Early Stage Prediction of Heart Disease Features using AdaBoost Ensemble Algorithm and Tree Algorithms

Authors

  • Avdhesh Kumar Yadav Veer Bahadur Singh Purvanchal University, Jaunpur, India
  • Gyanendra Kumar Pal Veer Bahadur Singh Purvanchal University, Jaunpur, India
  • Sanjeev Gangwar Veer Bahadur Singh Purvanchal University, Jaunpur, India

Keywords:

Random Forest feature selection methods, heart disease dataset, AdaBoost, Decision Tree, Multilayer Perception and Decision Tree.

Abstract

Experts in diagnostics find it difficult to control the impact of risk factors since heart disease is a highly hazardous condition. Understanding cardiac disease is crucial to increasing forecast accuracy. This work presents experimental assessments carried out to evaluate the performance of models constructed with the help of classification algorithms and pertinent characteristics chosen by Random Forest Tree feature selection processes. Heart disease is the root cause of many illnesses worldwide. Many classification techniques were used in the analysis of medical data sets and diagnostic problems, such as heart disease.  These techniques, nevertheless, were limited to tiny, balanced datasets; as a result, the characteristics had to be developed by trial and error. Furthermore, feature selection strategies have been heavily utilized by a number of sectors to improve classification performance. The purpose of this study is to present a complete strategy to improve the prediction of heart illness utilizing a variety of machine learning techniques, including Random Forest feature selection and AdaBoost, Decision Tree and Multilayer Perception. The outcomes of the trial shown improvements in prediction. AdaBoost scored 98.57, 73.08, 67.09, 69.09 and 80.55 in terms of accuracy, precision, recall, F1-score, and roc in the training model on an 80% data sample. In the experiment, we examined each classifier method on a 20% sample of data, and we found that the AdaBoost classifier model performed better in terms of accuracy, precision, recall, F1-score, and ROC, scoring 94.51, 48.33, 39.52, 41.78 and 66.71 respectively.

Downloads

Download data is not yet available.

References

Venkatesh, K., Dhyanesh, K., Prathyusha, M., Teja, C. N., & Krishna, T. B. (2021). Identification of disease prediction based on symptoms using machine learning. JAC: A Journal Of Composition Theory, 14(6). DOI:10.1109/ICTACSE50438.2022.10009857.

Buettner, R., & Schunter, M. (2019, October). Efficient machine learning based detection of heart disease. In 2019 IEEE international conference on E-health networking, application & services (HealthCom) (pp. 1-6). IEEE. DOI:10.1109/HealthCom46333.2019.9009429

Singh, A., & Kumar, R. (2020, February). Heart disease prediction using machine learning algorithms. In 2020 international conference on electrical and electronics engineering (ICE3) (pp. 452-457). IEEE. DOI: 10.1109/ICE348803.2020.9122958.

Li, J. P., Haq, A. U., Din, S. U., Khan, J., Khan, A., & Saboor, A. (2020). Heart disease identification method using machine learning classification in e-healthcare. IEEE access, 8, 107562-107582.doi: 10.1109/access.2020.3001149.

Xiao, B., Xu, Y., Bi, X., Zhang, J., & Ma, X. (2020). Heart sounds classification using a novel 1-D convolutional neural network with extremely low parameter consumption. Neurocomputing, 392, 153-159. doi.org/10.1016/j.neucom.2018.09.101

Yaseen, Son, G. Y., & Kwon, S. (2018). Classification of heart sound signal using multiple features. Applied Sciences, 8(12), 2344. doi.org/10.3390/app8122344

Deng, M., Meng, T., Cao, J., Wang, S., Zhang, J., & Fan, H. (2020). Heart sound classification based on improved MFCC features and convolutional recurrent neural networks. Neural Networks, 130, 22-32. DOI: 10.1016/j.neunet.2020.06.015

Dhar, P., Dutta, S., & Mukherjee, V. (2021). Cross-wavelet assisted convolution neural network (AlexNet) approach for phonocardiogram signals classification. Biomedical Signal Processing and Control, 63, 102142. DOI:10.1016/j.bspc.2020.102142

Oh, S. L., Jahmunah, V., Ooi, C. P., Tan, R. S., Ciaccio, E. J., Yamakawa, T., ... & Acharya, U. R. (2020). Classification of heart sound signals using a novel deep WaveNet model. Computer Methods and Programs in Biomedicine, 196, 105604. DOI: 10.1016/j.cmpb.2020.105604

Li, T., Yin, Y., Ma, K., Zhang, S., & Liu, M. (2021). Lightweight end-to-end neural network model for automatic heart sound classification. Information, 12(2), 54. https://doi.org/10.3390/info12020054

Li, J., Ke, L., & Du, Q. (2019). Classification of heart sounds based on the wavelet fractal and twin support vector machine. Entropy, 21(5), 472. https://doi.org/10.3390/e21050472

Jeong, Y., Kim, J., Kim, D., Kim, J., & Lee, K. (2021). Methods for improving deep learning-based cardiac auscultation accuracy: Data augmentation and data generalization. Applied Sciences, 11(10), 4544. https://doi.org/10.3390/app11104544

Narváez, P., Gutierrez, S., & Percybrooks, W. S. (2020). Automatic segmentation and classification of heart sounds using modified empirical wavelet transform and power features. Applied Sciences, 10(14), 4791. https://doi.org/10.3390/app10144791

Shuvo, S. B., Ali, S. N., Swapnil, S. I., Al-Rakhami, M. S., & Gumaei, A. (2021). CardioXNet: A novel lightweight deep learning framework for cardiovascular disease classification using heart sound recordings. ieee access, 9, 36955-36967. DOI:10.1109/ACCESS.2021.3063129

Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6), 1236-1246. DOI: 10.1093/bib/bbx044

Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R. C., Wander, G. S., & Buyya, R. (2020). HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future Generation Computer Systems, 104, 187-200. https://doi.org/10.1016/j.future.2019.10.043

Choi, E., Schuetz, A., Stewart, W. F., & Sun, J. (2017). Using recurrent neural network models for early detection of heart failure onset. Journal of the American Medical Informatics Association, 24(2), 361-370. doi: 10.1093/jamia/ocw112

Awan, S. M., Riaz, M. U., & Khan, A. G. (2018). Prediction of heart disease using artificial neural network.pp102-112. , ISSN(e): 2309-6519; ISSN(p): 2411-6327 Volume 13, Number 3, September-December, 2018.

Mehmood, A., Iqbal, M., Mehmood, Z., Irtaza, A., Nawaz, M., Nazir, T., & Masood, M. (2021). Prediction of heart disease using deep convolutional neural networks. Arabian Journal for Science and Engineering, 46(4), 3409-3422. DOI:10.1007/s13369-020-05105-1.

Jabeen, F., Maqsood, M., Ghazanfar, M. A., Aadil, F., Khan, S., Khan, M. F., & Mehmood, I. (2019). An IoT based efficient hybrid recommender system for cardiovascular disease. Peer-to-Peer Networking and Applications, 12, 1263-1276. DOI:10.1007/s12083-019-00733-3

Muzammal, M., Talat, R., Sodhro, A. H., & Pirbhulal, S. (2020). A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Information Fusion, 53, 155-164. DOI:10.1016/j.inffus.2019.06.021.

Khan, M. A. (2020). An IoT framework for heart disease prediction based on MDCNN classifier. IEEE Access, 8, 34717-34727. DOI:10.1109/ACCESS.2020.2974687.

Yadav, D. C., Pal, S., Yadav, R. K., & Pant, H. (2023, March). Analyzing Risk Elements in Cardiovascular Diseases Prediction using Neural Networks Algorithm. In 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 262-266). IEEE.

Sun, Z., Wang, G., Li, P., Wang, H., Zhang, M., & Liang, X. (2024). An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Systems with Applications, 237, 121549. https://doi.org/10.1016/j.eswa.2023.121549.

Yadav, D. C., & Pal, S. (2020). Calculating diagnose odd ratio for thyroid patients using different data mining classifiers and ensemble techniques. Int J, 9(4), 5463-5470. https://doi.org/10.30534/ijatcse/2020/186942020

Xing, H. J., Liu, W. T., & Wang, X. Z. (2024). Bounded exponential loss function based AdaBoost ensemble of OCSVMs. Pattern Recognition, 148, 110191. https://doi.org/10.1016/j.patcog.2023.110191.

Arumugam, M., Thiyagarajan, A., Adhi, L., & Alagar, S. (2024). Crossover smell agent optimized multilayer perceptron for precise brain tumor classification on MRI images. Expert Systems with Applications, 238, 121453. https://doi.org/10.1016/j.eswa.2023.121453.

Chanyal, H., Yadav, R. K., & Saini, D. K. J. (2022). Classification of Medicinal Plants Leaves Using Deep Learning Technique: A Review. International Journal of Intelligent Systems and Applications in Engineering, 10(4), 78-87.

Downloads

Published

24.03.2024

How to Cite

Yadav, A. K. ., Pal, G. K. ., & Gangwar, S. . (2024). Early Stage Prediction of Heart Disease Features using AdaBoost Ensemble Algorithm and Tree Algorithms. International Journal of Intelligent Systems and Applications in Engineering, 12(3), 545–551. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5285

Issue

Section

Research Article