Ai-Powered Insights into Diabetes Mellitus: A Comprehensive Systematic Review


  • Vikas J. Magar, Sachin B. Bhoite, Rajivkumar S. Mente, Tulashiram B. Pisal


Artificial Intelligence, Diabetes Mellitus, Machine Learning, Healthcare, Clinical Insights


This comprehensive systematic review delves into the current landscape of artificial intelligence (AI) applications to illuminate the intricate metabolic processes and facets of diabetes mellitus. The primary objective is to thoroughly scrutinize and assess the existing body of studies to uncover potential benefits that AI may offer in identifying diabetes mellitus. This study delves into AI's potential for diabetes management, from early detection and personalized therapy to predictive modeling. It critically assesses both the benefits and drawbacks of AI integration, paving the way for responsible future advancements in this complex field. By uncovering AI's potential in diabetes research and exploring its impact on healthcare, this analysis ignites a transformation in how technology shapes both research and treatment.


Download data is not yet available.


D. V. Gunasekeran, D. S. Ting, G. S. Tan, and T. Y. Wong, “Artificial intelligence for diabetic retinopathy screening, prediction and management,” Curr. Opin. Ophthalmol., vol. 31, no. 5, pp. 357–365, 2020.

J. Chaki, S. Thillai Ganesh, S. K. Cidham, and S. Ananda Theertan, “Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: A systematic review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, Part B, pp. 3204–3225, Jun. 2022, doi: 10.1016/j.jksuci.2020.06.013.

S. Binhowemel, M. Alfakhri, K. AlReshaid, and A. Alyani, “Role of Artificial Intelligence in Diabetes Research Diagnosis and Prognosis: A Narrative Review,” J. Health Inform. Dev. Ctries., vol. 17, no. 02, 2023.

S. Ellahham, “Artificial Intelligence: The Future for Diabetes Care,” Am. J. Med., vol. 133, no. 8, pp. 895–900, Aug. 2020, doi: 10.1016/j.amjmed.2020.03.033.

A. B. Chausmer, “Zinc, Insulin and Diabetes,” J. Am. Coll. Nutr., vol. 17, no. 2, pp. 109–115, Apr. 1998, doi: 10.1080/07315724.1998.10718735.

R. D. Sriram and S. S. K. Reddy, “Artificial intelligence and digital tools: future of diabetes care,” Clin. Geriatr. Med., vol. 36, no. 3, pp. 513–525, 2020.

T. Zhu, K. Li, P. Herrero, and P. Georgiou, “Deep Learning for Diabetes: A Systematic Review,” IEEE J. Biomed. Health Inform., vol. 25, no. 7, pp. 2744–2757, Jul. 2021, doi: 10.1109/JBHI.2020.3040225.

R. Haneef et al., “Use of artificial intelligence for public health surveillance: a case study to develop a machine Learning-algorithm to estimate the incidence of diabetes mellitus in France,” Arch. Public Health, vol. 79, no. 1, p. 168, Sep. 2021, doi: 10.1186/s13690-021-00687-0.

R.-X. Ding et al., “Large-Scale decision-making: Characterization, taxonomy, challenges and future directions from an Artificial Intelligence and applications perspective,” Inf. Fusion, vol. 59, pp. 84–102, Jul. 2020, doi: 10.1016/j.inffus.2020.01.006.

M. Garnelo and M. Shanahan, “Reconciling deep learning with symbolic artificial intelligence: representing objects and relations,” Curr. Opin. Behav. Sci., vol. 29, pp. 17–23, Oct. 2019, doi: 10.1016/j.cobeha.2018.12.010.

B. Mondal, “Artificial Intelligence: State of the Art,” in Recent Trends and Advances in Artificial Intelligence and Internet of Things, V. E. Balas, R. Kumar, and R. Srivastava, Eds., in Intelligent Systems Reference Library. , Cham: Springer International Publishing, 2020, pp. 389–425. doi: 10.1007/978-3-030-32644-9_32.

F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence: A survey,” in 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 2018, pp. 0210–0215. doi: 10.23919/MIPRO.2018.8400040.

I. El Naqa and M. J. Murphy, “What Is Machine Learning?,” in Machine Learning in Radiation Oncology: Theory and Applications, I. El Naqa, R. Li, and M. J. Murphy, Eds., Cham: Springer International Publishing, 2015, pp. 3–11. doi: 10.1007/978-3-319-18305-3_1.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, Art. no. 7553, May 2015, doi: 10.1038/nature14539.

R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for healthcare: review, opportunities and challenges,” Brief. Bioinform., vol. 19, no. 6, pp. 1236–1246, Nov. 2018, doi: 10.1093/bib/bbx044.

A. Miglani and N. Kumar, “Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges,” Veh. Commun., vol. 20, p. 100184, Dec. 2019, doi: 10.1016/j.vehcom.2019.100184.

J. Huang, J. Chai, and S. Cho, “Deep learning in finance and banking: A literature review and classification,” Front. Bus. Res. China, vol. 14, no. 1, p. 13, Jun. 2020, doi: 10.1186/s11782-020-00082-6.

I. H. Sarker, “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions,” SN Comput. Sci., vol. 2, no. 6, p. 420, Aug. 2021, doi: 10.1007/s42979-021-00815-1.

C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electron. Mark., vol. 31, no. 3, pp. 685–695, Sep. 2021, doi: 10.1007/s12525-021-00475-2.

I. Bose and R. K. Mahapatra, “Business data mining — a machine learning perspective,” Inf. Manage., vol. 39, no. 3, pp. 211–225, Dec. 2001, doi: 10.1016/S0378-7206(01)00091-X.

I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions,” SN Comput. Sci., vol. 2, no. 3, p. 160, Mar. 2021, doi: 10.1007/s42979-021-00592-x.

A. M. Egan and S. F. Dinneen, “What is diabetes?,” Medicine (Baltimore), vol. 47, no. 1, pp. 1–4, Jan. 2019, doi: 10.1016/j.mpmed.2018.10.002.

N. G. Forouhi and N. J. Wareham, “Epidemiology of diabetes,” Medicine (Baltimore), vol. 38, no. 11, pp. 602–606, Nov. 2010, doi: 10.1016/j.mpmed.2010.08.007.

A. Nouwen et al., “Type 2 diabetes mellitus as a risk factor for the onset of depression: a systematic review and meta-analysis,” Diabetologia, vol. 53, no. 12, pp. 2480–2486, Dec. 2010, doi: 10.1007/s00125-010-1874-x.

R. A. DeFronzo et al., “Type 2 diabetes mellitus,” Nat. Rev. Dis. Primer, vol. 1, no. 1, Art. no. 1, Jul. 2015, doi: 10.1038/nrdp.2015.19.

N. Bansal, “Prediabetes diagnosis and treatment: A review,” World J. Diabetes, vol. 6, no. 2, pp. 296–303, Mar. 2015, doi: 10.4239/wjd.v6.i2.296.

E. M. Venditti and M. K. Kramer, “Necessary Components for Lifestyle Modification Interventions to Reduce Diabetes Risk,” Curr. Diab. Rep., vol. 12, no. 2, pp. 138–146, Apr. 2012, doi: 10.1007/s11892-012-0256-9.

M. Cardona-Morrell, L. Rychetnik, S. L. Morrell, P. T. Espinel, and A. Bauman, “Reduction of diabetes risk in routine clinical practice: are physical activity and nutrition interventions feasible and are the outcomes from reference trials replicable? A systematic review and meta-analysis,” BMC Public Health, vol. 10, no. 1, p. 653, Dec. 2010, doi: 10.1186/1471-2458-10-653.

A. Katsarou et al., “Type 1 diabetes mellitus,” Nat. Rev. Dis. Primer, vol. 3, p. 17016, Mar. 2017, doi: 10.1038/nrdp.2017.16.

H. D. McIntyre, P. Catalano, C. Zhang, G. Desoye, E. R. Mathiesen, and P. Damm, “Gestational diabetes mellitus,” Nat. Rev. Dis. Primer, vol. 5, no. 1, Art. no. 1, Jul. 2019, doi: 10.1038/s41572-019-0098-8.

CDC, “Gestational Diabetes and Pregnancy | CDC,” Centers for Disease Control and Prevention. Accessed: Sep. 10, 2023. [Online]. Available:

T. Drivsholm, N. de Fine Olivarius, A. B. S. Nielsen, and V. Siersma, “Symptoms, signs and complications in newly diagnosed type 2 diabetic patients, and their relationship to glycaemia, blood pressure and weight,” Diabetologia, vol. 48, no. 2, pp. 210–214, Feb. 2005, doi: 10.1007/s00125-004-1625-y.

D. Tomic, J. E. Shaw, and D. J. Magliano, “The burden and risks of emerging complications of diabetes mellitus,” Nat. Rev. Endocrinol., vol. 18, no. 9, Art. no. 9, Sep. 2022, doi: 10.1038/s41574-022-00690-7.

D. M. Nathan, “Long-Term Complications of Diabetes Mellitus,” N. Engl. J. Med., vol. 328, no. 23, pp. 1676–1685, Jun. 1993, doi: 10.1056/NEJM199306103282306.

A. L. Wicaksana, N. S. Hertanti, A. Ferdiana, and R. B. Pramono, “Diabetes management and specific considerations for patients with diabetes during coronavirus diseases pandemic: A scoping review,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 5, pp. 1109–1120, Sep. 2020, doi: 10.1016/j.dsx.2020.06.070.

S. Secinaro, D. Calandra, A. Secinaro, V. Muthurangu, and P. Biancone, “The role of artificial intelligence in healthcare: a structured literature review,” BMC Med. Inform. Decis. Mak., vol. 21, no. 1, p. 125, Apr. 2021, doi: 10.1186/s12911-021-01488-9.

D. Ben-Israel et al., “The impact of machine learning on patient care: A systematic review,” Artif. Intell. Med., vol. 103, p. 101785, Mar. 2020, doi: 10.1016/j.artmed.2019.101785.

K. Zhang and A. B. Aslan, “AI technologies for education: Recent research & future directions,” Comput. Educ. Artif. Intell., vol. 2, p. 100025, Jan. 2021, doi: 10.1016/j.caeai.2021.100025.

A. Nomura, M. Noguchi, M. Kometani, K. Furukawa, and T. Yoneda, “Artificial Intelligence in Current Diabetes Management and Prediction,” Curr. Diab. Rep., vol. 21, no. 12, p. 61, Dec. 2021, doi: 10.1007/s11892-021-01423-2.

A. Czyzewski, F. Krawiec, D. Brzezinski, P. J. Porebski, and W. Minor, “Detecting anomalies in X-ray diffraction images using convolutional neural networks,” Expert Syst. Appl., vol. 174, p. 114740, 2021.

P. Manickam et al., “Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare,” Biosensors, vol. 12, no. 8, p. 562, 2022.

D. M. M. Pacis, E. D. Subido, and N. T. Bugtai, “Trends in telemedicine utilizing artificial intelligence,” in AIP conference proceedings, AIP Publishing, 2018.

A. K. Dwivedi, “Analysis of computational intelligence techniques for diabetes mellitus prediction,” Neural Comput. Appl., vol. 30, pp. 3837–3845, 2018.

T. Miyazawa et al., “Artificial intelligence in food science and nutrition: a narrative review,” Nutr. Rev., vol. 80, no. 12, pp. 2288–2300, 2022.

A. Bohlmann, J. Mostafa, and M. Kumar, “Machine learning and medication adherence: scoping review,” JMIRx Med, vol. 2, no. 4, p. e26993, 2021.

S. G. Rabiha, A. Wibowo, Lukas, and Y. Heryadi, “Diabetes Classification Using Support Vector Machine : Binary Classification Model,” in 2021 4th International Conference on Information and Communications Technology (ICOIACT), Aug. 2021, pp. 280–284. doi: 10.1109/ICOIACT53268.2021.9563994.

R. B. Lukmanto, A. Nugroho, and H. Akbar, “Early detection of diabetes mellitus using feature selection and fuzzy support vector machine,” Procedia Comput. Sci., vol. 157, pp. 46–54, 2019.

“Pima Indians Diabetes Database.” Accessed: Sep. 22, 2023. [Online]. Available:

R. Patil, S. Tamane, S. A. Rawandale, and K. Patil, “A modified mayfly-SVM approach for early detection of type 2 diabetes mellitus,” Int J Electr Comput Eng, vol. 12, no. 1, pp. 524–533, 2022.

V. A. Kumari and R. Chitra, “Classification of diabetes disease using support vector machine,” Int. J. Eng. Res. Appl., vol. 3, no. 2, pp. 1797–1801, 2013.

[51] N. G. Ramadhan, “Comparative Analysis of ADASYN-SVM and SMOTE-SVM Methods on the Detection of Type 2 Diabetes Mellitus,” Sci J Inform., vol. 8, no. 2, pp. 276–282, 2021.

R. D. H. Devi, A. Bai, and N. Nagarajan, “A novel hybrid approach for diagnosing diabetes mellitus using farthest first and support vector machine algorithms,” Obes. Med., vol. 17, p. 100152, 2020.

A. Viloria, Y. Herazo-Beltran, D. Cabrera, and O. B. Pineda, “Diabetes Diagnostic Prediction Using Vector Support Machines,” Procedia Comput. Sci., vol. 170, pp. 376–381, Jan. 2020, doi: 10.1016/j.procs.2020.03.065.

P. Sah and K. Sarma, “Bloodless Technique to Detect Diabetes using Soft Computational Tool,” 2015, pp. 139–158. doi: 10.4018/978-1-4666-8493-5.ch006.

J. B. Ali, T. Hamdi, N. Fnaiech, V. Di Costanzo, F. Fnaiech, and J.-M. Ginoux, “Continuous blood glucose level prediction of type 1 diabetes based on artificial neural network,” Biocybern. Biomed. Eng., vol. 38, no. 4, pp. 828–840, 2018.

O. Erkaymaz, M. Ozer, and M. Perc, “Performance of small-world feedforward neural networks for the diagnosis of diabetes,” Appl. Math. Comput., vol. 311, pp. 22–28, Oct. 2017, doi: 10.1016/j.amc.2017.05.010.

S. Srivastava, L. Sharma, V. Sharma, A. Kumar, and H. Darbari, “Prediction of Diabetes Using Artificial Neural Network Approach,” in Engineering Vibration, Communication and Information Processing, vol. 478, K. Ray, S. N. Sharan, S. Rawat, S. K. Jain, S. Srivastava, and A. Bandyopadhyay, Eds., in Lecture Notes in Electrical Engineering, vol. 478. , Singapore: Springer Singapore, 2019, pp. 679–687. doi: 10.1007/978-981-13-1642-5_59.

M. Goyal, N. D. Reeves, A. K. Davison, S. Rajbhandari, J. Spragg, and M. H. Yap, “Dfunet: Convolutional neural networks for diabetic foot ulcer classification,” IEEE Trans. Emerg. Top. Comput. Intell., vol. 4, no. 5, pp. 728–739, 2018.

O. M. Alade, O. Y. Sowunmi, S. Misra, R. Maskeliūnas, and R. Damaševičius, “A Neural Network Based Expert System for the Diagnosis of Diabetes Mellitus,” in Information Technology Science, vol. 724, T. Antipova and Á. Rocha, Eds., in Advances in Intelligent Systems and Computing, vol. 724. , Cham: Springer International Publishing, 2018, pp. 14–22. doi: 10.1007/978-3-319-74980-8_2.

D. Sejdinović et al., “CLASSIFICATION OF PREDIABETES AND TYPE 2 DIABETES USING ARTIFICIAL NEURAL NETWORK,” in CMBEBIH 2017, vol. 62, A. Badnjevic, Ed., in IFMBE Proceedings, vol. 62. , Singapore: Springer Singapore, 2017, pp. 685–689. doi: 10.1007/978-981-10-4166-2_103.

B. M. K. P, S. P. R, N. R k, and A. K, “Type 2: Diabetes mellitus prediction using Deep Neural Networks classifier,” Int. J. Cogn. Comput. Eng., vol. 1, pp. 55–61, Jun. 2020, doi: 10.1016/j.ijcce.2020.10.002.

S. Yuvarani and R. Selvarani, “An analysis of decision tree models for diabetes,” Int Res J Eng Technol, vol. 3, no. 11, pp. 680–684, 2016.

D. Pei, T. Yang, and C. Zhang, “Estimation of Diabetes in a High-Risk Adult Chinese Population Using J48 Decision Tree Model,” Diabetes Metab. Syndr. Obes. Targets Ther., vol. Volume 13, pp. 4621–4630, Nov. 2020, doi: 10.2147/DMSO.S279329.

M. Sayadi, M. J. Zibaeenezhad, and S. M. T. Ayatollahi, “Simple prediction of type 2 diabetes mellitus via decision tree modeling,” Int. Cardiovasc. Res. J., vol. 11, no. 2, 2017, Accessed: Oct. 01, 2023. [Online]. Available:

V. S. R. P. V. Kamadi, A. R. Allam, S. M. Thummala, and V. N. R. P., “A computational intelligence technique for the effective diagnosis of diabetic patients using principal component analysis (PCA) and modified fuzzy SLIQ decision tree approach,” Appl. Soft Comput., vol. 49, pp. 137–145, Dec. 2016, doi: 10.1016/j.asoc.2016.05.010.

A. M. Posonia, S. Vigneshwari, and D. J. Rani, “Machine Learning based Diabetes Prediction using Decision Tree J48,” in 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Dec. 2020, pp. 498–502. doi: 10.1109/ICISS49785.2020.9316001.

N. Komal Kumar, D. Vigneswari, M. Vamsi Krishna, and G. V. Phanindra Reddy, “An Optimized Random Forest Classifier for Diabetes Mellitus,” in Emerging Technologies in Data Mining and Information Security, vol. 813, A. Abraham, P. Dutta, J. K. Mandal, A. Bhattacharya, and S. Dutta, Eds., in Advances in Intelligent Systems and Computing, vol. 813. , Singapore: Springer Singapore, 2019, pp. 765–773. doi: 10.1007/978-981-13-1498-8_67.

M. Butwall and S. Kumar, “A data mining approach for the diagnosis of diabetes mellitus using random forest classifier,” Int. J. Comput. Appl., vol. 120, no. 8, 2015, Accessed: Oct. 17, 2023. [Online]. Available:

W. Xu, J. Zhang, Q. Zhang, and X. Wei, “Risk prediction of type II diabetes based on random forest model,” in 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), Feb. 2017, pp. 382–386. doi: 10.1109/AEEICB.2017.7972337.

X. Wang et al., “Exploratory study on classification of diabetes mellitus through a combined Random Forest Classifier,” BMC Med. Inform. Decis. Mak., vol. 21, no. 1, p. 105, Mar. 2021, doi: 10.1186/s12911-021-01471-4.

[71] M. T. Mira Kania Sabariah, S. T. Aini Hanifa, and M. T. Siti Sa’adah, “Early detection of type II Diabetes Mellitus with random forest and classification and regression tree (CART),” in 2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA), Aug. 2014, pp. 238–242. doi: 10.1109/ICAICTA.2014.7005947.

D. Brown, A. Aldea, R. Harrison, C. Martin, and I. Bayley, “Temporal case-based reasoning for type 1 diabetes mellitus bolus insulin decision support,” Artif. Intell. Med., vol. 85, pp. 28–42, Apr. 2018, doi: 10.1016/j.artmed.2017.09.007.

B. Atmani, M. Benamina, and S. Benbelkacem, “Diabetes Diagnosis by Case-Based Reasoning and Fuzzy Logic,” Int. J. Interact. Multimed. Artif. Intell., vol. 5, no. Regular Issue, pp. 72–80, 2018.

M. K. Jha, D. Pakhira, and B. Chakraborty, “Diabetes detection and care applying CBR techniques,” IJSCE, vol. 6, no. 2, pp. 132–137, 2013.

S. El-Sappagh and M. Elmogy, “A Decision Support System for Diabetes Mellitus Management,” Diabetes Case Rep., vol. 1, pp. 1–13, Feb. 2016, doi: 10.4172/2572-5629.1000102.

S. Lekkas and L. Mikhailov, “Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases,” Artif. Intell. Med., vol. 50, no. 2, pp. 117–126, Oct. 2010, doi: 10.1016/j.artmed.2010.05.007.

H. Naz and S. Ahuja, “Deep learning approach for diabetes prediction using PIMA Indian dataset,” J. Diabetes Metab. Disord., vol. 19, no. 1, pp. 391–403, Jun. 2020, doi: 10.1007/s40200-020-00520-5.

M. Chen, J. Yang, J. Zhou, Y. Hao, J. Zhang, and C.-H. Youn, “5G-Smart Diabetes: Toward Personalized Diabetes Diagnosis with Healthcare Big Data Clouds,” IEEE Commun. Mag., vol. 56, no. 4, pp. 16–23, Apr. 2018, doi: 10.1109/MCOM.2018.1700788.

G. P. MAFFRE Gervais GAUTHIER, Bruno LAY, Julien ROGER, Damien ELIE, Mélanie FOLTETE, Arthur DONJON, Hugo, “Messidor,” ADCIS. Accessed: Oct. 24, 2023. [Online]. Available:

A. Erciyas and N. Barışçı, “An Effective Method for Detecting and Classifying Diabetic Retinopathy Lesions Based on Deep Learning,” Comput. Math. Methods Med., vol. 2021, p. e9928899, May 2021, doi: 10.1155/2021/9928899.

“Improved and robust deep learning agent for preliminary detection of diabetic retinopathy using public datasets,” Intell.-Based Med., vol. 3–4, p. 100022, Dec. 2020, doi: 10.1016/j.ibmed.2020.100022.

E. AbdelMaksoud, S. Barakat, and M. Elmogy, “A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique,” Med. Biol. Eng. Comput., vol. 60, no. 7, pp. 2015–2038, Jul. 2022, doi: 10.1007/s11517-022-02564-6.

P. Costa and A. Campilho, “Convolutional bag of words for diabetic retinopathy detection from eye fundus images,” IPSJ Trans. Comput. Vis. Appl., vol. 9, no. 1, p. 10, Mar. 2017, doi: 10.1186/s41074-017-0023-6.

W. L. Alyoubi, M. F. Abulkhair, and W. M. Shalash, “Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning,” Sensors, vol. 21, no. 11, p. 3704, May 2021, doi: 10.3390/s21113704.

M. Arora and M. Pandey, “Deep Neural Network for Diabetic Retinopathy Detection,” in 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Feb. 2019, pp. 189–193. doi: 10.1109/COMITCon.2019.8862217.

F. Arcadu et al., “Deep Learning Predicts OCT Measures of Diabetic Macular Thickening From Color Fundus Photographs,” Invest. Ophthalmol. Vis. Sci., vol. 60, no. 4, pp. 852–857, Mar. 2019, doi: 10.1167/iovs.18-25634.

D. S. Sisodia, S. Nair, and P. Khobragade, “Diabetic Retinal Fundus Images: Preprocessing and Feature Extraction for Early Detection of Diabetic Retinopathy,” Biomed. Pharmacol. J., vol. 10, no. 2, pp. 615–626, Jun. 2017.

A. Dinh, S. Miertschin, A. Young, and S. D. Mohanty, “A data-driven approach to predicting diabetes and cardiovascular disease with machine learning,” BMC Med. Inform. Decis. Mak., vol. 19, no. 1, p. 211, Nov. 2019, doi: 10.1186/s12911-019-0918-5.

A. Whaley-Connell et al., “Diabetes mellitus and CKD awareness: the kidney early evaluation program (KEEP) and national health and nutrition examination survey (NHANES),” Am. J. Kidney Dis., vol. 53, no. 4, pp. S11–S21, 2009.

P. Muntner, J. He, J. Chen, V. Fonseca, and P. K. Whelton, “Prevalence of non-traditional cardiovascular disease risk factors among persons with impaired fasting glucose, impaired glucose tolerance, diabetes, and the metabolic syndrome: analysis of the Third National Health and Nutrition Examination Survey (NHANES III),” Ann. Epidemiol., vol. 14, no. 9, pp. 686–695, Oct. 2004, doi: 10.1016/j.annepidem.2004.01.002.

S. Karthikeyan, K. P. Sanjay, R. J. Madhusudan, S. K. Sundaramoorthy, and P. K. Namboori, “Detection of multi-class retinal diseases using artificial intelligence: an expeditious learning using deep CNN with minimal data,” Biomed. Pharmacol. J., vol. 12, no. 3, p. 1577, 2019.

P. S. Chandakkar, R. Venkatesan, and B. Li, “MIRank-KNN: multiple-instance retrieval of clinically relevant diabetic retinopathy images,” J. Med. Imaging, vol. 4, no. 3, pp. 034003–034003, 2017.

D. B. Mule, S. S. Chowhan, and D. R. Somwanshi, “Detection and Classfication of Non-proliferative Diabetic Retinopathy Using Retinal Images,” in Recent Trends in Image Processing and Pattern Recognition, vol. 1036, K. C. Santosh and R. S. Hegadi, Eds., in Communications in Computer and Information Science, vol. 1036. , Singapore: Springer Singapore, 2019, pp. 312–320. doi: 10.1007/978-981-13-9184-2_28.

K. Shimada et al., “Real-World Evidence of the Incidence of and Risk Factors for Type 1 Diabetes Mellitus and Hypothyroidism as Immune-Related Adverse Events Associated With Programmed Cell Death-1 Inhibitors,” Endocr. Pract., vol. 27, no. 6, pp. 586–593, Jun. 2021, doi: 10.1016/j.eprac.2020.12.009.

A. Christiaens, S. Henrard, A. J. Sinclair, F. Tubach, D. Bonnet-Zamponi, and L. Zerah, “Deprescribing Glucose-Lowering Therapy in Older Adults with Diabetes: A Systematic Review of Recommendations,” J. Am. Med. Dir. Assoc., vol. 24, no. 3, pp. 400–402, Mar. 2023, doi: 10.1016/j.jamda.2022.12.018.

P. Porwal et al., “Idrid: Diabetic retinopathy–segmentation and grading challenge,” Med. Image Anal., vol. 59, p. 101561, 2020.

P. Porwal et al., “Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research,” Data, vol. 3, no. 3, p. 25, 2018.

M. Kalpana Devi and M. Mary Shanthi Rani, “Classification of Diabetic Retinopathy Using Ensemble of Machine Learning Classifiers with IDRiD Dataset,” in Evolutionary Computing and Mobile Sustainable Networks, vol. 116, V. Suma, X. Fernando, K.-L. Du, and H. Wang, Eds., in Lecture Notes on Data Engineering and Communications Technologies, vol. 116. , Singapore: Springer Singapore, 2022, pp. 291–303. doi: 10.1007/978-981-16-9605-3_20.

J.-H. Wu, T. A. Liu, W.-T. Hsu, J. H.-C. Ho, and C.-C. Lee, “Performance and limitation of machine learning algorithms for diabetic retinopathy screening: meta-analysis,” J. Med. Internet Res., vol. 23, no. 7, p. e23863, 2021.

A. Behera, “Use of artificial intelligence for management and identification of complications in diabetes,” Clin. Diabetol., vol. 10, no. 2, pp. 221–225, 2021.




How to Cite

Vikas J. Magar, Sachin B. Bhoite, Rajivkumar S. Mente, Tulashiram B. Pisal. (2024). Ai-Powered Insights into Diabetes Mellitus: A Comprehensive Systematic Review. International Journal of Intelligent Systems and Applications in Engineering, 12(21s), 706–728. Retrieved from



Research Article

Similar Articles

You may also start an advanced similarity search for this article.