CMOS Transceiver Epiretinal Vision Restoration Retina Chipset using Wireless Inductive Coupling

Authors

  • Hima Bindu Katikala, Telagathoti Pitchaiah, Gajula Ramana Murthy

Keywords:

CMOS transceiver, Binary phase shift keying, Inductive coupling, Retina chipset

Abstract

In medical implants the inductive coupling is the most common topology used for power transfer. Because of design complexity a wireless power transfer is mostly adaptable in the medical implants. In this paper, for the data progressing inside the implant a complementary metal oxide semiconductor transceiver (CMOS TRx) on-chip prototype is proposed with an inductive coupling power transfer for retina application. The CMOS TRx is an integrated device contains the data modulators, configured inductive, demodulator & epiretinal electrode array used to generate an action potential inside the retina. The binary phase shift modulator with class-E power amplifier is designed to transfer the data within two carrier cycles at the transmitter side to maintain high modulation rate than other modulation techniques. The proposed inductive coupling tuned to be resonant at the frequency of 13.56MHz as same as bpsk carrier frequency with more parallel receiver resonance (ωp) by considering the retina permittivity.

Downloads

Download data is not yet available.

References

. Kim, J.; Ko, H. Self-Biased Ultralow Power Current-Reused Neural Amplifier with on-Chip Analog Spike Detections. IEEE Access 2019, 7, 109792–109803. [CrossRef]

. Different Parts of Body Suitable for Implanted Devices. Available online:http://technologyandsociety.org/implantabletechnology/ (accessed on 25 January 2022)

. Kouhalvandi, L.; Matekovits, L.; Peter, I. Magic of 5G Technology and Optimization Methods Applied to Biomedical Devices: A Survey. Appl. Sci. 2022, 12, 7096. [CrossRef]

. Komolafe, A., Zaghari, B., Torah, R., Weddell, A.S., Khanbareh, H., Tsikriteas, Z.M., Vousden, M., Wagih, M., Jurado, U.T., Shi, J. and Yong, S., 2021. E-textile technology review–from materials to application. Ieee Access, 9, pp.97152-97179.

. Stanslaski, S.; Herron, J.; Chouinard, T.; Bourget, D.; Isaacson, B.; Kremen, V.; Opri, E.; Drew,W.; Brinkmann, B.H.; Gunduz, A.; et al. A Chronically Implantable Neural Coprocessor for Investigating the Treatment of Neurological Disorders. IEEE Trans.Biomed. Circuits Syst. 2018, 12, 1230–1245. [CrossRef]

. Chiu, C.Y.; Zhang, Z.C.; Lin, T.H. Design of a 0.6-V, 429-MHz FSK Transceiver Using Q-Enhanced and Direct Power Transfer Techniques in 90-nm CMOS. IEEE J. Solid-State Circuits 2020, 55, 3024–3035. [CrossRef]

. Liu, X.; Zhu, H.; Zhang, M.; Wu, X.; Richardson, A.G.; Sritharan, S.Y.; Ge, D.; Shu, Y.; Lucas, T.H.; Van der Spiegel, J. A fullywireless sensor-brain interface system to rest ore finger sensation. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [CrossRef]

. Lee, J.; Lee, K.R.; Ha, U.; Kim, J.H.; Lee, K.; Gweon, S.; Jang, J.; Yoo, H.J. A 0.8-V 82.9 µW In-Ear BCI Controller IC with 8.8 PEF EEG Instrumentation Amplifier and Wireless BAN Transceiver. IEEE J. Solid-State Circuits 2019, 54, 1185–1195. [CrossRef].

. H. Yu and K. Najafi, “Low-power interface circuits for bioimplantable microsystems”, Technical Digest, IEEE Int. Conf. Solid-State Circuits, San Francisco CA, February 2003.

. M. Ghovanloo and K. Najafi, “A high data-rate frequency shift keying demodulator chip for the wireless biomedical implants,” Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 5, pp. 45-48, May2003.

M. Ghovanloo and K. Najafi, “A fully digital frequency shift keying demodulator chip for the wireless biomedical implnats,” Proc. IEEE Southwest Symp. Mixed-Signal Design, pp. 223-227, Feb. 2003.

. C.-S.A. Gong, M.-T. Shiue, K.-W. Yao, T.-Y. Chen, “Low-power and area-efficient PSK demodualtor for wirelessly powered implantable command receivers,” Electronics Letters, vol. 44, Issue 14, pp. 841-842, July 2008.

F. Asgarian, A.M. Sodagar, “A high-data-rate low-power BPSK demodulator and clock recovery circuit for implantable biomedical devices,” Proc. 4th Int. IEEE/EMBS Conf. Neural Eng., pp. 407-410, April 29 – May 2, 2009.

. Trigui A, Ali M, Ammari A C, et al. A 1.5-pJ/bit, 9.04-Mbit/s carrier-width demodulator for data transmission over an inductive link supporting power and data transfer. IEEE Trans Circ Syst II, 2018, 65: 1420–1424

. Lee S-Y, Hsieh C-H, Yang C-M. Wireless front-end with power management for an implantable cardiac microstimulator. IEEE Trans Biomed Circ Syst, 2012, 6: 28–38

. Ha S, Kim C, Park J, et al. Energy recycling telemetry ic with simultaneous 11.5 mW power and 6.78 Mb/s backward data delivery over a single 13.56 MHz inductive link. IEEE J Solid-State Circuits, 2016, 51: 2664–2678

. Chen, M., Pan, L., Lin, Q., Cheng, L. and Ming, D., 2023. A70%-power transmission efficiency, 3.39 Mbps power and data telemetry over a single 13.56 MHz inductive link for biomedical implants. Science China Information Sciences, 66(2), p.122406.

. Rush A D, Troyk P R. A power and data link for a wireless-implanted neural recording system. IEEE Trans Biomed Eng, 2012, 59: 3255–3262

. Akram MA, Yang KW, Ha S. Duty-Cycled Wireless Power Transmission for Millimeter-Sized Biomedical Implants. Electronics. 2020 Dec;9(12):2130

. Roessler G:, "Implantation and explanation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial". Investigative ophthalmology & visual science, 50(6), 3003–3008, (2009).

. Keserü M:, "Acute electrical stimulation of the human retina with an epiretinal electrode array". Actaophthalmologica, 90(1), (2012).

. Kitiratschky V.B:, "Safety evaluation of “retina implant alpha IMS”—a prospective clinical trial". Graefe's Archive for Clinical and Experimental Ophthalmology, 253(3), 381–387, (2015).

. Linsenmeier R.A., Zhang H.F:, "Retinal oxygen: from animals to humans". Progress in retinal and eye research,58(1), 115-151, (2017).

. Fujikado T:, "One-Year Outcome of 49-Channel Suprachoroidal–Transretinal Stimulation Prosthesis in Patients With Advanced Retinitis Pigmentosa". Investigative ophthalmology & visual science. 57(14), 6147–6157, (2016).

. Fujikado T:, "Testing of semichronically implanted retinal prosthesis by suprachoroidal- transretinal stimulation in patients with retinitis pigmentosa". Investigative ophthalmology & visual science, 52(7), 4726–4733, (2011).

. Delbeke J., Oozeer M., Veraart C:, "Position, size and luminosity of phosphenes generated by direct optic nerve stimulation". Vision research, 43(9), 1091–1102, (2003).

. Katikala, Hima Bindu, Telagathoti Pitchaiah, and G. Ramana Murthy. "Low Readout Noise Photodiode based CMOS Image Sensor with High Fill Factor for Biomedical application." In 2022 IEEE Delhi Section Conference (DELCON), pp. 1-5. IEEE, 2022.

Downloads

Published

26.03.2024

How to Cite

Telagathoti Pitchaiah, Gajula Ramana Murthy, H. B. K. . (2024). CMOS Transceiver Epiretinal Vision Restoration Retina Chipset using Wireless Inductive Coupling. International Journal of Intelligent Systems and Applications in Engineering, 12(21s), 321–327. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5426

Issue

Section

Research Article