A Comprehensive Survey of Multiple Object Tracking Techniques

Authors

  • Hardik Jaiswal, Aditya Gambhir, Laxmi Bewoor, Nagaraju Bogiri

Keywords:

Multiple Object Tracking (MOT), Traffic environment, Deep Learning

Abstract

Multiple Object Tracking (MOT) is crucial in computer vision and surveillance, especially for automating traffic control in challenging traffic environments. This review surveys advancements in object detection, tracking algorithms, lane departure warnings, and semantic segmentation, with a specific focus on traffic law enforcement. It covers issues like wrong-way, clearway, and one-way traffic violations, as well as challenges including occlusion and splits. Various methods, such as background subtraction and deep learning, are explored.The review stresses the significance of analyzing recent literature for researchers to bridge gaps, overcome limitations, and create new algorithms. It also touches on hardware, datasets, metrics, and research directions. Future MOT research aims to develop efficient algorithms for dynamic tracking, improve detection accuracy, and reduce real-time processing. The survey's proposed methods offer valuable references for tracking multiple objects in frame sequences.

Downloads

Download data is not yet available.

References

Wang, Z., Zheng, L., Liu, Y., Li, Y., Wang, S. (2020). Towards Real-Time Multi-Object Tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12356. Springer, Cham. https://doi.org/10.1007/978-3-030-58621-8_7

Madore KP, Wagner AD. Multicosts of Multitasking. Cerebrum. 2019 Apr 1;2019:cer-04-19. PMID: 32206165; PMCID: PMC7075496.

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, pp. 580–587. https://doi.org/10.1109/CVPR.2014.81

Girshick, R., 2015. Fast R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision. IEEE, pp. 1440–1448. https://doi.org/10.1109/ICCV.2015.169

Ren, S., He, K., Girshick, R., Sun, J., 2017. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, pp. 779–788. https://doi.org/10.1109/CVPR.2016.91

Ballard, D., Lecun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D., 1989. Backpropagation Applied to Handwritten Zip Code Recognition.

Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M., 2016. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 35, 1285–1298. https://doi.org/10.1109/TMI.2016.2528162

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., n.d. Learning Deep Features for Discriminative Localization. http://cnnlocalization.csail.mit.edu

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115, 211–252. https://doi.org/10.1007/s11263-015-0816-y

Narayana Cummaragunta, S., S, S.K., Shetty, J., 2022. Wrong Side Driving Detection. Int. J. Technol. Emerg. Sci.

Sentas, A., Kul, S., Sayar, A., 2019. Real-Time Traffic Rules Infringing Determination over the Video Stream: Wrong Way and Clearway Violation Detection, in: 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019. https://doi.org/10.1109/IDAP.2019.8875889

Zhang, J., Lo Presti, L., Sclaroff, S., 2012. Online multi-person tracking by tracker hierarchy, in: Proceedings - 2012 IEEE 9th International Conference on Advanced Video and Signal-Based Surveillance, AVSS 2012. pp. 379–385. https://doi.org/10.1109/AVSS.2012.51

Li, W., Mu, J., Liu, G., 2019. Multiple object tracking with motion and appearance cues, in: Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019. Institute of Electrical and Electronics Engineers Inc., pp. 161–169. https://doi.org/10.1109/ICCVW.2019.00025

NGENI, F.C., Mwakalonge, J., Siuhi, S., 2022. Multiple Object Tracking (Mot) of Vehicles to Solve Vehicle Occlusion Problems Using Deepsort and Quantum Computing. SSRN Electron. J. https://doi.org/10.2139/ssrn.4183319

Montella, C. (n.d.). The Kalman Filter and Related Algorithms: A Literature Review The Kalman Filter and Related Algorithms A Literature Review. https://www.researchgate.net/publication/236897001

Jiménez-Bravo, D.M., Lozano Murciego, Á., Sales Mendes, A., Sánchez San Blás, H., Bajo, J., 2022. Multi-object tracking in traffic environments: A systematic literature review. Neurocomputing. https://doi.org/10.1016/j.neucom.2022.04.087

Chen, W., Wang, W., Wang, K., Li, Z., Li, H., Liu, S., 2020. Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: A review. J. Traffic Transp. Eng. (English Ed. https://doi.org/10.1016/j.jtte.2020.10.002

Bullinger, S., Bodensteiner, C., Arens, M., 2018. Instance flow-based online multiple object tracking, in Proceedings - International Conference on Image Processing, ICIP. pp. 785–789. https://doi.org/10.1109/ICIP.2017.8296388

Sakkos, D., Liu, H., Han, J., Shao, L., 2018. End-to-end video background subtraction with 3d convolutional neural networks. Multimed. Tools Appl. 77, 23023–23041. https://doi.org/10.1007/s11042-017-5460-9

Bazan, M., Ciskowski, P., Halawa, K., Janiczek, T., Rusiecki, A., Śmigowski, M., 2016. Telematics Telematics Transport System Transport System Archives of Detection of vehicles moving in the wrong direction.

Helen Rose Mampilayil, Rahamathullah K, 2019. 2019 International Conference on Intelligent Computing and Control Systems, ICCS 2019. 2019 Int. Conf. Intell. Comput. Control Syst. ICCS 2019.

Suttiponpisarn, P., Charnsripinyo, C., Usanavasin, S., Nakahara, H., 2022. An Autonomous Framework for Real-Time Wrong-Way Driving Vehicle Detection from Closed-Circuit Televisions. Sustain. 14. https://doi.org/10.3390/su141610232

Li, X., Wang, K., Wang, W., Li, Y., 2010. A multiple object tracking method using Kalman filter, in: 2010 IEEE International Conference on Information and Automation, ICIA 2010. pp. 1862–1866. https://doi.org/10.1109/ICINFA.2010.5512258

Zhao, D., Fu, H., Xiao, L., Wu, T., Dai, B., 2018. Multi-object tracking with correlation filter for autonomous vehicle. Sensors (Switzerland) 18. https://doi.org/10.3390/s18072004

Liang, H., Song, H., Li, H., Dai, Z., 2020. Vehicle Counting System using Deep Learning and Multi-Object Tracking Methods. Transp. Res. Rec. 2674, 114–128. https://doi.org/10.1177/0361198120912742

Jodoin, J.P., Bilodeau, G.A., Saunier, N., 2014. Urban Tracker: Multiple object tracking in urban mixed traffic, in: 2014 IEEE Winter Conference on Applications of Computer Vision, WACV 2014. pp. 885–892. https://doi.org/10.1109/WACV.2014.6836010

Zhang, L., Lai, J., Zhang, Z., Deng, Z., He, B., He, Y., 2020. Multimodal Multiobject Tracking by Fusing Deep Appearance Features and Motion Information. Complexity 2020. https://doi.org/10.1155/2020/8810340

D. Du et al., "VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results," 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 2019, pp. 213-226, doi: 10.1109/ICCVW.2019.00030.

“Open Images V6,” Googleapis.com [Online]. https://storage.googleapis.com/openimages/web/index.html.(accessed 31 May 2023)

J. Ferryman and A. Shahrokni, "PETS2009: Dataset and challenge," 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Snowbird, UT, USA, 2009, pp. 1-6, doi: 10.1109/PETS-WINTER.2009.5399556

Zhu J, Yang H, Liu N, et al., 2018. Computer Vision – ECCV 2018, Online multi-object tracking with dual matching attention networks. Springer International Publishing. https://doi.org/10.1007/978-3-030-01228-1

Downloads

Published

26.03.2024

How to Cite

Hardik Jaiswal, Aditya Gambhir, Laxmi Bewoor, Nagaraju Bogiri. (2024). A Comprehensive Survey of Multiple Object Tracking Techniques. International Journal of Intelligent Systems and Applications in Engineering, 12(21s), 890–899. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5486

Issue

Section

Research Article