Enhancing Maximum Power Point Tracking through Ensemble Techniques


  • Hayder Husam Mahmood, Zaid Hamodat


Solar Energy; Maximum Power Point Tracking; Ensemble Learning; Regression, PV.


Maximum Power Point Tracking (MPPT) plays a pivotal role in photovoltaic (PV) solar systems, streamlining the harnessing of available power and bolstering energy conversion efficiency. Its significance lies in its alignment with the global push to heighten the efficacy of renewable energy sources. This article unfolds a meticulous examination of the predictive modeling specific to solar energy. The investigation spans various machine learning models such as Linear Regression (LR), Support Vector Regression (SVR), XGBoost Regressor, and Ensemble Learning (EL), each dissected to reveal the intricacies involved in solar energy system modeling. The research, conducted across two unique datasets—Solar Power Generation and Solar Radiation Prediction, employed rigorous statistical evaluation to uncover the distinctions in accuracy, unity, and efficacy among the models. A standout finding was the Ensemble Learning model's superior performance, notably through applying techniques like Bagging Regressor. This approach transcended the individual models in both datasets by ingeniously amalgamating the predictions of various underlying models, leading to enhanced predictive precision. This article's insights contribute considerably to the domain of solar energy modeling, elevating Ensemble Learning as a powerful instrument for refining prediction accuracy. Furthermore, the juxtaposition of various modeling methodologies unveils valuable insights into their respective trade-offs, enriching the foundation for future exploration and real-world implementations within the renewable energy landscape. In setting a novel standard in solar energy forecasting, this study also resonates with the broader objectives of sustainable energy governance and ecological preservation.


Download data is not yet available.


Paul Ekins, Michael J Bradshaw, and Jim Watson. Global energy: Issues, potentials, and policy implications. Oxford University Press, 2015.

Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513–1524.

Brewer, W. D., Wengenmayr, R., & Bührke, T. (2013). "Renewable energy: Sustainable energy concepts for the energy change." John Wiley & Sons.

Mekhilef, S., Saidur, R., & Safari, A. (2011). A review on solar energy use in industries. Renewable and Sustainable Energy Reviews, 15(4), 1777–1790.

Ma, J., Jiang, H., Huang, K., Bi, Z., & Man, K. L. (2017). Novel field-support vector regression-based soft sensor for accurate estimation of solar irradiance. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(12), 3183–3191.

De Brito, M. A. G., Galotto, L., Sampaio, L. P., Melo, G. A. e., & Canesin, C. A. (2012). Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Transactions on Industrial Electronics, 60(3), 1156–1167.

Katche, M. L., Makokha, A. B., Zachary, S. O., & Adaramola, M. S. (2023). A comprehensive review of maximum power point tracking (MPPT) techniques used in solar PV systems. Energies, 16(5), 2206.

Farhat, M., Barambones, O., & Sbita, L. (2015). Efficiency optimization of a DSP-based standalone PV system using a stable single input fuzzy logic controller. Renewable and Sustainable Energy Reviews, 49, 907–920.

Shi, J., Lee, W.-J., Liu, Y., Yang, Y., & Wang, P. (2012). Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Transactions on Industry Applications, 48(3), 1064–1069.

Huang, Y., Lu, J., Liu, C., Xu, X., Wang, W., & Zhou, X. (2010). Comparative study of power forecasting methods for PV stations. In 2010 International Conference on Power System Technology, pages 1–6. IEEE.

Takruri, M., Farhat, M., Sunil, S., Ramos-Hernanz, J. A., & Barambones, O. (2020). Support vector machine for photovoltaic system efficiency improvement. Journal of Sustainable Development of Energy, Water and Environment Systems, 8(3), 441–451.

Farhat, M., Barambones, O., & Sbita, L. (2017). A new maximum power point method based on a sliding mode approach for solar energy harvesting. Applied Energy, 185, 1185–1198.

Veerachary, M., Senjyu, T., & Uezato, K. (2003). Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Transactions on Industrial Electronics, 50(4), 749–758.

Mohammed, S. S., Devaraj, D., & Ahamed, T. P. I. (2016). A novel hybrid maximum power point tracking technique using perturb & observe algorithm and learning automata for solar PV system. Energy, 112, 1096–1106.

Piegari, L., Rizzo, R., Spina, I., & Tricoli, P. (2015). Optimized adaptive perturb and observe maximum power point tracking control for photovoltaic generation. Energies, 8(5), 3418–3436.

Chen, Y.-T., Jhang, Y.-C., & Liang, R.-H. (2016). A fuzzy-logic based auto-scaling variable step-size MPPT method for PV systems. Solar Energy, 126, 53–63.

Alajmi, B. N., Ahmed, K. H., Finney, S. J., & Williams, B. W. (2010). Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Transactions on Power Electronics, 26(4), 1022–1030.

Algarín, C. R., Giraldo, J. T., & Alvarez, O. R. (2017). Fuzzy logic based MPPT controller for a PV system. Energies, 10(12), 2036.

Hassan, S. Z., Li, H., Kamal, T., Arifoglu, U., Mumtaz, S., & Khan, L. (2017). Neuro-fuzzy wavelet based adaptive MPPT algorithm for photovoltaic systems. Energies, 10(3), 394.

Hou, W., Jin, Y., Zhu, C., Li, G., et al. (2016). A novel maximum power point tracking algorithm based on glowworm swarm optimization for photovoltaic systems. International Journal of Photoenergy, 2016.

Titri, S., Larbes, C., Toumi, K. Y., & Benatchba, K. (2017). A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions. Applied Soft Computing, 58, 465–479.

Messalti, S., Harrag, A., & Loukriz, A. (2017). A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation. Renewable and Sustainable Energy Reviews, 68, 221–233.

Ramos-Hernanz, J. A., Barambones, O., Lopez-Guede, J. M., Zamora, I., Eguia, P., Farhat, M., et al. (2016). Sliding mode real-time control of photovoltaic systems using neural estimators. International Journal of Photoenergy, 2016.

Kofinas, P., Dounis, A. I., Papadakis, G., & Assimakopoulos, M. N. (2015). An intelligent MPPT controller based on direct neural control for partially shaded PV system. Energy and Buildings, 90, 51–64.

Bouarroudj, N., Boukhetala, D., Feliu-Batlle, V., Boudjema, F., Benlahbib, B., & Batoun, B. (2019). Maximum power point tracker based on fuzzy adaptive radial basis function neural network for PV-system. Energies, 12(14), 2827.

Wu, Q., & Peng, C. (2016). Wind power generation forecasting using least squares support vector machine combined with ensemble empirical mode decomposition, principal component analysis and a bat algorithm. Energies, 9(4), 261.

Aslam, S., Herodotou, H., Mohsin, S. M., Javaid, N., Ashraf, N., & Aslam, S. (2021). A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renewable and Sustainable Energy Reviews, 144, 110992.

Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249.

Gu, G. H., Noh, J., Kim, I., & Jung, Y. (2019). Machine learning for renewable energy materials. Journal of Materials Chemistry A, 7(29), 17096–17117.

Devarakonda, A. K., Karuppiah, N., Selvaraj, T., Balachandran, P. K., Shanmugasundaram, R., & Senjyu, T. (2022). A comparative analysis of maximum power point techniques for solar photovoltaic systems. Energies, 15(22), 8776.

Nzoundja Fapi, C. B., Wira, P., Kamta, M., Tchakounte, H., & Colicchio, B. (2021). Simulation and dSPACE hardware implementation of an improved fractional short-circuit current MPPT algorithm for photovoltaic system. Applied Solar Energy, 57, 93–106.

Hmidet, A., Subramaniam, U., Elavarasan, R. M., Raju, K., Diaz, M., Das, N., Mehmood, K., Karthick, A., Muhibbullah, M., & Boubaker, O. (2021). Design of efficient off-grid solar photovoltaic water pumping system based on improved fractional open circuit voltage MPPT technique. International Journal of Photoenergy, 2021, 1–18.

Azeem, A., Fatema, N., & Malik, H. (2018). k-NN and ANN based deterministic and probabilistic wind speed forecasting intelligent approach. Journal of Intelligent & Fuzzy Systems, 35(5), 5021–5031.

Shareef, H., Mutlag, A. H., Mohamed, A., et al. (2017). Random forest-based approach for maximum power point tracking of photovoltaic systems operating under actual environmental conditions. Computational Intelligence and Neuroscience, 2017.

Mahesh, P. V., Meyyappan, S., & RamakoteswaraRao, A. (2022). Maximum power point tracking with regression machine learning algorithms for solar PV systems. International Journal of Renewable Energy Research (IJRER), 12(3), 1327–1338.

Nkambule, M. S., Hasan, A. N., Ali, A., Hong, J., & Geem, Z. W. (2021). Comprehensive evaluation of machine learning MPPT algorithms for a PV system under different weather conditions. Journal of Electrical Engineering & Technology, 16, 411–427.

Memaya, M., Moorthy, C. B., Tahiliani, S., & Sreeni, S. (2019). Machine learning based maximum power point tracking in solar energy conversion systems. International Journal of Smart Grid and Clean Energy, 8(6), 662–669.

Mukherjee, D., Chakraborty, S., Guchhait, P. K., & Bhunia, J. (2020). Machine learning based solar power generation forecasting with and without MPPT controller. In 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE), pages 44–48. IEEE.

Kumar, P., Viswambharan, V. K., & Pillai, S. (2023). Performance analysis of maximum power point tracking of PV systems using artificial neural networks and support vector machines. In 2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), pages 511–515. IEEE.

Obiora, C. N., Ali, A., & Hasan, A. N. (2021). Implementing extreme gradient boosting (XGBoost) algorithm in predicting solar irradiance. In 2021 IEEE PES/IAS PowerAfrica, pages 1–5. IEEE.

Omer, Z. M., & Shareef, H. (2022). Comparison of decision tree based ensemble methods for prediction of photovoltaic maximum current. Energy Conversion and Management: X, 16, 100333.

Camizuli, E., & Carranza, E. J. (2018). Exploratory data analysis (EDA). The encyclopedia of archaeological sciences, 1-7.

Su, X., Yan, X., & Tsai, C.‐L. (2012). Linear regression. Wiley Interdisciplinary Reviews: Computational Statistics, 4(3), 275-294.

Zhang, X., et al. (2020). Predicting missing values in medical data via XGBoost regression. Journal of healthcare informatics research, 4, 383-394.

Awad, M., et al. (2015). Support vector regression. Efficient learning machines: Theories, concepts, and applications for engineers and system designers, 67-80.




How to Cite

Zaid Hamodat, H. H. M. . (2024). Enhancing Maximum Power Point Tracking through Ensemble Techniques. International Journal of Intelligent Systems and Applications in Engineering, 12(21s), 1072–1084. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/5507



Research Article