2021.09.013.

D. L. Luong, D. H. Tran, and P. T. Nguyen, “Optimizing multi-mode time-cost-quality trade-off of construction project using opposition multiple objective difference evolution,” Int. J. Constr. Manag., vol. 21, no. 3, pp. 271–283, 2021, doi: 10.1080/15623599.2018.1526630.

M. Dubey, V. Kumar, M. Kaur, and T. P. Dao, “A Systematic Review on Harmony Search Algorithm: Theory, Literature, and Applications,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/5594267.

S. Liu, Z. Chuang, K. Wang, X. Li, X. Chang, and L. Hou, “Structural Parametric Optimization of the VolturnUS-S Semi-Submersible Foundation for a 15 MW Floating Offshore Wind Turbine,” J. Mar. Sci. Eng., vol. 10, no. 9, 2022, doi: 10.3390/jmse10091181.

J. Cheng, Y. Wang, J. H. Park, J. Cao, and K. Shi, “Static Output Feedback Quantized Control for Fuzzy Markovian Switching Singularly Perturbed Systems With Deception Attacks,” IEEE Trans. Fuzzy Syst., vol. 30, no. 4, pp. 1036–1047, 2022, doi: 10.1109/TFUZZ.2021.3052104.

S. O. Abioye et al., “Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges,” J. Build. Eng., vol. 44, no. April 2020, p. 103299, 2021, doi: 10.1016/j.jobe.2021.103299.

[J. A. Khan, S. U. R. Khan, T. A. Khan, and I. U. R. Khan, “An Amplified COCOMO-II Based Cost Estimation Model in Global Software Development Context,” IEEE Access, vol. 9, pp. 88602–88620, 2021, doi: 10.1109/ACCESS.2021.3089870.

F. Afzal, S. Yunfei, M. Nazir, and S. M. Bhatti, “A review of artificial intelligence based risk assessment methods for capturing complexity-risk interdependencies: Cost overrun in construction projects,” Int. J. Manag. Proj. Bus., vol. 14, no. 2, pp. 300–328, 2021, doi: 10.1108/IJMPB-02-2019-0047.

Downloads

Published

24.03.2024

How to Cite

Rekha, M. S. ., & Malakreddy A., B. . (2024). Need for Intelligent Software Cost Estimation and its Methods: A Comprehensive Overview. International Journal of Intelligent Systems and Applications in Engineering, 12(19s), 43–59. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5043

Issue

Section

Research Article