Concepts, Techniques, Challenges and Future Trends of EEG Seizure Detection: A Survey

Authors

  • Suresh Nalla Research Scholar, Department of ECE, Chaitanya Deemed to be University, Hanamkonda , Warangal ,Telangana ,India.
  • Seetharam Khetavath Professor, Department of ECE, Chaitanya Deemed to be University, Hanamkonda , Warangal ,Telangana ,India.

Keywords:

Epilepsy, Electroencephalography (EEG), Features extraction, Classification, Artificial intelligence

Abstract

Epilepsy is a term that is commonly used to refer to a condition of the central nervous system. Epilepsy is characterized by an aberrant pattern of brain activity, which can result in episodes of bizarre behavior, seizures, and even a temporary loss of awareness. Patients with epilepsy experience difficulties in their day-to-day lives as a direct result of the measures they are need to take in order to adapt to their disease. This is especially true for situations in which they are required to utilize heavy equipment, such as when driving a vehicle. Studies on epilepsy rely heavily on electroencephalography (EEG) signals as their primary method for analyzing the activity of the brain during seizures. To manually determine the location of seizures in EEG signals is a laborious and time-consuming process that can be frustrating at times. One of the most important instruments that can assist medical professionals and people in taking the necessary safety measures is the automatic detection framework. This article explores the mental disorder of epilepsy, along with the various forms of seizures. It also discusses the preprocessing operations carried out on EEG data, which is a commonly retrieved feature from the signal. Additionally, it provides a full overview of the classification processes employed in addressing this issue. Furthermore, this essay provides valuable perspectives on the difficulties and prospective areas for future investigation in this innovative topic. This paper offers a comprehensive review of recent approaches to studying epileptic seizures. It also presents researchers with ideas and concepts for developing an automated system that uses EEG data, Internet of Things technology, and machine learning classifiers to remotely monitor patients with epilepsy in smart healthcare systems. Furthermore, this paper provides an overview of new approaches employed in studying the epileptic seizure phenomenon. The identification of seizures using EEG poses several challenges and unresolved research questions, which are the focus of this last examination.

Downloads

Download data is not yet available.

References

Ghassemi, N.; Shoeibi, A.; Rouhani, M.; Hosseini-Nejad, H. Epileptic seizures detection in EEG signals using TQWT and ensemble learning. In Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 24–25 October 2019; pp. 403–408.

Shoeibi, A.; Ghassemi, N.; Alizadehsani, R.; Rouhani, M.; Hosseini-Nejad, H.; Khosravi, A.; Panahiazar, M.; Nahavandi, S. A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals. Expert Syst. Appl. 2021, 163, 113788.

Bhattacharyya, A.; Pachori, R.B.; Upadhyay, A.; Acharya, U.R. Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals. Appl. Sci. 2017, 7, 385.

Kulaseharan, S.; Aminpour, A.; Ebrahimi, M.; Widjaja, E. Identifying lesions in paediatric epilepsy using morphometric and textural analysis of magnetic resonance images. Clin. NeuroImage 2019, 21, 101663.

Zazzaro, G.; Cuomo, S.; Martone, A.; Montaquila, R.V.; Toraldo, G.; Pavone, L. Eeg signal analysis for epileptic seizures detection by applying data mining techniques. Internet Things 2019, 100048.

van Klink, N.; Mooij, A.; Huiskamp, G.; Ferrier, C.; Braun, K.; Hillebrand, A.; Zijlmans, M. Simultaneous MEG and EEG to detect ripples in people with focal epilepsy. Clin. Neurophysiol. 2019, 130, 1175–1183.

Pianou, N.; Chatziioannou, S. Imaging with PET/CT in Patients with Epilepsy. In Epilepsy Surgery and Intrinsic Brain Tumor Surgery; Springer: Cham, Switzerland, 2019; pp. 45–50.

Subasi, A.; Kevric, J.; Canbaz, M.A. Epileptic seizure detection using hybrid machine learning methods. Neural Comput. Appl. 2019, 31, 317–325.

Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H.; Subha, D.P. Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed. 2018, 161, 103–113.

Lauretani, F.; Longobucco, Y.; Ravazzoni, G.; Gallini, E.; Salvi, M.; Maggio, M. Imaging the Functional Neuroanatomy of

Parkinson’s Disease: Clinical Applications and Future Directions. Int. J. Environ. Res. Public Health 2021, 18, 2356.

Carbó-Carreté, M.; Cañete-Massé, C.; Figueroa-Jiménez, M.D.; Peró-Cebollero, M.; Guàrdia-Olmos, J. Relationship between Quality of Life and the Complexity of Default Mode Network in Resting State Functional Magnetic Resonance Image in Down Syndrome. Int. J. Environ. Res. Public Health 2020, 17, 7127.

Morales Chacón, L.M.; González González, J.; Ríos Castillo, M.; Berrillo Batista, S.; Batista García-Ramo, K.; Santos Santos, A.; Cordero Quintanal, N.; Zaldívar Bermúdez, M.; Garbey Fernández, R.; Estupiñan Díaz, B.; et al. Surgical Outcome in Extratemporal Epilepsies Based on Multimodal Pre-Surgical Evaluation and Sequential Intraoperative Electrocorticography. Behav. Sci. 2021, 11, 30.

Takagi, S.; Sakuma, S.; Morita, I.; Sugimoto, E.; Yamaguchi, Y.; Higuchi, N.; Inamoto, K.; Ariji, Y.; Ariji, E.; Murakami, H. Application of Deep Learning in the Identification of Cerebral Hemodynamics Data Obtained from Functional Near-Infrared Spectroscopy: A Preliminary Study of Pre-and Post-Tooth Clenching Assessment. J. Clin. Med. 2020, 9, 3475.

Ronan, L.; Alhusaini, S.; Scanlon, C.; Doherty, C.P.; Delanty, N.; Fitzsimons, M. Widespread cortical morphologic changes in juvenile myoclonic epilepsy: Evidence from structural MRI. Epilepsia 2012, 53, 651–658.

Sharma, R.; Pachori, R.B. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 2015, 42, 1106–1117.

Sheoran, M.; Kumar, S.; Chawla, S. Methods of denoising of electroencephalogram signal: A review. Int. J. Biomed. Eng. Technol. 2015, 18, 385.

Romaine, J.; Martín, M.P.; Ortiz, J.S.; Crespo, J.M. EEG—Single-Channel Envelope Synchronisation and Classification for Seizure Detection and Prediction. Brain Sci. 2021, 11, 516.

Perez-Sanchez, A.V.; Perez-Ramirez, C.A.; Valtierra-Rodriguez, M.; Dominguez-Gonzalez, A.; Amezquita-Sanchez, J.P.Wavelet Transform-Statistical Time Features-Based Methodology for Epileptic Seizure Prediction Using Electrocardiogram Signals. Mathematics 2020, 8, 2125.

Raschka, S.; Mirjalili, V. Python Machine Learning: Machine Learning and Deep Learning with Python. In Scikit-Learn and TensorFlow, 2nd ed.; Packt Publishing Ltd.: Birmingham, UK, 2017.

Bonaccorso, G. Machine Learning Algorithms; Packt Publishing Ltd.: Birmingham, UK, 2017.

Gulli, A.; Pal, S. Deep Learning with KERAS; Packt Publishing Ltd.: Birmingham, UK, 2017.

Tang, X.; Zhang, X. Conditional adversarial domain adaptation neural network for motor imagery EEG decoding. Entropy 2020,

Alickovic, E.; Kevric, J.; Subasi, A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed. Signal Process. Control 2018, 39, 94–102.

Sharma, M.; Bhurane, A.A.; Acharya, U.R. MMSFL-OWFB: A novel class of orthogonal wavelet filters for epileptic seizure detection. Knowl. Based Syst. 2018, 160, 265–277.

Mohammadpoor, M.; Shoeibi, A.; Shojaee, H. A hierarchical classification method for breast tumor detection. Iran. J. Med. Phys. 2016, 13, 261–268.

Assi, E.B.; Nguyen, D.K.; Rihana, S.; Sawan, M. Towards accurate prediction of epileptic seizures: A review. Biomed. Signal Process. Control. 2017, 34, 144–157.

Khodatars, M.; Shoeibi, A.; Ghassemi, N.; Jafari, M.; Khadem, A.; Sadeghi, D.; Moridian, P.; Hussain, S.; Alizadehsani, R.; ZARE, A.; et al. Deep Learning for Neuroimaging-based Diagnosis and Rehabilitation of Autism Spectrum Disorder: A Review. arXiv 2020, arXiv:2007.01285.

Sadeghi, D.; Shoeibi, A.; Ghassemi, N.; Moridian, P.; Khadem, A.; Alizadehsani, R.; Teshnehlab, M.; Gorriz, J.M.; Nahavandi, S. An Overview on Artificial Intelligence Techniques for Diagnosis of Schizophrenia Based on Magnetic Resonance Imaging Modalities: Methods, Challenges, and FutureWorks. arXiv 2021, arXiv:2103.03081.

Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep learning for electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 2019, 16, 031001.

Ghassemi, N.; Shoeibi, A.; Khodatars, M.; Heras, J.; Rahimi, A.; Zare, A.; Pachori, R.B.; Gorriz, J.M. Automatic Diagnosis of COVID-19 from CT Images using CycleGAN and Transfer Learning. arXiv 2021, arXiv:2104.11949.

Sharifrazi, D.; Alizadehsani, R.; Hassannataj Joloudari, J.; Shamshirband, S.; Hussain, S.; Alizadeh Sani, Z.; Hasanzadeh, F.; Shoaibi, A.; Dehzangi, A.; Alinejad-Rokny, H. CNN-KCL: Automatic Myocarditis Diagnosis using Convolutional Neural Network Combined with K-means Clustering. Preprints 2020, 2020070650.

Srivastava, N.; Salakhutdinov, R. Multimodal Learning with Deep Boltzmann Machines. NIPS 2012, 1, 2.

Yu, D.; Deng, L. Deep Learning and Its Applications to Signal and Information Processing Exploratory DSP. IEEE Signal Process. Mag. 2011, 28, 145–154. [CrossRef]

Ihle, M.; Feldwisch-Drentrup, H.; Teixeira, C.A.;Witon, A.; Schelter, B.; Timmer, J.; Schulze-Bonhage, A. EPILEPSIAE–A European epilepsy database. Comput. Methods Programs Biomed. 2012, 106, 127–138.

Shoeb, A.H. Application of Machine Learning to Epileptic Seizure onset Detection and Treatment; Massachusetts Institute of Technology: Cambridge, MA, USA, 2009.

Seizure Prediction Challenge. Available online: https://www.kaggle.com/c/seizure-prediction (accessed on 15 May 2021).

Andrzejak, R.G.; Lehnertz, K.; Mormann, F.; Rieke, C.; David, P.; Elger, C.E. Indications of nonlinear deterministic and finitedimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 2001, 64, 061907.

Andrzejak, R.G.; Schindler, K.; Rummel, C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E 2012, 86, 046206.

Stevenson, N.J.; Tapani, K.; Lauronen, L.; Vanhatalo, S. A dataset of neonatal EEG recordings with seizure annotations. Sci. Data 2019, 6, 1–8.

Sharma, R.; Sircar, P.; Pachori, R.B. Computer-aided diagnosis of epilepsy using bispectrum of EEG signals. In Application of Biomedical Engineering in Neuroscience; Springer: Singapore, 2019; pp. 197–220.

Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, UK, 2016; Volume 1, p. 2.

Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep learning for healthcare applications based on physiological signals: A review. Comput. Methods Programs Biomed. 2018, 161, 1–13.

Yildirim, O.; Talo, M.; Ay, B.; Baloglu, U.B.; Aydin, G.; Acharya, U.R. Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals. Comput. Biol. Med. 2019, 113, 103387.

Martis, R.J.; Acharya, U.R.; Lim, C.M.; Mandana, K.M.; Ray, A.K.; Chakraborty, C. Application of higher order cumulant features for cardiac health diagnosis using ECG signals. Int. J. Neural Syst. 2013, 23, 1350014.

Pham, T.-H.; Vicnesh, J.; Wei, J.K.E.; Oh, S.L.; Arunkumar, N.; Abdulhay, E.W.; Ciaccio, E.J.; Acharya, U.R. Autism Spectrum Disorder Diagnostic System Using HOS Bispectrum with EEG Signals. Int. J. Environ. Res. Public Health 2020, 17, 971.

Alizadehsani, R.; Roshanzamir, M.; Hussain, S.; Khosravi, A.; Koohestani, A.; Zangooei, M.H.; Abdar, M.; Beykikhoshk, A.; Shoeibi, A.; Zare, A.; et al. Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991–2020). Ann. Oper. Res. 2021, 1–42.

Alizadehsani, R.; Sharifrazi, D.; Izadi, N.H.; Joloudari, J.H.; Shoeibi, A.; Gorriz, J.M.; Hussain, S.; Arco, J.E.; Sani, Z.A.; Khozeimeh, F.; et al. Uncertainty-Aware Semi-supervised Method using Large Unlabelled and Limited Labeled COVID-19 Data. arXiv 2021, arXiv:2102.06388.

Shoeibi, A.; Khodatars, M.; Alizadehsani, R.; Ghassemi, N.; Jafari, M.; Moridian, P.; Khadem, A.; Sadehi, D.; Hussain, S.; Zare, A.; et al. Automated detection and forecasting of covid-19 using deep learning techniques: A review. arXiv 2020, arXiv:2007.10785.

Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2012, 60, 1097–1105.

Avcu, M.T.; Zhang, Z.; Chan, D.W.S. Seizure detection using least eeg channels by deep convolutional neural network. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 1120–1124.

Hossain, M.S.; Amin, S.U.; Alsulaiman, M.; Muhammad, G. Applying Deep Learning for Epilepsy Seizure Detection and Brain Mapping Visualization. ACM Trans. Multim. Comput. Commun. Appl. 2019, 15, 1–17.

Zuo, R.; Wei, J.; Li, X.; Li, C.; Zhao, C.; Ren, Z.; Liang, Y.; Geng, X.; Jiang, C.; Yang, X.; et al. Automated Detection of High-Frequency Oscillations in Epilepsy Based on a Convolutional Neural Network. Front. Comput. Neurosci. 2019, 13, 6.

Aayesha M, Qureshi B, Afzaal M, Qureshi MS, Fayaz M (2021) Machine learning-based EEG signals classification model for epileptic seizure detection. Multimed Tools Appl 80(12):17849–17877. https://doi. org/10.1007/s11042-021-10597-6

Abdelhameed A, Bayoumi M (2021) A deep learning approach for automatic seizure detection in children with epilepsy. Front Comput Neurosci 15:29. https://doi.org/10.3389/fncom.2021.650050

Abualsaud K, Mohamed A, Khattab T, Yaacoub E, Hasna M, Guizani M (2018) Classification for imperfect EEG epileptic seizure in IoT applications: a comparative study. 2018 14th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2018, pp 364–369. https://doi.org/10.1109/IWCMC.2018.8450279

Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JEW (2015) Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl-Based Syst 88:85–96. https://doi.org/10.1016/j. knosys.2015.08.004

Acharya UR et al (2019) Characterization of focal EEG signals: a review. Futur Gener Comput Syst 91: 290–299. https://doi.org/10.1016/j.future.2018.08.044

Achilles F, Tombari F, Belagiannis V, Loesch-Biffar A, Noachtar S, Navab N (2016) Convolutional neural networks for real-time epileptic seizure detection. Comput Methods Biomech Biomed Eng Imaging Vis 6: 1–6. https://doi.org/10.1080/21681163.2016.1141062

Ahammad N, Fathima T, Joseph P (2014) Detection of epileptic seizure event and onset using EEG. Biomed Res Int 2014:450573. https://doi.org/10.1155/2014/450573

Ahmad I et al (2022) EEG-based epileptic seizure detection via machine/deep learning approaches: a systematic review. Comput Intell Neurosci 2022:6486570. https://doi.org/10.1155/2022/6486570

Aileni RM, Pasca S, Florescu A (2020) EEG-brain activity monitoring and predictive analysis of signals using artificial neural networks. Sensors (Basel) 20(12):3346. https://doi.org/10.3390/s20123346

Akareddy S, Kulkarni P (2013) EEG signal classification for epilepsy seizure detection using improved approximate entropy. Int J Public Health Sci 2:23–32. https://doi.org/10.11591/ijphs.v2i1.1836

Akut R (2019) Wavelet based deep learning approach for epilepsy detection. Heal Inf Sci Syst 7:1–9. https://doi.org/10.1007/s13755-019-0069-1

Shoeibi A, Khodatars M, Ghassemi N, Jafari M, Moridian P, Alizadehsani R, Panahiazar M, Khozeimeh F, Zare A, Hosseini-Nejad H, Khosravi A, Atiya AF, Aminshahidi D, Hussain S, Rouhani M, Nahavandi S, Acharya UR. Epileptic Seizures Detection Using Deep Learning Techniques: A Review. Int J Environ Res Public Health. 2021 May 27;18(11):5780. doi: 10.3390/ijerph18115780. PMID: 34072232; PMCID: PMC8199071.

Al Ghayab HR, Li Y, Abdulla S, Diykh M, Wan X (2016) Classification of epileptic EEG signals based on simple random sampling and sequential feature selection. Brain Inform 3(2):85–91. https://doi.org/10. 1007/s40708-016-0039-1

Alam SM, Bhuiyan M (2013) Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE J Biomed Health Inform 17:312–318. https://doi.org/10.1109/JBHI.2012.2237409

Alhussein M, Muhammad G, Hossain MS (2019) EEG pathology detection based on deep learning. IEEE Access 7:27781–27788. https://doi.org/10.1109/ACCESS.2019.2901672

Almustafa KM (2020) Classification of epileptic seizure dataset using different machine learning algo- rithms. Inform Med Unlocked 21:100444. https://doi.org/10.1016/j.imu.2020.100444

Alotaibi SM, Atta-ur-Rahman, Basheer MI, Khan MA (2021) Ensemble machine learning based identifi- cation of pediatric epilepsy. Comput Mater Contin 68(1):149–165. https://doi.org/10.32604/cmc.2021. 015976

Alotaiby TN, Alshebeili SA, Alshawi T, Ahmad I, Abd El-Samie FE (2014) EEG seizure detection and prediction algorithms: a survey. EURASIP J Adv Signal Process 2014(1):183. https://doi.org/10.1186/ 1687-6180-2014-183

Antoniades A, Spyrou L, Took CC, Sanei S (2016) Deep learning for epileptic intracranial EEG data. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp 1–6. https://doi.org/10.1109/MLSP.2016.7738824

Downloads

Published

24.03.2024

How to Cite

Nalla, S. ., & Khetavath, S. . (2024). Concepts, Techniques, Challenges and Future Trends of EEG Seizure Detection: A Survey. International Journal of Intelligent Systems and Applications in Engineering, 12(20s), 598–610. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5191

Issue

Section

Research Article