Human Tap: A Unique Approach to Secure Data Transmission Synchronization

Authors

  • Sohil Shah Parul University, Vadodara, Gujarat, India,
  • Harshal Shah Parul University, Vadodara, Gujarat, India

Keywords:

Human body Chanel (HBC), Electro-Quasistatic Human Field Communication technology (EQ-HFC), Human Base Communication (HBC) Channel, Capacitive Coupling, and TX/RX Losses

Abstract

Human Tap introduces an avant-garde approach to secure data transmission synchronization, leveraging a harmonious integration of cutting-edge technologies. This unique method seamlessly incorporates Near Field Communication (NFC) and Human Field Communication (HFC) to deliver a range of secure communication solutions. The system's detailed specifications encompass crucial parameters such as maximum coverage range, frequency of operation, communication type, and data rate for each protocol. This tailoring enables the system to cater specifically to diverse applications, including but not limited to credit card payments, e-ticket booking, EZ-Pass, and item tracking. Noteworthy is Human Tap's proficiency in providing an exhaustive analysis of distance and time relationships, achieving an unprecedented microsecond-level accuracy for distances spanning up to 2 cm. This inventive synchronization method not only establishes a secure data transmission environment but also proves highly adaptable, effectively meeting the challenges posed by modern communication systems. In doing so, Human Tap sets a new standard for secure and versatile data transmission technologies.

Downloads

Download data is not yet available.

References

S. N. Mahmood, A. J. Ishak, A. Ismail, A. C. Soh, Z. Zakaria, and S. Alani, “ON-OFF Body Ultra-Wideband (UWB) Antenna for Wireless Body Area Networks (WBAN): A Review,” IEEE Access, vol. 8, pp. 150844–150863, 2020, doi: 10.1109/ACCESS.2020.3015423.

S. Avlani, M. Nath, S. Maity, and S. Sen, “A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices,” Proc. 2020 Des. Autom. Test Eur. Conf. Exhib. DATE 2020, pp. 650–653, 2020, doi: 10.23919/DATE48585.2020.9116556.

T. Kang et al., “Evaluation of Human Body Characteristics for Electric Signal Transmission Based on Measured Body Impulse Response,” IEEE Trans. Instrum. Meas., vol. 69, no. 9, pp. 6399–6411, 2020, doi: 10.1109/TIM.2020.2970870.

S. Maity, M. Nath, G. Bhattacharya, B. Chatterjee, and S. Sen, “On the Safety of Human Body Communication,” IEEE Trans. Biomed. Eng., vol. 67, no. 12, pp. 3392–3402, 2020, doi: 10.1109/TBME.2020.2986464.

C. Visvesvaran, N. Ramyadevi, S. P. Karthi, and U. S. Sudhhir, “Wireless Data Transfer Based on Bone Conduction: Osteoconduct,” 2021 7th Int. Conf. Adv. Comput. Commun. Syst. ICACCS 2021, pp. 519–521, 2021, doi: 10.1109/ICACCS51430.2021.9441944.

J. Ormanis and K. Nesenbergs, “Human skin as data transmission medium for improved privacy and usability in wearable electronics,” MeMeA 2018 - 2018 IEEE Int. Symp. Med. Meas. Appl. Proc., vol. 3528725544, no. 10, pp. 1–6, 2018, doi: 10.1109/MeMeA.2018.8438754.

P. Thippun, A. Booranawong, D. Buranapanichkit, and W. Teerapabkajorndet, “An experimental study of dynamic capabilities in a wireless body area network,” KST 2020 - 2020 12th Int. Conf. Knowl. Smart Technol., pp. 164–167, 2020, doi: 10.1109/KST48564.2020.9059346.

M. Nath, S. Maity, and S. Sen, “Toward Understanding the Return Path Capacitance in Capacitive Human Body Communication,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 10, pp. 1879–1883, 2020, doi: 10.1109/TCSII.2019.2953682.

J. F. Zhao, X. M. Chen, B. D. Liang, and Q. X. Chen, “A review on human body communication: Signal propagation model, communication performance, and experimental issues,” Wirel. Commun. Mob. Comput., vol. 2017, 2017, doi: 10.1155/2017/5842310.

C. Solanki, H. Varsha, and V. Gaikwad, “Data Transfer through Human Body,” pp. 332–336, 2016.

K. Zhang, Z. H. Jiang, W. Hong, and D. H. Werner, “A Low-Profile and Wideband Triple-Mode Antenna for Wireless Body Area Network Concurrent On-/Off-Body Communications,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1982–1994, 2020, doi: 10.1109/TAP.2019.2948700.

B. Zhao, J. Mao, J. Zhao, H. Yang, and Y. Lian, “The Role and Challenges of Body Channel Communication in Wearable Flexible Electronics,” IEEE Trans. Biomed. Circuits Syst., vol. 14, no. 2, pp. 283–296, 2020, doi: 10.1109/TBCAS.2020.2966285.

Swaminathan, M.; Cabrera, F.S.; Pujol, J.S.; Muncuk, U.; Schirner, G.; Chowdhury, K.R. Multi-path model and sensitivity analysis for galvanic coupled intra-body communication through layered tissue. IEEE Trans. Biomed. Circuits Syst. 2015, 10, 339–351.

Wegmueller, M.S.; Huclova, S.; Froehlich, J.; Oberle, M.; Felber, N.; Kuster, N.; Fichtner, W. Galvanic coupling enabling wireless implant communications. IEEE Trans. Instrum. Meas. 2009, 58, 2618–2625.

Seyedi, M.H.; Lai, D. A Novel Intrabody Communication Transceiver for Biomedical Applications; Springer: New York, NY, USA, 2017.

Li, J.W.; Chen, X.M.; Pun, S.H.; Mak, P.U.; Gao, Y.M.; Vai, M.I.; Du, M. Bit error rate estimation for galvanic-type intra-body communication using experimental eye-diagram and jitter characteristics. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013

Vasic´, Ž.L.; Krois, I.; Cifrek, M. Effect of transformer symmetry on intrabody communication channel measurements using grounded instruments. Automatika 2016, 57, 15–26.

Gao, Y.M.; Ye, Y.T.; Vai, M.I.; Du, M.; Pun, S.H. Channel modeling and power consumption analysis for galvanic coupling intra-body communication. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 106.

Tomlinson, W.J.; Banou, S.; Yu, C.; Nogueira, M.; Chowdhury, K.R. Secure On-skin Biometric Signal Transmission using Galvanic Coupling. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Paris, France, 29 April–2 May 2019; pp. 1135–1143.

Teshome, A.K.; Kibret, B.; Lai, D.T.H. A Review of Implant Communication Technology in WBAN: Progress and Challenges. IEEE Rev. Biomed. Eng. 2019, 12, 88–99.

Yamamoto, K.; Nishida, Y.; Sasaki, K.; Muramatsu, D.; Koshiji, F. Electromagnetic field analysis of signal transmission path and electrode contact conditions in human body communication. Appl. Sci. 2018, 8, 1539.

IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks; IEEE Std 802.15.6-2012; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2012; pp. 1–271.

Tomlinson, W.J.; Banou, S.; Yu, C.; Stojanovic, M.; Chowdhury, K.R. Comprehensive survey of galvanic coupling and alternative intra-body communication technologies. IEEE Commun. Surv. Tutor. 2018, 21, 1145–1164.

Channel Model for Body Area Network (BAN), IEEE P802.15-08-0780-12-0006, Nov. 2010.

T.W. Kang, J.H. Hwang, C.H. Hyoung, I.G. Lim, H.I. Park, S.W. Kang, Performance evaluation of human body communication system for IEEE 802.15 on the effect of human body channel, in: Proc. IEEE ISCE, Jun. 2011, pp. 232–235.

Z. Lucev, I. Krois, M. Cifrek A capacitive intrabody communication channel from 100 kHz to 100 MHz IEEE Trans. Instrum. Meas., 61 (12) (2012), pp. 3280-3289 CrossRefView Record in ScopusGoogle Scholar

M.D. Pereira, G.A. Alvarez-Botero, F.R. de Sousa Characterization and modeling of the capacitive HBC channel IEEE Trans. Instrum. Meas., 64 (10) (2015), pp. 2626-2635

J.H. Hwang, T.W. Kang, S.O. Park, Y.T. Kim Empirical channel model for human body communication IEEE Antennas Wirel. Propag. Lett., 14 (2015), pp. 694-697

J. Bae, K. Song, H. Lee, H. Cho, H.-J. Yoo The signal transmission mechanism on the surface of human body for body channel communication IEEE Trans. Microw. Theory Tech., 60 (3) (2012), pp. 582-593

J.H. Hwang, T.W. Kang, Y.T. Kim, S.O. Park Measurement of transmission properties of HBC channel and its impulse response model IEEE Trans. Instrum. Meas., 65 (1) (2016), pp. 177-188

IEEE Standard for local and metropolitan area networks—Part 15.6: Wireless Body Area Networks, IEEE 802.15 working group for WPAN, 2012.

T.W. Kang, I.G. Lim, J.H. Hwang, C.H. Hyoung, H.I. Park, S.W. Kang, A method of increasing data rate for human body communication system for body area network applications, in: IEEE Veh. Technol. Conf., Sep. 2012, pp. 1–5.

T.W. Kang, I.G. Lim, K.H. Park, S.W. Kang, S.E. Kim, Improving data rate in the human body communications, in: 2014 International Conf. on Information and Communication Technology Convergence, ICTC, Oct. 2014, pp. 51–52.

Ch.K. Ho, J.H. Cheong, J.H. Lee, V.V. Kulkarni, P. Li, X. Liu, M.K. Je High bandwidth efficiency and low power consumption Walsh code implementation methods for body channel communication IEEE Trans. Microw. Theory Tech., 62 (9) (2014), pp. 1867-1878

C.H. Hyoung, S.W. Kang, S.O. Park, Y.T. Kim Transceiver for human body communication using frequency selective digital transmission ETRI J., 34 (2) (2012), pp. 216-225

T.W. Kang, J.H. Hwang, S.E. Kim, K.I. Oh, H.I. Park, I.G. Lim, S.W. Kang Highly simplified and bandwidth-efficient human body communications based on IEEE 802.15.6 WBANs standard ETRI J. (2016), pp. 1074-1084

A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption schemes: Theory and implementation,” ACM Comput. Surv., vol. 51, no. 4, pp. 1–35, 2018, doi: 10.1145/3214303.

Downloads

Published

24.03.2024

How to Cite

Shah, S. ., & Shah, H. . (2024). Human Tap: A Unique Approach to Secure Data Transmission Synchronization. International Journal of Intelligent Systems and Applications in Engineering, 12(3), 561–570. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5287

Issue

Section

Research Article